Ocena limfocytów T, NK, NKT oraz komórek dendrytycznych we krwi obwodowej i szpiku kostnym chorych na szpiczaka plazmocytowego

ARTYKUŁ PRZEGLĄDOWY

Ocena limfocytów T, NK, NKT oraz komórek dendrytycznych we krwi obwodowej i szpiku kostnym chorych na szpiczaka plazmocytowego

Marcin Pasiarski 1 , Ewelina Grywalska 2 , Agata Kosmaczewska 3 , Stanisław Góźdź 4 , Paweł Steckiewicz 1 , Bartosz Garus 1 , Mateusz Bilski 2 , Anna Hymos 1 , Jacek Roliński 2 , Mateusz Bilski 1 , Jacek Roliński 4

1. Department of Hematology, Holycross Cancer Center, Kielce, Poland
2. Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
3. Department of Experimental Therapy, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
4. Faculty of Medicine and Faculty of Health Sciences, Jan Kochanowski University, Kielce, Poland

Opublikowany: 2015-12-31
GICID: 01.3001.0009.6613
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2015; 69 : 1435-1442

 

Abstrakt

Przypisy

  • 1. Banchereau J., Steinman R.M.: Dendritic cells and the control ofimmunity. Nature, 1998; 392: 245-252
    Google Scholar
  • 2. Bianchi A., Mariani S., Beggiato E., Borrione E., Peola S., BoccadoroM., Pileri A., Massaia M.: Distribution of T-cell signalling moleculesin human myeloma. Br. J. Haematol., 1997; 97: 815-820
    Google Scholar
  • 3. Bianchi A., Montacchini L., Barral P., Borrione P., Attisano C.,Orsini E., Boccadoro M., Pileri A., Massaia M.: CD3-induced T-cellactivation in the bone marrow of myeloma patients: major role ofCD4+ cells. Br. J. Haematol., 1995; 90: 625-632
    Google Scholar
  • 4. Bielawska-Pohl A., Pajtasz-Piasecka E., Duś D.: Natural killer cellscomplot with dendritic cells. Postępy Hig. Med. Dośw., 2013; 67:192-200
    Google Scholar
  • 5. Bodey B., Siegel S.E., Kaiser H.E.: Antigen presentation by dendriticcells and their significance in antineoplastic immunotherapy.In Vivo, 2004; 18: 81-100
    Google Scholar
  • 6. Bommert K., Bargou R.C., Stühmer T.: Signalling and survivalpathways in multiple myeloma. Eur. J. Cancer, 2006; 42: 1574-1580
    Google Scholar
  • 7. Brown R., Murray A., Pope B., Sze D.M., Gibson J., Ho P.J., HartD., Joshua D.: Either interleukin-12 or interferon-g can correct thedendritic cell defect induced by transforming growth factor β1 inpatients with myeloma. Br. J. Haematol., 2004; 125: 743-748
    Google Scholar
  • 8. Brown R.D., Pope B., Murray A., Esdale W., Sze D.M., Gibson J., HoP.J., Hart D., Joshua D.: Dendritic cells from patients with myelomaare numerically normal but functionally defective as they fail to upregulateCD80 (B7-1) expression after huCD40LT stimulation becauseof inhibition by transforming growth factor-β1 and interleukin-10.Blood, 2001; 98: 2992-2998
    Google Scholar
  • 9. Caers J., Van Valckenborgh E., Menu E., Van Camp B., VanderkerkenK.: Unraveling the biology of multiple myeloma disease: cancerReferencesstem cells, acquired intracellular changes and interactions with thesurrounding micro-environment. Bull. Cancer, 2008; 95: 301-313
    Google Scholar
  • 10. Chapoval A.I., Tamada K., Chen L.: In vitro growth inhibition ofa broad spectrum of tumor cell lines by activated human dendriticcells. Blood, 2000; 95: 2346-2351
    Google Scholar
  • 11. Chaux P., Favre N., Martin M., Martin F.: Tumor-infiltratingdendritic cells are defective in their antigen-presenting functionand inducible B7 expression in rats. Int. J. Cancer, 1997; 72: 619-624
    Google Scholar
  • 12. Chomarat P., Banchereau J., Davoust J., Palucka A.K.: IL-6 switchesthe differentiation of monocytes from dendritic cells to macrophages.Nat. Immunol., 2000; 1: 510-514
    Google Scholar
  • 13. Dhodapkar K.M., Barbuto S., Matthews P., Kukreja A., MazumderA., Vesole D., Jagannath S., Dhodapkar M.V.: Dendritic cells mediatethe induction of polyfunctional human IL17-producing cells (Th17-1cells) enriched in the bone marrow of patients with myeloma. Blood,2008; 112: 2878-2885
    Google Scholar
  • 14. Dhodapkar M.V., Geller M.D., Chang D.H., Shimizu K., Fuji S.,Dhodapkar K.M., Krasovsky J.: A reversible defect in natural killerT cell function characterizes the progression of premalignant tomalignant multiple myeloma. J. Exp. Med., 2003; 197: 1667-1676
    Google Scholar
  • 15. Fauriat C., Mallet F., Olive D., Costello R.T.: Impaired activatingreceptor expression pattern in natural killer cells from patients withmultiple myeloma. Leukemia, 2006; 20: 732-733
    Google Scholar
  • 16. Gabrilovich D., Ishida T., Oyama T., Ran S., Kravtsov V., NadafS., Carbone D.P.: Vascular endothelial growth factor inhibits thedevelopment of dendritic cells and dramatically affects the differentiationof multiple hematopoietic lineages in vivo. Blood, 1998;92: 4150-4166
    Google Scholar
  • 17. Hajek R., Butch A.W.: Dendritic cell biology and the application of dendritic cells to immunotherapy of multiple myeloma. Med.Oncol., 2000; 17: 2-15
    Google Scholar
  • 18. Harrison S.J., Cook G.: Immunotherapy in multiple myeloma -possibility or probability? Br. J. Haematol., 2005; 130: 344-362
    Google Scholar
  • 19. Hart D.N.: Dendritic cells: unique leukocyte populations whichcontrol the primary immune response. Blood, 1997; 90: 3245-3287
    Google Scholar
  • 20. Jacobson D.R., Zolla-Pazner S.: Immunosupression and infectionin multiple myeloma. Semin. Oncol., 1986; 13: 282-290
    Google Scholar
  • 21. Jurczyszyn A., Gdula-Argasińska J., Kosmaczewska A., SkotnickiA.B.: The role of the bone marrow microenvironment in the pathogenesisof multiple myeloma. Postępy Hig. Med. Dośw., 2015;69: 521-533
    Google Scholar
  • 22. Jurczyszyn A., Kosmaczewska A., Skotnicki A.B.: Daratumumab -breakthrough drug in multiple myeloma therapy. Postępy Hig. Med.Dośw., 2014; 68: 1352-1360
    Google Scholar
  • 23. Jurisic V., Srdic T., Konjevic G., Markovic O., Colovic M.: Clinicalstage-depending decrease of NK cell activity in multiple myelomapatients. Med. Oncol., 2007; 24: 312-317
    Google Scholar
  • 24. Kay N.E., Leong T., Bone N., Kyle R.A., Greipp P.R., Van Ness B.,Oken M.M.: T-helper phenotypes in the blood of myeloma patientson ECOG phase III trials E9486/E3A93. Br. J. Haematol., 1998; 100:459-463
    Google Scholar
  • 25. Kay N.E., Leong T.L., Bone N., Vesole D.H., Greipp P.R., Van NessB., Oken M.M., Kyle R.A.: Blood levels of immune cells predict survivalin myeloma patients: results of an Eastern Cooperative OncologyGroup phase 3 trial for newly diagnosed multiple myeloma patients.Blood, 2001; 98: 23-28
    Google Scholar
  • 26. Kay N.E., Leong T., Kyle R.A., Greipp P., Billadeau D., Van Ness B.,Bone N., Oken M.M.: Circulating blood B cells in multiple myeloma:analysis and relationship to circulating clonal cells and clinical parametersin a cohort of patients entered on the Eastern CooperativeOncology Group phase III E9486 clinical trial. Blood, 1997; 90: 340-345
    Google Scholar
  • 27. Kicielińska J., Pajtasz-Piasecka E.: The role of IL-10 in the modulationof the immune response in normal conditions and the tumorenvironment. Postępy Hig. Med. Dośw., 2014; 68: 879-892
    Google Scholar
  • 28. King M.A., Radicchi-Mastroianni M.A.: Natural killer cells andCD56+ T cells in the blood of multiple myeloma patients: analysis by4-colour flow cytometry. 1996; 26: 121-124
    Google Scholar
  • 29. Kuriyama Y., Kawanishi Y., Iwase O., Nakano M., Toyama K.: Immunoregulatorycells in patients with monoclonal gammopathies.Rinsho Ketsueki, 1994; 35: 642-648
    Google Scholar
  • 30. Mozaffari F., Hansson L., Kiaii S., Ju X., Rossmann E.D., RabbaniH., Mellstedt H., Osterborg A.: Signalling molecules and cytokineproduction in T cells of multiple myeloma-increased abnormalitieswith advancing stage. Br. J. Haematol., 2004; 124: 315-324
    Google Scholar
  • 31. Ogmundsdóttir H.M.: Natural killer cell activity in patients withmultiple myeloma. Cancer Detect. Prev., 1988; 12: 133-143
    Google Scholar
  • 32. Palucka A.K., Ueno H., Fay J., Banchereau J.: Dendritic cells: acritical player in cancer therapy? J. Immunother., 2008; 31: 793-805
    Google Scholar
  • 33. Pasiarski M., Grywalska E., Kosmaczewska A., Góźdź S., RolińskiJ.: The frequency of myeloid and lymphoid dendritic cells in multiplemyeloma patients is inversely correlated with disease progression.Postępy Hig. Med. Dośw., 2013; 67: 926-932
    Google Scholar
  • 34. Pérez-Andres M., Almeida J., Martin-Ayuso M., Moro M.J., Martin-NuñezG., Galende J., Hernandez J., Mateo G., San Miguel J.F., OrfaoA.; Spanish Network on Multiple Myeloma; Spanish Network ofCancer Research Centers: Characterization of bone marrow T cellsin monoclonal gammopathy of undetermined significance, multiplemyeloma, and plasma cell leukemia demonstrates increasedinfiltration by cytotoxic/Th1 T cells demonstrating a squed TCR-Vβrepertoire. Cancer, 2006; 106: 1296-1305
    Google Scholar
  • 35. Pratt G., Goodyear O., Moss P.: Immunodeficiency and immunotherapyin multiple myeloma. Br. J. Haematol., 2007; 138: 563-579
    Google Scholar
  • 36. Raitakari M., Brown R.D., Gibson J., Joshua D.E.: T cells in myeloma.Hematol. Oncol., 2003; 21: 33-42
    Google Scholar
  • 37. Rhee F.: Idiotype vaccination strategies in myeloma: how toovercome a dysfunctional immune system. Clin. Cancer Res., 2007;13: 1353-1355
    Google Scholar
  • 38. Schütt P., Brandhorst D., Stellberg W., Poser M., Ebeling P., MüllerS., Buttkereit U., Opalka B., Lindemann M., Grosse-Wilde H., SeeberS., Moritz T., Nowrousian M.R.: Immune parameters in multiple myelomapatients: influence of treatment and correlation with opportunisticinfections. Leuk. Lymphoma, 2006; 47: 1570-1582
    Google Scholar
  • 39. Spanoudakis E., Hu M., Naresh K., Terpos E., Melo V., Reid A.,Kotsianidis I., Abdalla S., Rahemtulla A., Karadimitris A.: Regulationof multiple myeloma survival and progression by CD1d. Blood,2009; 113: 2498-507
    Google Scholar
  • 40. Sze D.M., Giesajtis G., Brown R.D., Raitakari M., Gibson J., HoJ., Baxter A.G., Fazekas de St Groth B., Basten A., Joshua D.E.: Clonalcytotoxic T cells are expanded in myeloma and reside in theCD8+CD57+CD28- compartment. Blood, 2001; 98: 2817-2827
    Google Scholar
  • 41. Szmyrka-Kaczmarek M., Kosmaczewska A., Ciszak L., SzteblichA., Wiland P.: Peripheral blood Th17/Treg imbalance in patientswith low-active systemic lupus erythematosus. Postępy Hig. Med.Dośw., 2014; 68: 893-898
    Google Scholar
  • 42. Tabarkiewicz J., Roliński J.: Rola komórek dendrytycznych wpatogenezie chorób człowieka i ich praktyczne wykorzystanie wimmunoterapii. Acta Haematol. Polonica, 2006; 37 (Suppl. 1): 195-202
    Google Scholar
  • 43. Tessmer M.S., Fatima A., Paget C., Trottein F., Brossay L.: NKTcell immune responses to viral infection. Expert Opin. Ther. Targets,2009; 13: 153-162
    Google Scholar
  • 44. Tian F., Dou C., Qi S., Chen B., Zhao L., Wang X.: Dendritic cell-gliomafusion activates T lymphocytes by elevating cytotoxic efficiencyas an antitumor vaccine. Centr. Eur. J. Immunol., 2014; 39: 265-270
    Google Scholar
  • 45. Xie J., Wang Y., Freeman M.E. 3rd, Barlogie B., Yi Q.: β2-Microglobulin as a negative regulator of the immune system: highconcentrations of the protein inhibit in vitro generation of functionaldendritic cells. Blood, 2003; 101: 4005-4012
    Google Scholar
  • 46. Yang D.H., Park J.S., Jin C.J., Kang H.K., Nam J.H., Rhee J.H., KimY.K., Chung S.Y., Choi S.J., Kim H.J., Chung I.J., Lee J.J.: The dysfunctionand abnormal signaling pathway of dendritic cells loaded bytumor antigen can be overcome by neutralizing VEGF in multiplemyeloma. Leuk. Res., 2009; 33: 665-670
    Google Scholar
  • 47. Zheng C., Ostad M., Andersson M., Celsing F., Holm G., SundbladA.: Natural cytotoxicity to autologous antigen-pulsed dendritic cellsin multiple myeloma. Br. J. Haematol., 2002; 118: 778-785
    Google Scholar

Pełna treść artykułu

Przejdź do treści