Aminotransferaza asparaginianowa – kluczowy enzym w metabolizmie ogólnoustrojowym człowieka
Dagmara Otto-Ślusarczyk 1 , Wojciech Graboń 1 , Magdalena Mielczarek-Puta 1
Abstrakt
Aminotransferaza asparaginianowa (AST) jest enzymem nieswoistym narządowo, występującym w wielu tkankach organizmu człowieka, gdzie katalizuje odwracalną reakcję transaminacji. Istnieją dwie izoformy aminotransferazy asparaginianowej – cytoplazmatyczna (AST1) i mitochondrialna (AST2), które zwykle występują razem i współdziałają metabolicznie. Obie izoformy są homodimerami z wysoce konserwatywnymi regionami odpowiedzialnymi za katalityczne właściwości enzymu. Cechą wspólną wszystkich znanych aminotransferaz asparaginianowych jest konserwatywna reszta Lys-259, która tworzy wiązanie kowalencyjne z grupą prostetyczną – fosforanem pirydoksalu. Różnice w budowie pierwszorzędowej obu izoform determinują ich odmienne właściwości fizykochemiczne, kinetyczne i immunologiczne. Z powodu niskiego stężenia L-asparaginianu (L-Asp) we krwi, aminotransferaza asparaginianowa jest jedynym enzymem dostarczającym ten aminokwas jako substrat do wielu procesów metabolicznych, takich jak cykl mocznikowy oraz synteza nukleotydów purynowych i pirymidynowych w wątrobie, synteza L-argininy w nerkach oraz cykl nukleotydów purynowych w mózgu i mięśniach szkieletowych. AST uczestniczy także w powstawaniu D-asparaginianu, który reguluje metabolizm na poziomie auto-, para- i endokrynnym. Aminotransferaza asparaginianowa wchodzi w skład czółenka jabłczanowo-asparaginianowego w mięśniu sercowym, bierze udział w procesach glukoneogenezy w wątrobie i nerce, gliceroneogenezy w tkance tłuszczowej oraz syntezie neuroprzekaźników w szlaku neuronowo-glejowym mózgu. W ostatnich latach stwierdzono istotny udział aminotransferazy asparaginianowej w glutaminolizie – podstawowym szlaku metabolicznym w komórkach nowotworowych.W artykule omówiono rolę AST, znanej głównie jako enzym diagnostyczny chorób wątroby,w przemianach metabolicznych różnych tkanek i narządów organizmu człowieka.
Przypisy
- 1. Ahmad A., Kahler S.G., Kishnani P.S., Artigas-Lopez M., PappuA.S., Steiner R., Millington D.S., Van Hove J.L.: Treatment of pyruvatecarboxylase deficiency with high doses of citrate and aspartate. Am.J. Med. Genet., 1999; 87: 331-338
Google Scholar - 2. Bak L.K., Schousboe A., Waagepetersen H.S.: The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasisand ammonia transfer. J. Neurochem., 2006; 98: 641-653
Google Scholar - 3. Bose T., Voruganti V.S., Tejero M.E., Proffit J.M., Cox L.A., Vande-Berg J.L., Mahaney M.C., Rogers J., Freeland-Graves J.H., Cole S.A.,Comuzzie A.G.: Identification of a QTL for adipocyte volume and ofshared genetic effects with aspartate aminotransferase. Biochem.Genet. 2010; 48: 538-547
Google Scholar - 4. Braunstein A.E., Kritzmann M.G.: Formation and breakdown ofamino-acids by inter-molecular transfer of amino group. Nature,1937; 140: 503-504
Google Scholar - 5. Brenda – enzyme database http://www.brenda-enzymes.org/(17.05.2014)
Google Scholar - 6. Cohen N.D., Beegen H., Utter M.F., Wrigley N.G.: A re-examinationof the electron microscopic appearance of pyruvate carboxylasefrom chicken liver. J. Biol. Chem., 1979; 254: 1740-1747
Google Scholar - 7. Crow K.E., Braggins T.J., Hardman M.J.: Human liver cytosolicmalate dehydrogenase: purification, kinetic properties, and role inethanol metabolism. Arch. Biochem. Biophys., 1983; 225: 621-629
Google Scholar - 8. DeBerardinis R.J., Mancuso A., Daikhin E., Nissim I., Yudkoff M.,Wehrli S., Thompson C.B.: Beyond aerobic glycolysis: transformedcells can engage in glutamine metabolism that exceeds the requirementfor protein and nucleotide synthesis. Proc. Natl. Acad. Sci.USA, 2007; 104: 19345-19350
Google Scholar - 9. Doonan S., Barra D., Bossa F.: Structural and genetic relationshipsbetween cytosolic and mitochondrial isoenzymes. Int. J. Biochem.,1984; 16: 1193-1199
Google Scholar - 10. Doyle J.M., Schinina M.E., Bossa F., Doonan S.: The amino acidsequence of cytosolic aspartate aminotransferase from human liver.Biochem. J., 1990; 270: 651-657
Google Scholar - 11. Dunlop D.S., Neidle A., McHale D., Dunlop D.M., Lajtha A.: Thepresence of free D-aspartic acid in rodents and man. Biochem. Biophys.Res. Commun., 1986; 141: 27-32
Google Scholar - 12. Ford G.C., Eichele G., Jansonius J.N.: Three-dimensional structureof a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartateaminotransferase. Proc. Natl. Acad. Sci. USA, 1980; 77: 2559-2563
Google Scholar - 13. Furuchi T., Homma H.: Free D-aspartate in mammals. Biol.Pharm. Bull., 2005; 28: 1566-1570
Google Scholar - 14. Graboń W.: Arginina-podstawowy aminokwas w procesie nowotworzenia.Postępy Hig. Med. Dośw., 2006; 60: 483-489
Google Scholar - 15. Green D.E., Leloir L.F., Nocito V.: Transaminases. J. Biol. Chem.,1945; 161: 559-582
Google Scholar - 16. Guidetti P., Amori L., Sapko M.T., Okuno E., Schwarcz R.: Mitochondrialaspartate aminotransferase: a third kynurenate-producingenzyme in the mammalian brain. J. Neurochem., 2007; 102: 103-111
Google Scholar - 17. Hertz L., Kala G.: Energy metabolism in brain cells: effects of elevatedammonia concentrations. Metab. Brain Dis., 2007; 22: 199-218
Google Scholar - 18. Homma H.: Biochemistry of D-aspartate in mammalian cell.Amino Acids, 2007; 32: 3-11
Google Scholar - 19. Iijima M., Jalil A., Begum L., Yasuda T., Yamaguchi N., Li M.X.,Kawada N., Endou H., Kobayashi K., Saheki T.: Pathogenesis of adult onset type II citrullinemia caused by deficiency of citrin, a mitochondrialsolute carrier protein: tissue and subcellular localizationof citrin. Adv. Enzyme Regul., 2001; 41: 325-342
Google Scholar - 20. Indiveri C., Krämer R., Palmieri F.: Reconstitution of the malate/aspartate shuttle from mitochondria. J. Biol. Chem., 1987; 262:15979-15983
Google Scholar - 21. Jalil M.A., Begum L., Contreras L., Pardo B., Iijima M., Li M.X.,Ramos M., Marmol P., Horiuchi M., Shimotsu K., Nakagawa S., OkuboA., Sameshima M., Isashiki Y., Del Arco A., Kobayashi K., SatrústeguiJ., Saheki T.: Reduced N-acetylaspartate levels in mice lacking aralar,a brain- and muscle-type mitochondrial aspartate-glutamate carrier.J. Biol. Chem., 2005; 280: 31333-31339
Google Scholar - 22. Jenkins W.T., Yphantis D.A., Sizer Y.W.: Glutamic aspartic transaminase.I. Assay, purification, and general properties. J. Biol. Chem.,1959; 234: 51-57
Google Scholar - 23. Kobayashi K., Sinasac D.S., Iijima M., Boright A.P., Begum L.,Lee J.R., Yasuda T., Ikeda S., Hirano R., Terazono H., Crackower M.A.,Kondo I., Tsui L.C., Scherer S.W., Saheki T.: The gene mutated inadult-onset type II citrullinaemia encodes a putative mitochondrialcarrier protein. Nat. Genet., 1999; 22: 159-163
Google Scholar - 24. Koukourakis M.I., Giatromanolaki A., Sivridis E., Gatter K.C., HarrisA.L.; Tumor and Angiogenesis Research Group: Pyruvate dehydrogenaseand pyruvate dehydrogenase kinase expression in non smallcell lung cancer and tumor-associated stroma. Neoplasia, 2005; 7: 1-6
Google Scholar - 25. Kovacević Z., Jerance D., Brkljac O.: The role of glutamine oxidationand the purine nucleotide cycle for adaptation of tumourenergetics to the transition from the anaerobic to the aerobic state.Biochem. J., 1988; 252: 381-386
Google Scholar - 26. Lancha A.H. Jr., Recco M.B., Abdalla D.S., Curi R.: Effect of aspartate,asparagine, and carnitine supplementation in the diet on metabolismof skeletal muscle during a moderate exercise. Physiol.Behav., 1995; 57: 367-371
Google Scholar - 27. Leung F.Y., Henderson A.R.: Isolation and purification of aspartateaminotransferase isoenzymes from human liver by chromatographyand isoelectric focusing. Clin. Chem., 1981; 27: 232-238
Google Scholar - 28. Martinez M., Frank A., Diez-Tejedor E., Hernanz A.: Amino acidconcentrations in cerebrospinal fluid and serum in Alzheimer’s diseaseand vascular dementia. J. Neural Transm. Park. Dis. Dement.Sect., 1993; 6: 1-9
Google Scholar - 29. McKenna M.C.: The glutamate-glutamine cycle is not stoichiometric:fates of glutamate in brain. J. Neurosci. Res., 2007; 85: 3347-3358
Google Scholar - 30. McKenna M.C., Sonnewald U., Huang X., Stevenson J., Zielke H.R.:Exogenous glutamate concentration regulates the metabolic fate ofglutamate in astrocytes. J. Neurochem., 1996; 66: 386-393
Google Scholar - 31. McKenna M.C., Stevenson J.H., Huang X., Hopkins I.B.: Differentialdistribution of the enzymes glutamate dehydrogenase andaspartate aminotransferase in cortical synaptic mitochondria contributesto metabolic compartmentation in cortical synaptic terminals.Neurochem. Int., 2000; 37: 229-241
Google Scholar - 32. McKenna M.C., Tildon J.T., Stevenson J.H., Boatright R., Huang S.:Regulation of energy metabolism in synaptic terminals and culturedrat brain astrocytes: differences revealed using aminooxyacetate.Dev. Neurosci., 1993; 15: 320-329
Google Scholar - 33. McKenna M.C., Waagepetersen H.S., Schousboe A., SonnewaldU.: Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrialtransfer of reducing equivalents: current evidence andpharmacological tools. Biochem. Pharmacol., 2006; 71: 399-407
Google Scholar - 34. Morán J., Rivera-Gaxiola M.: Effect of potassium and N-methyl–D-aspartate on the aspartate aminotransferase activity in culturedcerebellar granule cells. J. Neurosci. Res., 1992; 33: 239-247
Google Scholar - 35. Mullen A.R., Wheaton W.W., Jin E.S., Chen P.H., Sullivan L.B.,Cheng T., Yang Y., Linehan W.M., Chandel N.S., DeBerardinis R.J.:Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 2011; 481: 385-388
Google Scholar - 36. Ota N., Shi T., Sweedler J.V.: D-Aspartate acts as a signaling moleculein nervous and neuroendocrine systems. Amino Acids, 2012;43: 1873-1886
Google Scholar - 37. Palmieri L., Pardo B., Lasorsa F.M., del Arco A., Kobayashi K., IijimaM., Runswick M.J., Walker J.E., Saheki T., Satrústegui J., PalmieriF.: Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transportersin mitochondria. EMBO J., 2001; 20: 5060-5069
Google Scholar - 38. Pardo B., Rodrigues T.B., Contreras L., Garzón M., Llorente-FolchI., Kobayashi K., Saheki T., Cerdan S., Satrústegui J.: Brain glutaminesynthesis requires neuronal-born aspartate as amino donor for glialglutamate formation. J. Cereb. Blood Flow Metab., 2011; 31: 90-101
Google Scholar - 39. Pithukpakorn M., Wei M.H., Toure O., Steinbach P.J., Glenn G.M.,Zbar B., Linehan W.M., Toro J.R.: Fumarate hydratase enzyme activityin lymphoblastoid cells and fibroblasts of individuals in familieswith hereditary leiomyomatosis and renal cell cancer. J. Med.Genet., 2006; 43: 755-762
Google Scholar - 40. Pol S., Bousquet-Lemercier B., Pavé-Preux M., Bulle F., PassageE., Hanoune J., Mattei M.G., Barouki R.: Chromosomal localization ofhuman aspartate aminotransferase genes by in situ hybridization.Hum. Genet., 1989; 83: 159-164
Google Scholar - 41. Raimundo N., Ahtinen J., Fumić K., Barić I., Remes A.M., RenkonenR., Lapatto R., Suomalainen A.: Differential metabolic consequencesof fumarate hydratase and respiratory chain defects. Biochim.Biophys. Acta, 2008; 1782: 287-294
Google Scholar - 42. Rej R.: Measurement of aspartate aminotransferase activity:effects of oxamate. Clin. Chem., 1979; 25: 555-559
Google Scholar - 43. Rej R.: Aspartate aminotransferase activity and isoenzyme proportionsin human liver tissues. Clin. Chem., 1978; 24: 1971-1979
Google Scholar - 44. Rej R.: Measurement of aminotransferases. Part 1. Aspartateaminotransferase. Crit. Rev. Clin. Lab. Sci.., 1984; 21: 99-186
Google Scholar - 45. Saheki T., Kobayashi K.: Mitochondrial aspartate glutamatecarrier (citrin) deficiency as the cause of adult-onset type II citrullinemia(CTLN2) and idiopathic neonatal hepatitis (NICCD). J. Hum.Genet., 2002; 47: 333-341
Google Scholar - 46. Saheki T., Kobayashi K., Iijima M., Horiuchi M., Begum L., JalilM.A., Li M.X., Lu Y.B., Ushikai M., Tabata A., Moriyama M., Hsiao K.J.,Yang Y.: Adult-onset type II citrullinemia and idiopathic neonatalhepatitis caused by citrin deficiency: involvement of the aspartateglutamate carrier for urea synthesis and maintenance of the ureacycle. Mol. Genet. Metab., 2004; 81 (Suppl. 1): S20-S26
Google Scholar - 47. Saheki T., Kobayashi K., Terashi M., Ohura T., Yanagawa Y., OkanoY., Hattori T., Fujimoto H., Mutoh K., Kizaki Z., Inui A.: Reducedcarbohydrate intake in citrin-deficient subjects. J. Inherit. Metab.Dis., 2008; 31: 386-394
Google Scholar - 48. Sakai K., Homma H., Lee J.A., Fukushima T., Santa T., Tashiro K.,Iwatsubo T., Imai K.: D-aspartic acid localization during postnataldevelopment of rat adrenal gland. Biochem. Biophys. Res. Commun.,1997; 235: 433-436
Google Scholar - 49. Schell M.J., Cooper O.B., Snyder S.H.: D-Aspartate localizationsimply neuronal and neuroendocrine roles. Proc. Natl. Acad. Sci.USA, 1997; 94: 2013-2018
Google Scholar - 50. Schultz V., Lowenstein J.M.: Purine nucleotide cycle. Evidence forthe occurrence of the cycle in brain. J. Biol. Chem., 1976; 251: 485-492
Google Scholar - 51. Sutherland G.R., Tyson R.L., Auer R.N.: Truncation of the Krebscycle during hypoglycemic coma. Med. Chem., 2008; 4: 379-385
Google Scholar - 52. Szydłowska M.: Rodzina genów deaminazy AMP. Postępy Hig.Med. Dośw., 2005; 59: 503-509
Google Scholar - 53. Ścibior D., Czeczot H.: Arginina – metabolizm i funkcje w organizmieczłowieka. Postępy Hig. Med. Dośw., 2004; 58: 321-332
Google Scholar - 54. Thornburg J.M., Nelson K.K., Clem B.F., Lane A.N., Arumugam S., Simmons A., Eaton J.W., Telang S., Chesney J.: Targeting aspartateaminotransferase in breast cancer. Breast Cancer Res., 2008; 10: R84
Google Scholar - 55. Toney M.D.: Reaction specificity in pyridoxal phosphate enzymes.Arch. Biochem. Biophys., 2005; 433: 279-287
Google Scholar - 56. Tordjman J., Leroyer S., Chauvet G., Quette J., Chauvet C., TomkiewiczC., Chapron C., Barouki R., Forest C., Aggerbeck M., AntoineB.: Cytosolic aspartate aminotransferase, a new partner in adipocyteglyceroneogenesis and an atypical target of thiazolidinedione. J.Biol. Chem., 2007; 282: 23591-23602
Google Scholar - 57. Tretter L., Adam-Vizi V.: Inhibition of Krebs cycle enzymesby hydrogen peroxide: a key role of α-ketoglutarate dehydrogenasein limiting NADH production under oxidative stress J. Neurosci.,2000; 20: 8972-8979
Google Scholar - 58. Ugochukwu E., Pilka E., Cooper C., Bray J.E., Yue W.W., Muniz J.,Chaikuad A., Müller S., Lee W.H., Atienza-Herrero J., Marsden B.D.,Kavanagh K.L., Oppermann U.: GOT1 (Glutamate Oxaloacetate Transminase1). http://www.thesgc.org/sites/default/files/activeISee/GOT1A_3ii0_v1_372a/GOT1A_3ii0_v1_372a_index.html (11.12.2015
Google Scholar - 59. UniPort. http://www.uniprot.org/uniprot/P17174 (20.05.2014)
Google Scholar - 60. Vessal M., Taher M.: Partial purification and kinetic properties ofhuman placental cytosolic aspartate transaminase. Comp. Biochem.Physiol. B. Biochem. Mol. Biol., 1995; 110: 431-437
Google Scholar - 61. Wise D.R., DeBerardinis R.J., Mancuso A., Sayed N., ZhangX.Y., Pfeiffer H.K., Nissim I., Daikhin E., Yudkoff M., McMahon S.B.,Thompson C.B.: Myc regulates a transcriptional program that stimulatesmitochondrial glutaminolysis and leads to glutamine addiction.Proc. Natl. Acad. Sci. USA, 2008; 105: 18782-18787
Google Scholar - 62. Wise D.R., Ward P.S., Shay J.E., Cross J.R., Gruber J.J., SachdevaU.M., Platt J.M., DeMatteo R.G., Simon M.C., Thompson C.B.: Hypoxiapromotes isocitrate dehydrogenase-dependent carboxylation ofα-ketoglutarate to citrate to support cell growth and viability. Proc.Natl. Acad. Sci. USA, 2011; 108: 19611-19616
Google Scholar