Procesy komórkowe oraz odpowiedzi immunologiczne na terapię fotodynamiczną w onkologii

GLOSA LUB KOMENTARZ PRAWNICZY

Procesy komórkowe oraz odpowiedzi immunologiczne na terapię fotodynamiczną w onkologii

Marcin Kubiak 1 , Lidia Łysenko 2 , Hanna Gerber 1 , Rafał Nowak 1

1. Department of Maxillofacial Surgery, Wrocław Medical University, Poland
2. Department of Anesthesiology and Intensive Therapy, Wrocław Medical University, Poland

Opublikowany: 2016-07-01
DOI: 10.5604/17322693.1208196
GICID: 01.3001.0009.6851
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2016; 70 : 735-742

 

Abstrakt

Przypisy

  • 1. Acedo P., Stockert J.C., Cañete M., Villanueva A.: Two combinedphotosensitizers: a goal for more effective photodynamic therapyof cancer. Cell Death Dis., 2014; 5: e1122
    Google Scholar
  • 2. Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., GollnickS.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., Korbelik M.,Moan J., Mroz P., Nowis D., Piette J., et al.: Photodynamic therapy ofcancer: an update. CA Cancer J. Clin., 2011; 61: 250-281
    Google Scholar
  • 3. Arenas Y., Monro S., Shi G., Mandel A, McFarland S, Lilge L.: Photodynamicinactivation of Staphylococcus aureus and methicillin-resistantStaphylococcus aureus with Ru(II)-based type I/type II photosensitizers.Photodiagnosis Photodyn. Ther., 2013; 10: 615-625
    Google Scholar
  • 4. Babilas P., Schreml S., Landthaler M., Szeimies R.M.: Photodynamictherapy in dermatology: state of the art. Photodermatol. Photoimmunol.Photomed., 2010; 26: 118-132
    Google Scholar
  • 5. Berg K., Folini M., Prasmickaite L., Selbo P.K., Bonsted A., EngesaeterB.Ø., Zaffaroni N., Weyergang A., Dietze A., MaelandsmoG.M., Wagner E., Norum O.J., Høgset A.: Photochemical internalization:a new tool for drug delivery. Curr. Pharm. Biotechnol., 2007;8: 362-372
    Google Scholar
  • 6. Berg K., Selbo P.K., Prasmickaite L., Tjelle T.E., Sandvig K., MoanJ., Gaudernack G., Fodstad O., Kjølsrud S., Anholt H., Rodal G.H.,Rodal S.K., Høgset A.: Photochemical internalization: a novel technologyfor delivery of macromolecules into cytosol. Cancer Res.,1999; 59: 1180-1183
    Google Scholar
  • 7. Bonnett R., Krysteva M.A., Lalov I.G., Artarsky S.V.: Water disinfectionusing photosensitizers immobilized on chitosan. Water Res.,2006; 40: 1269-1275
    Google Scholar
  • 8. Bozzini G., Colin P., Betrouni N., Nevoux P., Ouzzane A., Puech P.,Villers A., Mordon S.: Photodynamic therapy in urology: what can we do now and where are we heading? Photodiagnosis Photodyn.Ther., 2012; 9: 261-273
    Google Scholar
  • 9. Brackett C.M., Gollnick S.O.: Photodynamic therapy enhancementof anti-tumor immunity. Photochem. Photobiol. Sci., 2011;10: 649-652
    Google Scholar
  • 10. Brovko L.: Photodynamic treatment: a new efficient alternativefor surface sanitation. Adv. Food Nutr. Res., 2010; 61: 119-147
    Google Scholar
  • 11. Calzavara-Pinton P., Rossi M.T., Sala R., Venturini M.: Photodynamicantifungal chemotherapy. Photochem. Photobiol. 2012;88: 512-522
    Google Scholar
  • 12. Castano A.P., Demidova T.N., Hamblin M.R.: Mechanisms in photodynamictherapy: part one-photosensitizers, photochemistry andcellular localization. Photodiagnosis Photodyn. Ther., 2004; 1: 279-293
    Google Scholar
  • 13. Castano A.P., Mroz P., Hamblin M.R.: Photodynamic therapy andanti-tumour immunity. Nat. Rev. Cancer, 2006; 6: 535-545
    Google Scholar
  • 14. Cho Y., McQuade T., Zhang H., Zhang J., Chan F.K.: RIP1-dependentand independent effects of necrostatin-1 in necrosis and T cellactivation. PLoS One, 2011; 6: e23209
    Google Scholar
  • 15. Christofferson D.E., Li Y., Hitomi J., Zhou W., Upperman C., ZhuH., Gerber S.A., Gygi S., Yuan J.: A novel role for RIP1 kinase in mediatingTNFα production. Cell Death Dis., 2012; 3: e320
    Google Scholar
  • 16. Costa L., Faustino M.A., Neves M.G., Cunha A., Almeida A.: Photodynamicinactivation of mammalian viruses and bacteriophages.Viruses, 2012; 4: 1034-1074
    Google Scholar
  • 17. Cotter T.G.: Apoptosis and cancer: the genesis of a research field.Nat. Rev. Cancer, 2009; 9: 501-507
    Google Scholar
  • 18. Dabrowski J.M., Arnaut L.G., Pereira M.M., Monteiro C.J.,Urbańska K., Simões S., Stochel G.: New halogenated water-solublechlorin and bacteriochlorin as photostable PDT sensitizers: synthesis,spectroscopy, photophysics, and in vitro photosensitizingefficacy. Chem. Med. Chem., 2010; 5: 1770-1780
    Google Scholar
  • 19. Dabrowski J.M., Arnaut L.G., Pereira M.M., Urbańska K., StochelG.: Improved biodistribution, pharmacokinetics and photodynamicefficacy using a new photostable sulfonamide bacteriochlorin. Med.Chem. Commun., 2012; 3: 502-505
    Google Scholar
  • 20. Dabrowski J.M., Urbanska K., Arnaut L.G., Pereira M.M., AbreuA.R., Simões S., Stochel G.: Biodistribution and photodynamic efficacyof a water-soluble, stable, halogenated bacteriochlorin againstmelanoma. Chem. Med. Chem., 2011; 6: 465-475
    Google Scholar
  • 21. Daniels M.A., Jameson S.C.: Critical role for CD8 in T cell receptorbinding and activation by peptide/major histocompatibilitycomplex multimers. J. Exp. Med., 2000; 191: 335-346
    Google Scholar
  • 22. de Vree W.J., Essers M.C., De Bruijn H.S., Star W.M., Koster J.F.,Sluiter W.: Evidence for an important role of neutrophils in theefficacy of photodynamic therapy in vivo. Cancer Res., 1996; 56:2908-2911
    Google Scholar
  • 23. de Vree W.J., Essers M.C., Koster J.F., Sluiter W.: Role of interleukin 1 and granulocyte colony-stimulating factor in photofrin-basedphotodynamic therapy of rat rhabdomyosarcoma tumors. CancerRes., 1997; 57: 2555-2558
    Google Scholar
  • 24. Dolmans D.E., Fukumura D., Jain R.K.: Photodynamic therapyfor cancer. Nat. Rev. Cancer, 2003; 3: 380-387
    Google Scholar
  • 25. Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D.,Korbelik M,. Moan J., Peng Q.: Photodynamic therapy. J. Natl. Cancer.Inst., 1998; 90: 889-905
    Google Scholar
  • 26. Erental A., Sharon I., Engelberg-Kulka H.: Two programmed celldeath systems in Escherichia coli: an apoptotic-like death is inhibitedby the mazEF-mediated death pathway. PLoS Biol., 2012; 10: e1001281
    Google Scholar
  • 27. Fabris C., Valduga G., Miotto G., Borsetto L., Jori G., GarbisaS., Reddi E.: Photodensitization with zinc (II) phthalocyanine asa switch in the decision between apoptosis and necrosis. CancerRes., 2001; 61: 7495-500
    Google Scholar
  • 28. Firczuk M., Nowis D., Gołąb J.: PDT-induced inflammatory andhost responses. Photochem. Photobiol. Sci., 2011; 10: 653-663
    Google Scholar
  • 29. Garg A.D., Krysko D.V., Vandenabeele P., Agostinis P.: DAMPsand PDT-mediated photo-oxidative stress: exploring the unknown.Photochem. Photobiol. Sci., 2011; 10: 670-680
    Google Scholar
  • 30. Garg A.D., Krysko D.V., Verfaillie T., Kaczmarek A., Ferreira G.B.,Marysael T., Rubio N., Firczuk M., Mathieu C., Roebroek A.J., AnnaertW., Golab J., de Witte P., Vandenabeele P., Agostinis P.: A novelpathway combining calreticulin exposure and ATP secretion in immunogeniccancer cell death. EMBO J., 2012; 31: 1062-1079
    Google Scholar
  • 31. Garg A.D., Nowis D., Golab J., Vandenabeele P., Krysko D.V., AgostinisP.: Immunogenic cell death, DAMPs and anticancer therapeutics:an emerging amalgamation. Biochim. Biophys. Acta, 2010; 1805:53-71
    Google Scholar
  • 32. Giorgi C., Bonora M., Missiroli S., Poletti F., Ramirez F.G., MorcianoG., Morganti C., Pandolfi P.P., Mammano F., Pinton P.: Intravitalimaging reveals p53-dependent cancer cell death induced byphototherapy via calcium signaling. Oncotarget, 2015; 6: 1435-1445
    Google Scholar
  • 33. Giorgi C., Bonora M., Sorrentino G., Missiroli S., Poletti F., SuskiJ.M., Ramirez F.G., Rizzuto R., Di Virgilio F., Zito E., Pandolfi P.P.,Wieckowski M.R., Mammano F., Del Sal G., Pinton P.: p53 at the endoplasmicreticulum regulates apoptosis in a Ca2+-dependent manner.Proc. Natl. Acad. Sci. USA, 2015; 112, 1779-1784
    Google Scholar
  • 34. Gołąb J., Wilczyński G., Zagozdzon R., Stokłosa T., DąbrowskaA., Rybczyńska J., Wasik M., Machaj E., Ołda T., Kozar K., KamińskiR., Giermasz A., Czajka A., Lasek W., Feleszko W., Jakóbisiak M.: Potentiationof the anti-tumour effects of photofrin-based photodynamictherapy by localized treatment with G-CSF. Br. J. Cancer, 2000;82: 1485-491
    Google Scholar
  • 35. Gollnick S.O., Evans S.S., Baumann H., Owczarczak B., Maier P.,Vaughan L., Wang W.C., Unger E., Henderson B.W.: Role of cytokinesin photodynamic therapy-induced local and systemic inflammation.Br. J. Cancer, 2003; 88: 1772-1779
    Google Scholar
  • 36. Gollnick S.O., Owczarczak B., Maier P.: Photodynamic therapyand anti-tumor immunity. Lasers Surg. Med., 2006; 38: 509-515
    Google Scholar
  • 37. Hendrzak-Henion J.A., Knisely T.L., Cincotta L., Cincotta E., CincottaA.H.: Role of the immune system in mediating the antitumoreffect of benzophenothi¬azine photodynamic therapy. Photochem.Photobiol., 1999; 69: 575-581
    Google Scholar
  • 38. Huang Y.Y., Balasubramanian T., Yang E., Luo D., Diers J.R., BocianD.F., Lindsey J.S., Holten D., Hamblin M.R.: Stable synthetic bacteriochlorinsfor photodynamic therapy: role of dicyano peripheralgroups, central metal substitution (2H, Zn, Pd), and Cremophor ELdelivery. Chem. Med. Chem., 2012; 7: 2155-2167
    Google Scholar
  • 39. Huang Y.Y., Mroz P., Zhiyentayev T., Sharma S.K., BalasubramanianT., Ruzié C., Krayer M., Fan D., Borbas K.E., Yang E., Kee H.L., KirmaierC., Diers J.R., Bocian D.F., Holten D., Lindsey J.S., Hamblin M.R.:In vitro photodynamic therapy and quantitative structure-activityrelationship studies with stable synthetic near-infrared-absorbingbacteriochlorin photosensitizers. J. Med. Chem., 2010; 53: 4018-4027
    Google Scholar
  • 40. Jalili A., Makowski M., Switaj T., Nowis D., Wilczynski G.M., WilczekE., Chorazy-Massalska M., Radzikowska A., Maslinski W., BiałyL., Sienko J., Sieron A., Adamek M., Basak G., Mróz P., et al.: Effectivephotoimmunotherapy of murine colon carcinoma induced by thecombination of photodynamic therapy and dendritic cells. Clin.Cancer Res., 2004; 10: 4498-508
    Google Scholar
  • 41. Kang R., Zeh H.J., Lotze M.T., Tang D.: The Beclin 1 network regulatesautophagy and apoptosis. Cell Death Differ., 2011; 18, 571-580
    Google Scholar
  • 42. Kessel D., Luo Y.: Photodyanmic therapy: a mitochondrial inducerof apoptosis. Cell Death Differ., 1999; 6: 28-35
    Google Scholar
  • 43. Kessel D., Luo Y., Deng Y., Chang C.K.: The role of subcellularlocalization in initiation of apoptosis by photodynamic therapy.Photochem. Photobiol., 1997; 65: 422-426
    Google Scholar
  • 44. Kim K.S., Cho C.H., Park E.K., Jung M.H., Yoon K.S., Park H.K.:AFM-detected apoptotic changes in morphology and biophysicalproperty caused by paclitaxel in ishikawa and HeLa cells. PLoS One,2012; 7: e30066
    Google Scholar
  • 45. Konopka K., Goslinski T.: Photodynamic therapy in dentistry. J.Dental. Res., 2007; 86: 694-707
    Google Scholar
  • 46. Korbelik M.: PDT-associated host response and its role in thetherapy outcome. Lasers Surg. Med., 2006; 38: 500-508
    Google Scholar
  • 47. Korbelik M., Cecic I.: Contribution of myeloid and lymphoidhost cells to the curative outcome of mouse sarcoma treatment byphotodynamic therapy. Cancer Lett., 1999; 137: 91-98
    Google Scholar
  • 48. Korbelik M., Dougherty G.J.: Photodynamic therapy-mediatedimmune response against subcutaneous mouse tumors. Cancer Res.,1999; 59: 1941-1946
    Google Scholar
  • 49. Korbelik M., Naraparaju V.R., Yamamoto N.: Macrophage-directedimmunotherapy as adjuvant to photodynamic therapy of cancer.Br. J. Cancer, 1997; 75: 202-207
    Google Scholar
  • 50. Kroemer G., Galluzzi L., Vandenabeele P., Abrams J., Alnemri E.S.,Baehrecke E.H., Blagosklonny M.V., El-Deiry W.S., Golstein P., GreenD.R., Hengartner M., Knight R.A., Kumar S., Lipton S.A., Malorni W.,et al.: Classification of cell death. Cell. Death Differ., 2009; 16: 3-11
    Google Scholar
  • 51. Krosl G., Korbelik M., Krosl J., Dougherty G.J.: Potentiation ofphotodynamic therapy-elicited antitumor response by localizedtreatment with granulocyte-macrophage colony-stimulating factor.Cancer Res., 1996; 56: 3281-3286
    Google Scholar
  • 52. Kushibiki T., Tajiri T., Tomioka Y., Awazu K.: Photodynamic therapyinduces interleukin secretion from dendritic cells. In. J. Clin.Exp. Med., 2010; 3: 110-114
    Google Scholar
  • 53. Lam M., Lee Y.J., Deng M., Hsia A.H., Morrissey K.A., Yan C.,Azzizudin K., Oleinick N.L., McCormick T.S., Cooper K.D., Baron E.D.:Photodynamic therapy with the silicon phthalocyanine Pc 4 inducesapoptosis in Mycosis fungoides and sezary syndrome. Adv. Hematol.,2010; 2010: 896161
    Google Scholar
  • 54. Lee Y., Baron E.D.: Photodynamic therapy: current evidenceand applications in dermatology. Semin. Cutan. Med. Surg., 2011;30: 199-209
    Google Scholar
  • 55. Lemasters J.J.: Dying a thousand deaths: redundant pathwaysfrom different organelles to apoptosis and necrosis. Gastroentrology,2005; 129: 351-360
    Google Scholar
  • 56. Longo J.P., de Melo L.N., Mijan M.C., Valois C.R., Joanitti G.A.,Simioni A.R., Tedesco A.C., de Azevedo R.B.: Photodynamic therapymediated by liposomal chloroaluminum-phthalocyanine inducesnecrosis in oral cancer cells. J. Biomater. Tissue Eng., 2013; 3: 148-156
    Google Scholar
  • 57. Longo J.P., Lozzi S.P., Simioni A.R., Morais P.C., Tedesco A.C., AzevedoR.B.: Photodynamic therapy with aluminum-chloro-phthalocyanineinduces necrosis and vascular damage in mice tongue tumors.J. Photochem. Photobiol. B., 2009; 94: 143-146
    Google Scholar
  • 58. Magaraggia M., Faccenda F., Gandolfi A., Jori G.: Treatment ofmicrobiologically polluted aquaculture waters by a novel photochemicaltechnique of potentially low environmental impact. J. Environ.Monit., 2006; 8: 923-931
    Google Scholar
  • 59. Maisch T., Spannberger F., Regensburger J., Felgenträger A.,Bäumler W.: Fast and effective: intense pulse light photodynamicinactivation of bacteria. J. Ind. Microbiol. Biotechnol., 2012; 39:1013-1021
    Google Scholar
  • 60. Master A., Livingston M., Sen Gupta A.: Photodynamic nanomedicinein the treatment of solid tumors: perspectives and challenges.J. Control Release, 2013; 168: 88-102
    Google Scholar
  • 61. Meisel P., Kocher T.: Photodynamic therapy for periodontal diseases:state of the art. J. Photochem. Photobiol. B., 2005; 79: 159-170
    Google Scholar
  • 62. Mfouo-Tynga I., Houreld N.N., Abrahamse H.: Induced cell deathpathway post photodynamic therapy using a metallophthalocyanine photosensitizer in breast cancer cells. Photomed. LaserSurg., 2014; 32: 205-211
    Google Scholar
  • 63. Michels S., Schmidt-Erfurth U.: Photodynamic therapy withverteporfin: a new treatment in ophthalmology. Semin. Ophthalmol.,2001; 16: 201-206
    Google Scholar
  • 64. Moor A.C.: Signalling pathways in cell death and survival afterphotodynamic therapy. J. Photochem. Photobiol., B., 2000; 57: 1-13
    Google Scholar
  • 65. Mroz P., Hashmi J.T., Huang Y.Y., Lange N., Hamblin M.R.: Stimulationof anti-tumor immunity by photodynamic therapy. Expert.Rev. Clin. Immunol., 2011; 7: 75-91
    Google Scholar
  • 66. Mroz P., Huang Y.Y., Szokalska A., Zhiyentayev T., Janjua S., NifliA.P., Sherwood M.E., Ruzié C., Borbas K.E., Fan D., Krayer M., BalasubramanianT., Yang E., Kee H.L., Kirmaier C., et al.: Stable syntheticbacteriochlorins overcome the resistance of melanoma to photodynamictherapy. FASEB J., 2010; 24: 3160-3170
    Google Scholar
  • 67. Mroz P., Yaroslavsky A., Kharkwal G.B., Hamblin M.R.: Cell deathpathways in photodynamic therapy of cancer. Cancers, 2011;3, 2516-2539
    Google Scholar
  • 68. Nowis D., Makowski M., Stokłosa T., Legat M., Issat T., Gołab J.:Direct tumor damage mechanisms of photodynamic therapy. ActaBiochim. Pol., 2005; 52: 339-352
    Google Scholar
  • 69. Nowis D., Stokłosa T., Legat M., Issat T., Jakóbisiak M., Gołab J.:The influence of photodynamic therapy on the immune response.Photodiagn. Photodyn. Ther., 2005; 2: 283-298
    Google Scholar
  • 70. Nyman E.S., Hynninen P.H.: Research advances in the use oftetrapyrrolic photosensitizers for photodynamic therapy. J. Photochem.Photobiol. B, 2004; 73: 1-28
    Google Scholar
  • 71. Ormond A.B., Freeman H.S.: Dye sensitizers for photodynamictherapy. Materials, 2013; 6: 817-840
    Google Scholar
  • 72. Palucka K., Banchereau J.: Cancer immunotherapy via dendriticcells. Nat. Rev. Cancer, 2012; 12: 265-277
    Google Scholar
  • 73. Paz-Cristobal M.P., Royo D., Rezusta A., Andrés-Ciriano E., AlejandreM.C., Meis J.F., Revillo M.J., Aspiroz C., Nonell S., Gilaberte Y.:Photodynamic fungicidal efficacy of hypericin and dimethyl methyleneblue against azole-resistant Candida albicans strains. Mycoses,2014; 57: 35-42
    Google Scholar
  • 74. Pereira Gonzales F., Maisch T.: Photodynamic inactivation forcontrolling Candida albicans infections. Fungal Biol., 2012; 116: 1-10
    Google Scholar
  • 75. Plaetzer K., Kiesslich T., Verwanger T., Krammer B:. The modesof cell death induced by PDT: an overview. Med. Laser Application,2003; 18: 7-19
    Google Scholar
  • 76. Portilho F.A., Cavalcanti C.E., Miranda-Vilela A.L., EstevanatoL.L., Longo J.P., Santos M.F., Bocca A.L., Martins O.P., Simioni A.R., MoraisP.C., Azevedo R.B., Tedesco A.C., Lacava Z.G.: Antitumor activityof photodynamic therapy performed with nanospheres containingzinc-phthalocyanine. J. Nanobiotechnology, 2013; 11: 41
    Google Scholar
  • 77. Pushpan S.K., Venkatraman S., Anand V.G., Sankar J., ParmeswaranD., Ganesan S., Chandrashekar T.K.: Porphyrins in photodynamictherapy: a search for ideal photosensitizers. Curr. Med. Chem.Anticancer Agents, 2002; 2: 187-207
    Google Scholar
  • 78. Ricchelli F., Franchi L., Miotto G., Borsetto L., Gobbo S., NikolovP., Bommer J.C., Reddi E.: Mesosubstituted tetra-cationic porphyrinsphotosensitize the death of human fibrosarcoma cells via lysosomaltargeting. Int. J. Biochem. Cell Biol., 2005; 37: 306-319
    Google Scholar
  • 79. Schraml B.U., Reis E., Sousa C.: Defining dendritic cells. Curr.Opin. Immunol., 2015; 32: 13-20
    Google Scholar
  • 80. Silva J.N., Filipe P., Morlière P., Mazière J.C., Freitas J.P., GomesM.M., Santus R.: Photodynamic therapy: dermatology and ophthalmologyas main fields of current applications in clinic. Biomed. Mater.Eng., 2008; 18: 319-327
    Google Scholar
  • 81. Sperandio F.F., Huang Y.Y., Hamblin M.R.: Antimicrobial photodynamictherapy to kill Gram-negative bacteria. Recent. Pat. Antiinfect. Drug Discov., 2013; 8: 108-120
    Google Scholar
  • 82. St Denis T.G., Hamblin M.R.: Synthesis, bioanalysis and biodistributionof photosensitizer conjugates for photodynamic therapy.Bioanalysis, 2013; 5: 1099-1114
    Google Scholar
  • 83. Sun J., Cecic I., Parkins C.S., Korbelik M.: Neutrophils as inflammatoryand immune effectors in photodynamic therapy-treatedmouse SCCVII tumours. Photochem. Photobiol. Sci., 2002; 1: 690-695
    Google Scholar
  • 84. Szeimies R.M., Lischner S., Philipp-Dormston W., Walker T., Hiepe-WegenerD., Feise K., Podda M., Prager W., Kohl E., Karrer S.:Photodynamic therapy for skin rejuvenation: treatment options –results of a consensus conference of an expert group for aestheticphotodynamic therapy. J. Dtsch. Dermatol. Ges., 2013; 11: 632-636
    Google Scholar
  • 85. Taub A.F.: Cosmetic clinical indications for photodynamic therapy.J. Cosmet. Dermatol., 2012; 25: 218-224
    Google Scholar
  • 86. Thong P.S., Olivo M., Kho K.W., Bhuvaneswari R., Chin W.W., OngK.W., Soo K.C.: Immune response against angiosarcoma following lowerfluence rate clinical photodynamic therapy J. Environ. Pathol.Toxicol. Oncol., 2008; 27: 35-42
    Google Scholar
  • 87. Wainwright M.: Local treatment of viral disease using photodynamictherapy. Int. J. Antimicrob. Agents, 2003; 21: 510-520
    Google Scholar
  • 88. Wainwright M.: Pathogen inactivation in blood products. Curr.Med. Chem., 2002; 9: 127-143
    Google Scholar
  • 89. Waksman R., McEwan P.E., Moore T.I., Pakala R., Kolodgie F.D.,Hellinga D.G., Seabron R.C., Rychnovsky S.J., Vasek J., Scott R.W., VirmaniR.: PhotoPoint photodynamic therapy promotes stabilizationof atherosclerotic plaques and inhibits plaque progression. J. Am.Coll. Cardiol., 2008; 52: 1024-1032
    Google Scholar
  • 90. Wolfsen H.C.: Porfimer sodium photodynamic therapy: the longroad to acceptance in America. Photodiagnosis Photodyn. Ther.,2007; 4: 242-243
    Google Scholar
  • 91. Wood S.R., Holroyd J.A., Brown S.B.: The subcellular localizationof Zn (II) phthalocyanines and their redistribution on exposure tolight. Photochem. Photobiol., 1997; 65: 397-402
    Google Scholar
  • 92. Woodburn K.W., Fan Q., Kessel D., Wright M., Mody T.D., HemmiG., Magda D., Sessler J.L., Dow W.C., Miller R.A., Young S.W.: Phototherapyof cancer and atheromatous plaque with texaphyrins. J.Clin. Laser Med. Surg., 1996; 14: 343-348
    Google Scholar
  • 93. Yang E., Diers J.R., Huang Y.Y., Hamblin M.R., Lindsey J.S., BocianD.F., Holten D.: Molecular electronic tuning of photosensitizers toenhance photodynamic therapy: synthetic dicyanobacteriochlorinsas a case study. Photochem. Photobiol., 2013; 89: 605-618
    Google Scholar

Pełna treść artykułu

Przejdź do treści