Wpływ iniekcji NaCl na poziom zredukowanych związków siarki w wątrobie szczura. Konsekwencje dla rozwoju nadciśnienia

ARTYKUŁ PRZEGLĄDOWY

Wpływ iniekcji NaCl na poziom zredukowanych związków siarki w wątrobie szczura. Konsekwencje dla rozwoju nadciśnienia

Małgorzata Iciek 1 , Magdalena Kotańska 2 , Joanna Knutelska 3 , Marek Bednarski 3 , Małgorzata Zygmunt 3 , Danuta Kowalczyk-Pachel 1 , Anna Bilska-Wilkosz 1 , Magdalena Górny 1 , Maria Sokołowska-Jeżewicz 1

1. Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
2. Department of Pharmacodynamics Jagiellonian University Medical College, Kraków, Poland
3. Laboratory of Pharmacological Screening, Department of Pharmacodynamics Jagiellonian University Medical College, Kraków, Poland

Opublikowany: 2017-07-07
DOI: 10.5604/01.3001.0010.3837
GICID: 01.3001.0010.3837
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2017; 71 : 564-576

 

Abstrakt

Przypisy

  • 1. Benavides G.A., Squadrito G.L., Mills R.W., Patel H.D., Isbell T.S.,Patel R.P., Darley-Usmar V.M., Doeller J.E., Kraus D.W.: Hydrogen sulfidemediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA,2007; 104: 17977-17982
    Google Scholar
  • 2. Boegehold M.A.: The effect of high salt intake on endothelialfunction: reduced vascular nitric oxide in the absence of hypertension.J. Vasc. Res., 2013; 50: 458-467
    Google Scholar
  • 3. Denton D., Weisinger R., Mundy N.I., Wickings E.J., Dixson A.,Maisson P., Pingard A.M., Shade R., Carey D., Ardaillon R., Paillard F.,Chapman J., Thillet J., Michel J.B.: The effect of increased salt intakeon blood pressure of chimpanzees. Nat. Med., 1995; 1: 1009-1016
    Google Scholar
  • 4. Fonseca M.D., Cunha F.Q., Kashfi K., Cunha T.M.: NOSH-aspirin(NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing hybrid,reduces inflammatory pain. Pharmacol. Res. Perspect., 2015;3: e00133
    Google Scholar
  • 5. Gijsbers L., Dower J.I., Schalkwijk C.G., Kusters Y.H., Bakker S.J.,Hollman P.C., Geleijnse J.M.: Effects of sodium and potassium supplementationon endothelial function: a fully controlled dietaryintervention study. Br. J. Nutr., 2015; 114: 1419-1426
    Google Scholar
  • 6. Graudal N.A., Hubeck-Graudal T., Jürgens G.: Effects of low-sodiumdiet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines,cholesterol, and triglyceride (Cochrane Review). Am.J. Hypertens., 2012; 25: 1-15
    Google Scholar
  • 7. Gruhlke M.C., Slusarenko A.J.: The biology of reactive sulfur species(RSS). Plant Physiol. Biochem., 2012; 59: 98-107
    Google Scholar
  • 8. Gu X., Zhu Y.Z.: Therapeutic applications of organosulfur compoundsas novel hydrogen sulfide donors and/or mediators. ExpertRev. Clin. Pharmacol., 2011; 4: 123-133
    Google Scholar
  • 9. Hosoki R., Matsuki N., Kimura H.: The possible role of hydrogensulfide as an endogenous smooth muscle relaxant in synergy withnitric oxide. Biochem. Biophys. Res. Commun., 1997; 237: 527-531
    Google Scholar
  • 10. Iciek M., Chwatko G., Lorenc-Koci E., Bald E., Włodek L.: Plasmalevels of total, free and protein bound thiols as well as sulfane sulfurin different age groups of rats. Acta Biochim. Pol., 2004; 51: 815-824
    Google Scholar
  • 11. Iciek M., Kowalczyk-Pachel D., Bilska-Wilkosz A., Kwiecień I.,Górny M., Włodek L.: S-sulfhydration as a cellular redox regulation.Biosci. Rep., 2015; 36: e00304
    Google Scholar
  • 12. Iciek M., Kwiecień I., Włodek L.: Biological properties of garlicand garlic-derived organosulfur compounds. Environ. Mol. Mutagen.,2009; 50: 247-265
    Google Scholar
  • 13. Iciek M., Włodek L.: Biosynthesis and biological properties ofcompounds containing highly reactive, reduced sulfane sulfur. Pol.J. Pharmacol., 2001; 53: 215-225
    Google Scholar
  • 14. Iciek M.B., Kowalczyk-Pachel D., Kwiecień I., Dudek M.B.: Effectsof different garlic-derived allyl sulfides on peroxidative processesand anaerobic sulfur metabolism in mouse liver. Phytother. Res.,2012; 26: 425-431
    Google Scholar
  • 15. Jacob C.: Redox signalling via the cellular thiolstat. Biochem.Soc. Trans., 2011; 39: 1247-1253
    Google Scholar
  • 16. Jaitovich A., Bertorello A.M.: Salt, Na+, K+-ATP-ase and hypertension.Life Sci., 2010; 86: 73-78
    Google Scholar
  • 17. Kabil O., Motl N., Banerjee R.: H2S and its role in redox signaling. Biochim. Biophys. Acta, 2014; 1844: 1355-1366
    Google Scholar
  • 18. Kimura H.: Hydrogen sulfide: its production, release and functions.Amino Acids, 2011; 41: 113-121
    Google Scholar
  • 19. Kotchen T.A., Cowley A.W.Jr., Frohlich E.D.: Salt in health anddisease – a delicate balance. N. Engl. J. Med., 2013; 368: 1229-1237
    Google Scholar
  • 20. Lawes C.M., Vander Hoorn S., Rodgers A., International Societyof Hypertension: Global burden of blood-pressure-related disease, 2001 Lancet, 2008; 371: 1513-1518
    Google Scholar
  • 21. Liu W.Q., Chai C., Li X.Y., Yuan W.J., Wang W.Z., Lu Y.: The cardiovasculareffects of central hydrogen sulfide are related to KATPchannels activation. Physiol. Res., 2011; 60: 729-738
    Google Scholar
  • 22. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J.: Protein measurementwith the Folin phenol reagent. J. Biol. Chem., 1951; 193: 265-275
    Google Scholar
  • 23. Majzunova M., Dovinova I., Barancik M., Chan J.Y.: Redox signalingin pathophysiology of hypertension. J. Biomed. Sci., 2013; 20: 69
    Google Scholar
  • 24. Matsuo Y., Greenberg D.M.: A crystalline enzyme that cleaveshomoserine and cystathionine. IV. Mechanism of action, reversibility,and substrate specificity. J. Biol. Chem., 1959; 234: 516-519
    Google Scholar
  • 25. Mazza R., Pasqua T., Cerra M.C., Angelone T., Gattuso A.: Akt/eNOS signaling and PLN S-sulfhydration are involved in H₂Sdependentcardiac effects in frog and rat. Am. J. Physiol. Regul.Integr. Comp. Physiol., 2013; 305: R443-R451
    Google Scholar
  • 26. Meneton P., Jeunemaitre X., de Wardener H.E., MacGregor G.A.:Links between dietary salt intake, renal salt handling, blood pressure,and cardiovascular diseases. Physiol. Rev., 2005; 85: 679-715
    Google Scholar
  • 27. Mishanina T.V., Libiad M., Banerjee R.: Biogenesis of reactivesulfur species for signaling by hydrogen sulfide oxidation pathways.Nat. Chem. Biol., 2015; 11: 457-464
    Google Scholar
  • 28. Morel A., Malinowska J., Olas B.: Antioxidative properties ofhydrogen sulfide may involve in its antiadhesive action on bloodplatelets. Clin. Biochem., 2012; 45: 1678-1682
    Google Scholar
  • 29. Mustafa A.K., Gadalla M.M., Sen N., Kim S., Mu W., Gazi S.K., BarrowR.K., Yang G., Wang R., Snyder S.H.: H2S signals through proteinS-sulfhydration. Sci. Signal., 2009; 2: ra72
    Google Scholar
  • 30. Mustafa A.K., Sikka G., Gazi S.K., Steppan J., Jung S.M., BhuniaA.K., Barodka V.M., Gazi F.K., Barrow R.K., Wang R., Amzel L.M., BerkowitzD.E., Snyder S.H.: Hydrogen sulfide as endothelium-derivedhyperpolarizing factor sulfhydrates potassium channels. Circ. Res.,2011; 109: 1259-1268
    Google Scholar
  • 31. Powles J., Fahimi S., Micha R., Khatibzadeh S., Shi P., Ezzati M.,Engell RE., Lim S.S., Danaei G., Mozaffarian D.: Global Burden of DiseasesNutrition and Chronic Diseases Expert Group (NutriCoDE).Global, regional and national sodium intakes in 1990 and 2010: asystematic analysis of 24 h urinary sodium excretion and dietarysurveys worldwide. BMJ Open, 2013; 3: e003733
    Google Scholar
  • 32. Ried K., Fakler P.: Potential of garlic (Allium sativum) in loweringhigh blood pressure: mechanisms of action and clinical relevance.Integr. Blood Press. Control, 2014; 7: 71-82
    Google Scholar
  • 33. Rossoni G., Sparatore A., Tazzari V., Manfredi B., Del Soldato P.,Berti F.: The hydrogen sulphide-releasing derivative of diclofenacprotects against ischaemia-reperfusion injury in the isolated rabbitheart. Br. J. Pharmacol., 2008; 153: 100-109
    Google Scholar
  • 34. Sedlak J., Lindsay R.H.: Estimation of total, protein-bound, andnonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal.Biochem., 1968; 25: 192-205
    Google Scholar
  • 35. Shen X., Pattillo C.B., Pardue S., Bir S.C., Wang R., Kevil C.G.:Measurement of plasma hydrogen sulfide in vivo and in vitro. FreeRadic. Biol. Med., 2011; 50: 1021-1031
    Google Scholar
  • 36. Soda K.: A spectrophotometric microdetermination of keto acidswith 3-methyl-2-benzothiazolone hydrazone. Agric. Biol. Chem.,1967; 31: 1054-1060
    Google Scholar
  • 37. Sörbo B.H.: Rhodanese. CN−+S2O3−−→ CNS−+SO3−. Methods Enzymol.,1955; 2: 334-337
    Google Scholar
  • 38. Toohey J.I.: Sulfur signaling: is the agent sulfide or sulfane?Anal. Biochem., 2011; 413: 1-7
    Google Scholar
  • 39. Toohey J.I.: Sulphane sulphur in biological systems: a possibleregulatory role. Biochem. J., 1989; 264: 625-632
    Google Scholar
  • 40. Valentine W.N., Frankenfeld J.K.: 3-Mercaptopyruvate sulfurtransferase(EC 2.8.1.2): a simple assay adapted to human blood cells.Clin. Chim. Acta, 1974; 51: 205-210
    Google Scholar
  • 41. van Goor H., van den Born J.C., Hillebrands J.L., Joles J.A.: Hydrogensulfide in hypertension. Curr. Opin. Nephrol. Hypertens.,2016; 25: 107-113
    Google Scholar
  • 42. Wang R.: Physiological implications of hydrogen sulfide: a whiffexploration that blossomed. Physiol. Rev., 2012; 92: 791-896
    Google Scholar
  • 43. Wood J.L: Sulfane sulfur. Methods Enzymol., 1987; 143: 25-29
    Google Scholar
  • 44. World Health Organization. Reducing salt intake in population.Report of a WHO forum and technical meeting. Paris, France2006: 1-56
    Google Scholar
  • 45. Yang G., Wu L., Jiang B., Yang W., Qi J., Cao K., Meng Q., MustafaA.K., Mu W., Zhang S., Snyder S.H., Wang R.: H2S as a physiologicvasorelaxant: hypertension in mice with deletion of cystathionineg-lyase. Science, 2008; 322: 587-590
    Google Scholar
  • 46. Zakharov S., Vaneckova M., Seidl Z., Diblik P., Kuthan P., UrbanP., Navratil T., Pelclova D.: Successful use of hydroxocobalamin andsodium thiosulfate in acute cyanide poisoning: a case report withfollow-up. Basic Clin. Pharmacol. Toxicol., 2015; 117: 209-212
    Google Scholar
  • 47. Zhao W., Ndisang J.F., Wang R.: Modulation of endogenous productionof H2S in rat tissues. Can. J. Physiol. Pharmacol., 2003; 81:848-853
    Google Scholar

Pełna treść artykułu

Przejdź do treści