Perspektywy optymalizacji terapii komórkowej z użyciem komórek macierzystych dla regeneracji serca mięśniowego
Paulina Gapska 1 , Maciej Kurpisz 1Abstrakt
There is a variety of mechanisms(s) factor(s) that may influence stem cell therapies for heart regeneration. Among the best candidates for stem cell source are: mesenchymal stem cells (also those isolated from adipose tissue), cardiac cell progenitors (CPC) and descendants of iPSC cells. iPSC/s can be potentially beneficial although their pluripotent induction has been still in question due to: low propagation efficacy, danger of genomic integration/instability, biological risk of current vector system teratoma formation etc. which have been discussed in this review. Optimization protocols are required in order to enhance stem cells resistance to pathological conditions that they may encounter in pathological organ and to increase their retention. Combination between gene transfer and stem cell therapy is now more often used in pre-clinical studies with the prospect of subsequent clinical trials. Complementary substances have been contemplated to support stem cell viability (mainly anti-inflammatory and anti- apoptotic agents), which have been tested in animal models with promising results. Integration of nanotechnology both for efficient stem cell imaging as well as with the aim to provide cell supporting scaffolds seem to be inevitable for further development of cellular therapies. The whole organ (heart) reconstruction as well as biodegradable scaffolds and scaffold-free cell sheets have been also outlined.
Przypisy
- 1. Albini A., Melchiori A., Garofalo A., Noonan D.M., Basolo F., Taraboletti G., Chader G.J., Gavazzi R.: Matrigel promotes retinoblastoma cell growth in vitro and in vivo. Int. J. Cancer, 1992; 52: 234-240
Google Scholar - 2. Amos P.J., Shang H., Bailey A.M., Taylor A., Katz A.J., Peirce S.M.: IFATS collection: The role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells, 2008; 26: 2682-2690
Google Scholar - 3. Arslan F., Lai R.C., Smeets M.B., Akeroyd L., Choo A., Aguor E.N., Timmers L., van Rijen H.V., Doevendans P.A., Pasterkamp G., Lim S.K., de Kleijn D.P.: Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res., 2013; 10: 301-312
Google Scholar - 4. Askari A.T., Unzek S., Popovic Z.B., Goldman C.K., Forudi F., Kiedrowski M., Rovner A., Ellis S.G., Thomas J.D., DiCorleto P.E., Topol E.J., Penn M.S.: Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 2003; 362: 697-703
Google Scholar - 5. Baas T.: A big heart. SciBX, 2014; 7; 1-2
Google Scholar - 6. Badylak S.F., Weiss D.J., Caplan A., Macchiarini P.: Engineered whole organs and complex tissues. Lancet, 2012; 379: 943-952
Google Scholar - 7. Bao C., Guo J., Lin G., Hu M., Hu Z.: TNFR gene-modified mesenchymal stem cells attenuate inflammation and cardiac dysfunction following MI. Scand. Cardiovasc. J., 2008; 42: 56-62
Google Scholar - 8. Bartunek J., Davison B., Sherman W., Povsic T., Henry T.D., Gersh B., Metra M., Filippatos G., Hajjar R., Behfar A., Homsy C., Cotter G., Wijns W., Tendera M., Terzic A.: Congestive heart failure cardiopoietic regenerative therapy (CHART-1) trial design. Eur. J. Heart. Fail., 2016;18: 160-168
Google Scholar - 9. Bearzi C., Gargioli C., Baci D., Fortunato O., Shapira-Schweitzer K., Kossover O., Latronico M.V., Seliktar D., Condorelli G., Rizzi R.: PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell Death Dis., 2014; 5: e1053
Google Scholar - 10. Behfar A., Zingman L.V., Hodgson D.M., Rauzier J.M., Kane G.C., Terzic A., Pucéat M.: Stem cell differentiation requires a paracrine pathway in the heart. FASEB. J., 2002; 16: 1558-1566
Google Scholar - 11. Beltrami A.P., Barlucchi L., Torella D., Baker M., Limana F., Chimenti S., Kasahara H., Rota M., Musso E., Urbanek K., Leri A., Kajstura J., Nadal-Ginard B., Anversa P.: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 2003; 114: 763-776
Google Scholar - 12. Bolli R., Chugh A.R., D’Amario D., Loughran J.H., Stoddard M.F., Ikram S., Beache G.M., Wagner S.G., Leri A., Hosoda T., Sanada F., Elmore J.B., Goichberg P., Cappetta D., Solankhi N.K., et al.: Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a andomized phase 1 trial. Lancet, 2011; 378: 1847-1857
Google Scholar - 13. Caplan A.I., Dennis J.E.: Mesenchymal stem cells as trophic mediators. J. Cell Biochem., 2006; 98: 1076-1084
Google Scholar - 14. Carè A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P., Bang M.L., Segnalini P., Gu Y., Dalton N.D., Elia L., Latronico M.V., Høydal M., Autore C., Russo M.A., et al.: MicroRNA-133 controls cardiac hypertrophy. Nat. Med., 2007; 13: 613-618
Google Scholar - 15. Carrier R.L., Papadaki M., Rupnick M., Schoen F.J., Bursac N., Langer R., Freed L.E., Vunjak-Novakovic G.: Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng. 1999; 64: 580-589
Google Scholar - 16. Cerbini T., Funahashi R., Luo Y., Liu C., Park K., Rao M., Malik N., Zou J.: Transcription activator-like effector nuclease (TALEN)- mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS One, 2015; 10: e0116032
Google Scholar - 17. Chachques J.C.: Development of bioartificial myocardium using stem cells and nanobiotechnology templates. Cardiol. Res. Pract., 2011; 2011: 806795
Google Scholar - 18. Chachques J.C., Trainini J.C., Lago N., Masoli O.H., Barisani J.L., Cortes-Morichetti M., Schussler O., Carpentier A.: Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant., 2007; 16: 927-934
Google Scholar - 19. Chavakis E., Koyanagi M., Dimmeler S.: Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back. Circulation, 2010; 121: 325-335
Google Scholar - 20. Dai W., Hale S.L., Kay G.L., Jyrala A.J., Kloner R.A.: Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Regen. Med., 2009; 4: 387-395
Google Scholar - 21. DeSantiago J., Bare D.J., Semenov I., Minshall R.D., Geenen D.L., Wolska B.M., Banach K.: Excitation- contraction coupling in ventricular myocytes is enhanced by paracrine signaling from mesenchymal stem cells. J. Mol. Cell. Cardiol., 2012; 52: 1249-1256
Google Scholar - 22. Dimmeler S., Zeiher A.M.: Cell therapy of acute myocardial infarction: open questions. Cardiology, 2009; 113: 155-160
Google Scholar - 23. Du Y.Y., Zhou S.H., Zhou T., Su H., Pan H.W., Du W.H., Liu B., Liu Q.M.: Immuno- inflammatory regulation effect of mesenchymal stem cell transplantation in a rat model of myocardial infarction. Cytotherapy, 2008; 10: 469-478
Google Scholar - 24. Freund C., Mummery C.L.: Prospects for pluripotent stem cellderived cardiomyocytes in cardiac cell therapy and as disease models. J. Cell. Biochem., 2009; 107: 592-599
Google Scholar - 25. Fukuhara S., Tomita S., Nakatani T., Fujisato T., Ohtsu Y., Ishida M., Yutani C., Kitamura S.: Bone marrow cell-seeded biodegradable polymeric scaffold enhances angiogenesis and improves function of the infarcted heart. Circ. J., 2005; 69: 850-857
Google Scholar - 26. Fukuhara S., Tomita S., Yamashiro S., Morisaki T., Yutani C., Kitamura S., Nakatani T.: Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. J. Thorac. Cardiovasc. Surg., 2003; 125: 1470-1479
Google Scholar - 27. Gaetani R., Ledda M., Barile L., Chimenti I., De Carlo F., Forte E., Ionta V., Giuliani L., D’Emilia E., Frati G., Miraldi F., Pozzi D., Messina E., Grimaldi S., Giacomello A., Lisi A.: Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc. Res., 2009; 82: 411-420
Google Scholar - 28. Godier-Furnémont A.F., Martens T.P., Koeckert M.S., Wan L., Parks J., Arai K., Zhang G., Hudson B., Homma S., Vunjak-Novakovic G.: Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc. Natl. Acad. Sci. USA, 2011; 108: 7974-7979
Google Scholar - 29. Gong X., Fan G., Wang W., Wang G.: Trimetazidine protects umbilical cord mesenchymal stem cells against hypoxia and serum deprivation induced apoptosis by activation of Akt. Cell Physiol. Biochem., 2014; 34: 2245-2255
Google Scholar - 30. Hosoda T., Zheng H., Cabral-da-Silva M., Sanada F., Ide-Iwata N., Ogórek B., Ferreira-Martins J., Arranto C., D’Amario D., del Monte F., Urbanek K., D’Alessandro D.A., Michler R.E., Anversa P., Rota M., et al.: Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation, 2011; 123: 1287-1296
Google Scholar - 31. Hu X., Yu S.P., Fraser J.L., Lu Z., Ogle M.E., Wang J.A., Wei L.: Transplantation of hypoxia- preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg., 2008; 135: 799-808
Google Scholar - 32. Hua P., Tao J., Liu J.Y., Yang S.R.: Cell transplantation into ischemic myocardium using mesenchymal stem cells transfected by vascular endothelial growth factor. Int. J. Clin. Exp. Pathol.: 2014; 7: 7782-7788
Google Scholar - 33. Huang B., Qian J., Ma J., Huang Z., Shen Y., Chen X., Sun A., Ge J., Chen H.: Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem. Cell. Res. Ther., 2014; 5: 22
Google Scholar - 34. Huangfu D., Maehr R., Guo W., Eijkelenboom A., Snitow M., Chen A.E., Melton D.A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol., 2008; 26: 795-797
Google Scholar - 35. Huangfu D., Osafune K., Maehr R., Guo W., Eijkelenboom A., Chen S., Muhlestein W., Melton D.A.: Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat. Biotechnol., 2008; 26: 1269-1275
Google Scholar - 36. Kaji K., Norrby K., Paca A., Mileikovsky M., Mohseni P., Woltjen K.: Virus free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 2009; 458: 771-775
Google Scholar - 37. Kang W.J., Kang H.J., Kim H.S., Chung J.K., Lee M.C., Lee D.S.: Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J. Nucl. Med., 2006; 47: 1295-1301
Google Scholar - 38. Kawamura M., Miyagawa S., Miki K., Saito A., Fukushima S., Higuchi T., Kawamura T., Kuratani T., Daimon T., Shimizu T., Okano T., Sawa Y.: Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 2012; 126: S29-S37
Google Scholar - 39. Keane T.J., Badylak S.F.: The host response to allogeneic and xenogeneic biological scaffold materials. J. Tissue. Eng. Regen. Med., 2015; 9: 504-511
Google Scholar - 40. Kim S.W., Lee D.W., Yu L.H., Zhang H.Z., Kim C.E., Kim J.M., Park T.H., Cha K.S., Seo S.Y., Roh M.S., Lee K.C., Jung J.S,. Kim M.H.: Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc. Res., 2012; 95: 495-506
Google Scholar - 41. Kofidis T., Lebl D.R., Martinez E.C., Hoyt G., Tanaka M., Robbins R.C.: Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation, 2005; 112: 173-177
Google Scholar - 42. Kurazumi H., Kubo M., Ohshima M., Yamamoto Y., Takemoto Y., Suzuki R., Ikenaga S., Mikamo A., Udo K., Hamano K., Li T.S.: The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. PLoS One, 2011; 6: e28890
Google Scholar - 43. Lee P., Klos M., Bollensdorff C., Hou L., Ewart P., Kamp T.J., Zhang J., Bizy A., Guerrero-Serna G., Kohl P., Jalife J., Herron T.J.: Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ. Res., 2012; 110: 1556-1563
Google Scholar - 44. Leor J., Aboulafia-Etzion S., Dar A., Shapiro L., Barbash I.M., Battler A., Granot Y., Cohen S.: Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation, 2000; 102: 56-61
Google Scholar - 45. Leor J., Amsalem Y., Cohen S.: Cells, scaffolds, and molecules for myocardial tissue engineering. Pharmacol. Ther., 2005; 105: 151-163
Google Scholar - 46. Li B., Zeng Q., Wang H., Shao S., Mao X., Zhang F., Li S., Guo Z.: Adipose tissue stromal cells transplantation in rats of acute myocardial infarction. Coron. Artery. Dis., 2007; 18: 221-227
Google Scholar - 47. Li Q., Verma I.M.: NF-κB regulation in the immune system. Nat. Rev. Immunol., 2002; 2: 725-734
Google Scholar - 48. Li T.S., Cheng K., Malliaras K., Matsushita N., Sun B., Marbán L., Zhang Y., Marbán E.: Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair. Cardiovasc. Res., 2011; 89: 157-165
Google Scholar - 49. Li T.S., Cheng K., Malliaras K., Smith R.R., Zhang Y., Sun B., Matsushita N., Blusztajn A., Terrovitis J., Kusuoka H., Marbán L., Marbán E.: Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere- derived cells. J. Am. Coll. Cardiol., 2012; 59: 942-953
Google Scholar - 50. Li W., Ma N., Ong L.L., Nesselmann C., Klopsch C., Ladilov Y., Furlani D., Piechaczek C., Moebius J.M., Lützow K., Lendlein A., Stamm C., Li R.K., Steinhoff G.: Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 2007; 25: 2118-2127
Google Scholar - 51. Lim S.Y., Kim Y.S., Ahn Y., Jeong M.H., Hong M.H., Joo S.Y., Nam K.I., Cho J.G., Kang P.M., Park J.C.: The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc. Res., 2006; 70: 530-542
Google Scholar - 52. Linke A., Müller P., Nurzynska D., Casarsa C., Torella D., Nascimbene A., Castaldo C., Cascapera S., Böhm M., Quaini F., Urbanek K., Leri A., Hintze T.H., Kajstura J., Anversa P.: Stem cells in the dog heart are self- renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc. Natl. Acad. Sci. USA, 2005; 102: 8966-8971
Google Scholar - 53. Lister R., Pelizzola M., Kida Y.S., Hawkins R.D., Nery J.R., Hon G., Antosiewicz-Bourget J., O’Malley R., Castanon R., Klugman S., Downes M., Yu R., Stewart R., Ren B., Thomson J.A., Evans R.M., Ecker J.R.: Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011; 471: 68-73
Google Scholar - 54. Liu X.B., Chen H., Chen H.Q., Zhu M.F., Hu X.Y., Wang Y.P., Jiang Z., Xu Y.C., Xiang M.X., Wang J.A.: Angiopoietin-1 preconditioning enhances survival and functional recovery of mesenchymal stem cell transplantation. J. Zhejiang. Univ. Sci. B., 2012; 13: 616-623
Google Scholar - 55. Liu X.B., Wang J.A., Ji X.Y., Yu S.P., Wei L.: Preconditioning of bone marrow mesenchymal stem cells by prolyl hydroxylase inhibition enhances cell survival and angiogenesis in vitro and after transplantation into the ischemic heart of rats. Stem. Cell. Res. Ther., 2014; 5: 111
Google Scholar - 56. Lu Y., Shansky J., Del Tatto M., Ferland P., Wang X., Vandenburgh H.: Recombinant vascular endothelial growth factor secreted from tissue-engineered bioartificial muscles promotes localized angiogenesis. Circulation, 2001; 104: 594-599
Google Scholar - 57. Makkar R.R., Smith R.R., Cheng K., Malliaras K., Thomson L.E., Berman D., Czer L.S., Marbán L., Mendizabal A., Johnston P.V., Russell S.D., Schuleri K.H., Lardo A.C., Gerstenblith G., Marbán E.: Intracoronary cardiosphere- derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012; 379: 895-904
Google Scholar - 58. Mann D.L.: Mechanisms and models in heart failure: A combinatorial approach. Circulation, 1999; 100: 999-1008
Google Scholar - 59. Marsano A., Maidhof R., Wan L.Q., Wang Y., Gao J., Tandon N., Vunjak-Novakovic G.: Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs. Biotechnol. Prog., 2010; 26: 1382-1390
Google Scholar - 60. Matsubayashi K., Fedak P.W., Mickle D.A., Weisel R.D., Ozawa T., Li R.K.: Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation, 2003; 108: 219-225
Google Scholar - 61. Maureira P., Marie P.Y., Yu F., Poussier S., Liu Y., Groubatch F., Falanga A., Tran N.: Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. J. Biomed. Sci., 2012; 19: 93
Google Scholar - 62. Mazo M., Planat-Bénard V., Abizanda G., Pelacho B., Léobon B., Gavira J.J., Peñuelas I., Cemborain A., Pénicaud L., Laharrague P., Joffre C., Boisson M., Ecay M., Collantes M., Barba J., Casteilla L., Prósper F.: Tranplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial nfarction. Eur. J. Heart. Fail., 2008; 10: 454-462
Google Scholar - 63. Menasché P., Alfieri O., Janssens S., McKenna W., Reichenspurner H., Trinquart L., Vilquin J.T., Marolleau J.P., Seymour B., Larghero J., Lake S., Chatellier G., Solomon S., Desnos M., Hagège A.A.: The Myoblats Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo- controlled study of myoblast trnaplantation. Circulation, 2008; 117: 1189-1200
Google Scholar - 64. Mendis S., Puska P., Norrving B. (editors): Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization, Geneva 2011
Google Scholar - 65. Mihic A., Li J., Miyagi Y., Gagliardi M., Li S.H., Zu J., Weisel R.D., Keller G., Li R.K.: The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials, 2014; 35: 2798-2808
Google Scholar - 66. Miyagawa S., Sawa Y., Sakakida S., Taketani S., Kondoh H., Memon I.A., Imanishi Y., Shimizu T., Okano T., Matsuda H.: Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation, 2005; 80: 1586-1595
Google Scholar - 67. Miyahara Y., Nagaya N., Kataoka M., Yanagawa B., Tanaka K., Hao H., Ishino K., Ishida H., Shimizu T., Kangawa K., Sano S., Okano T., Kitamura S., Mori H.: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med., 2006; 12: 459-465
Google Scholar - 68. Mohsin S., Khan M., Nguyen J., Alkatib M., Siddiqi S., Hariharan N., Wallach K., Monsanto M., Gude N., Dembitsky W., Sussman M.A.: Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ. Res., 2013; 113: 1169-1179
Google Scholar - 69. Naito A.T., Shiojima I., Akazawa H., Hidaka K., Morisaki T., Kikuchi A., Komuro I.: Developmental stage- specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc. Natl. Acad. Sci. USA, 2006; 103: 19812-19817
Google Scholar - 70. Nowbar A.N., Mielewczik M., Karavassilis M., Dehbi H.M., ShunShin M.J., Jones S., Howard J.P., Cole G.D., Francis D.P.; DAMASCENE writing group: Discrepancies in autologous bone marrow stem cell trails and enhancement of ejection fraction (DAMASCENE): weighted regression and meta- analysis. Br. Med. J., 2014; 348: g2688
Google Scholar - 71. Okano S., Yonemitsu Y., Nagata S., Sata S., Onimaru M., Nakagawa K., Tomita Y., Kishihara K., Hashimoto S., Nakashima Y., Sugimachi K., Hasegawa M., Sueishi K.: Recombinant Sendai virus vectors for activated T lymphocytes. Gene. Ther., 2003; 10: 1381-1391
Google Scholar - 72. Okano T., Yamada N., Sakai H., Sakurai Y.: A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J. Biomed. Mater. Res., 1993; 27: 1243-1251
Google Scholar - 73. Okita K., Ichisaka T., Yamanaka S.: Generation of germline-competent induced pluripotent stem cells. Nature, 2007; 448: 313-317
Google Scholar - 74. Onai Y., Suzuki J., Maejima Y., Haraguchi G., Muto S., Itai A., Isobe M.: Inhibition of NF-kappa B improves left ventricular remodeling and cardiac dysfunction after myocardial infarction. Am. J. Physiol. Heart. Circ. Physiol., 2007; 292: H530-H538
Google Scholar - 75. Ott H.C., Matthiesen T.S., Goh S.K., Black L.D., Kren S.M., Netoff T.I., Taylor D.A.: Perfusion-decellularized matrix: using nature›s platform to engineer a bioartificial heart. Nat. Med., 2008; 14: 213-221
Google Scholar - 76. Papapetrou E.P., Lee G., Malani N., Setty M., Riviere I., Tirunagari L.M., Kadota K., Roth S.L., Giardina P., Viale A., Leslie C., Bushman F.D., Studer L., Sadelain M.: Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat. Biotechnol., 2011; 29: 73-78
Google Scholar - 77. Parisi S., D’Andrea D., Lago C.T., Adamson E.D., Persico M.G., Minchiotti G.: Nodal- dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells. J. Cell. Biol., 2003; 163: 303-314
Google Scholar - 78. Pasha Z., Wang Y., Sheikh R., Zhang D., Zhao T., Ashraf M.: Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc. Res., 2008; 77: 134-142
Google Scholar - 79. Perin E.C., Sanchez P.L., Ruiz R.S., Perez-Cano R., Lasso J., Alonso-Farto J.C., Fernandez-Pina L., Serruys P.W., Duckers H.J., Kastrup J., Chameleau S., Zheng Y., Silva G.V., Milstein A.M., Martin M.T., et al.: First in man transendocardial injection of autologous adiposederived stem cells in patients with non revascularizable ischemic myocardium (PRECISE). Circulation, 2010; 122: A17966
Google Scholar - 80. Planat-Bénard V., Menard C., André M., Puceat M., Perez A., Garcia-Verdugo J.M., Pénicaud L., Casteilla L.: Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res., 2004; 94: 223-229
Google Scholar - 81. Ravichandran R., Venugopal J.R., Mueller M., Sundarrajan S., Mukherjee S., Pliska D., Wintermantel E., Ramakrishna S.: Buckled structures and 5-azacytidine enhance cardiogenic differentiation of adipose-derived stem cells. Nanomedicine, 2013; 8: 1985-1997
Google Scholar - 82. Ravichandran R., Venugopal J.R., Sundarrajan S., Mukherjee S., Sridhar R., Ramakrishna S.: Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology, 2012; 23: 385102
Google Scholar - 83. Razban V., Lotfi A.S., Soleimani M., Ahmadi H., Massumi M., Khajeh S., Ghaedi M., Arjmand S., Najavand S., Khoshdel A.: HIF-1α overexpression induces angiogenesis in mesenchymal stem cells. Biores. Open Access, 2012; 1: 174-183
Google Scholar - 84. Reing J.E., Zhang L., Myers-Irvin J., Cordero K.E., Freytes D.O., Heber-Katz E., Bedelbaeva K., McIntosh D., Dewilde A., Braunhut S.J., Badylak S.F.: Degradation products of extracellular matrix affect cell migration and proliferation. Tissue. Eng. Part. A., 2009; 15: 605-614
Google Scholar - 85. Rizzi S.C., Ehrbar M., Halstenberg S., Raeber G.P., Schmoekel H.G., Hagenmüller H., Müller R., Weber F.E., Hubbell J.A.: Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Biomacromolecules, 2006; 7: 3019-3029
Google Scholar - 86. Robinton D.A., Daley G.Q.: The promise of induced pluripotent stem cells in research and therapy. Nature, 2012; 481: 295-305
Google Scholar - 87. Salomon C., Ryan J., Sobrevia L., Kobayashi M., Ashman K., Mitchell M., Rice G.E.: Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One, 2013; 8: e68451
Google Scholar - 88. Schuleri K.H., Feigenbaum G.S., Centola M., Weiss E.S., Zimmet J.M., Turney J., Kellner J., Zviman M.M., Hatzistergos K.E., Detrick B., Conte J.V., McNiece I., Steenbergen C., Lardo A.C., Hare J.M.: Autologous mesenchymal stem cells produce reverse remodeling in chronic ischaemic cardiomyopathy. Eur. Heart. J., 2009; 30: 2722-2732
Google Scholar - 89. Sekiya S., Shimizu T., Yamato M., Kikuchi A., Okano T.: Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem. Biophys. Res. Commun., 2006; 341: 573-582
Google Scholar - 90. Shimizu T., Sekine H., Isoi Y., Yamato M., Kikuchi A., Okano T.: Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue. Eng., 2006; 12: 499-507
Google Scholar - 91. Shimizu T., Yamato M., Kikuchi A., Okano T.: Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003; 24: 2309-2316
Google Scholar - 92. Siminiak T., Kalawski R., Fiszer D., Jerzykowska O., Rzeźniczak J., Rozwadowska N., Kurpisz M.: Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardiual injury: phase I clinical study with 12 months of follow- up. Am. Heart. J., 2004; 148: 531-537
Google Scholar - 93. Stancovski I., Baltimore D.: NF-κB activation: the IκB kinase revealed? Cell, 1997; 91: 299-302
Google Scholar - 94. Stevens K.R., Pabon L., Muskheli V., Murry C.E.: Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng. Part A, 2009; 15: 1211-1222
Google Scholar - 95. Stile R.A., Chung E., Burghardt W.R., Healy K.E.: Poly(Nisopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. Effects of linear poly(acrylic acid) chains on rheology. J. Biomater. Sci. Polym. Ed., 2004; 15: 865-878
Google Scholar - 96. Stroorvogel W.: Functional transfer of microRNA by exosomes. Blood, 2012; 119: 646-648
Google Scholar - 97. Sun C.K., Zhen Y.Y., Leu S., Tsai T.H., Chang L.T., Sheu J.J., Chen Y.L., Chua.S, Chai H.T., Lu H.I., Chang H.W., Lee F.Y., Yip H.K.: Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction. Int. J. Cardiol., 2014; 173: 410-423
Google Scholar - 98. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007; 131: 861-872
Google Scholar - 99. Takahashi K., Yamanaka S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006; 126: 663-676
Google Scholar - 100. Takehara N., Tsutsumi Y., Tateishi K., Ogata T., Tanaka H., Ueyama T., Takahashi T., Takamatsu T., Fukushima M., Komeda M., Yamagishi M., Yaku H., Tabata Y., Matsubara H., Oh H.: Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J. Am. Coll. Cardiol., 2008; 52: 1858-1865
Google Scholar - 101. Tang Y.L., Tang Y., Zhang Y.C., Qian K., Shen L., Phillips M.I.: Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia- regulated heme oxygenase-1 vector. J. Am. Coll. Cardiol., 2005; 46: 1339-1350
Google Scholar - 102. Toma C., Pittenger M.F., Cahill K.S., Byrne B.J., Kessler P.D.: Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002; 105: 93-98
Google Scholar - 103. Treskes P., Neef K., Perumal Srinivasan S., Halbach M., Stamm C., Cowan D., Scherner M., Madershahian N., Wittwer T., Hescheler J., Wahlers T., Choi Y.H.: Preconditioning of skeletal myoblastbased engineered tissue constructs enables functional coupling to myocardium in vivo. J. Thorac. Cardiovasc. Surg., 2015; 149: 348-356
Google Scholar - 104. Tulloch N.L., Muskheli V., Razumova M.V., Korte F.S., Regnier M., Hauch K.D., Pabon L., Reinecke H., Murry C.E.: Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ. Res., 2011; 109: 47-59
Google Scholar - 105. Uemura R., Xu M., Ahmad N., Ashraf M.: Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ. Res., 2006; 98: 1414-1421
Google Scholar - 106. Wang D., Shen W., Zhang F., Chen M., Chen H., Cao K.: Connexin43 promotes survival of mesenchymal stem cells in ischaemic heart. Cell. Biol. Int., 2010; 34: 415-423
Google Scholar - 107. Wang K., Zhao X., Kuang C., Qian D., Wang H., Jiang H., Deng M., Huang L.: Overexpression of SDF-1α enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway. PLoS One, 2012; 7: e43922
Google Scholar - 108. Wang L., Gu H., Turrentine M., Wang M.: Estradiol treatment promotes cardiac stem cell (CSC)-derived growth factors, thus improving CSC-mediated cardioprotection after acute ischemia/reperfusion. Surgery, 2014; 156: 243-252
Google Scholar - 109. Wang L., Pasha Z., Wang S., Li N., Feng Y., Lu G., Millard R.W., Ashraf M.: Protein kinase G1α overexpression increases stem cell survival and cardiac function after myocardial infarction. PLoS One, 2013; 8: e60087
Google Scholar - 110. Xi J., Khalil M., Shishechian N., Hannes T., Pfannkuche K., Liang H., Fatima A., Haustein M., Suhr F., Bloch W., Reppel M., Sarić T., Wernig M., Jänisch R., Brockmeier K., et al.: Comparison of contractile behavior of native murine ventricular tissue and cariomyocytes derived from embryonic or induced pluripotent stem cells. FASEB J., 2010; 24: 2739-2751
Google Scholar - 111. Xiong Q., Ye L., Zhang P., Lepley M., Tian J., Li J., Zhang L., Swingen C., Vaughan J.T., Kaufman D.S., Zhang J.: Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation, 2013; 127: 997-1008
Google Scholar - 112. Xu R., Chen J., Cong X., Hu S., Chen X.: Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivationinduced apoptosis by activation of PI3K/Akt and ERK1/2. J. Cell. Biochem., 2008; 103: 256-269
Google Scholar - 113. Xu Y., Patnaik S., Guo X., Li Z., Lo W., Butler R., Claude A., Liu Z., Zhang G., Liao J., Anderson P.M., Guan J.: Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix. Acta Biomater., 2014; 10: 3449-3462
Google Scholar - 114. Yin Q., Jin P., Liu X., Wei H., Lin X., Chi C., Liu Y., Sun C., Wei Y.: SDF-1α inhibits hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells through PI3K/Akt and ERK1/2 signaling pathways. Mol. Biol. Rep., 2011; 38: 9-16
Google Scholar - 115. Yin Q., Pei Z., Wang H., Zhao Y.: Cyclosporine A-nanoparticles enhance the therapeutic benefit of adipose tissue-derived stem cell transplantation in a swine myocardial infarction model. Int. J. Nanomedicine., 2014; 9: 17-26
Google Scholar - 116. Yu B., Gong M., Wang Y., Millard R.W., Pasha Z., Yang Y., Ashraf M., Xu M.: Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One, 2013; 8: e73304
Google Scholar - 117. Zeng H., Li L., Chen J.X.: Overexpression of angiopoietin-1 increases CD133+/c-kit+ cells and reduces myocardial apoptosis in db/ db mouse infarcted hearts. PLoS One, 2012; 7: e35905
Google Scholar - 118. Zhang Y., Li W., Ou.L, Wang W., Delyagina E., Lux C., Sorg H., Riehemann K., Steinhoff G., Ma N.: Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration. PLoS One, 2012; 7: e39490
Google Scholar - 119. Zhang Z., Li S., Cui M., Gao X., Sun D., Qin X., Narsinh K., Li C., Jia H., Li C., Han Y., Wang H., Cao F.: Rosuvastin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Res. Cardiol., 2013; 108: 333
Google Scholar - 120. Zimmermann W.H., Schneiderbanger K., Schubert P., Didié M., Münzel F., Heubach J.F., Kostin S., Neuhuber W.L., Eschenhagen T.: Tissue engineering of a differentiated cardiac muscle construct. Circ. Res., 2002; 90: 223-230
Google Scholar