Wpływ nefrektomii na układ kostny

ARTYKUŁ PRZEGLĄDOWY

Wpływ nefrektomii na układ kostny

Katarzyna Kakareko 1 , Tomasz Hryszko 1 , Beata Naumnik 1

1. I Department of Nephrology and Transplantation with Dialysis Unit, Medical University of Bialystok, Poland

Opublikowany: 2017-12-15
DOI: 10.5604/01.3001.0010.7140
GICID: 01.3001.0010.7140
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2017; 71 : 1063-1069

 

Abstrakt

Normal kidneys function plays a crucial role in maintaining bone health. This fact is highlighted by the mineral-bone disorder resulting from chronic kidney disease (CKD). CKD impairs the skeletal structure, which in turn leads to a higher prevalence of bone fractures. Because nephrectomy results in a reduced number of nephrons, the question arises if surgically induced nephron loss causes alterations in bone health similar to those observed in CKD. A large number of studies draw attention to the fact that nephrectomy leads to mineral disturbances. Recent studies are consistent that nephrectomy leads to a decline in phosphate and calcitriol levels and an increase in parathyroid hormone levels. There is no consensus regarding the impact of surgically induced nephron loss on fibroblast growth factor 23 (FGF-23) levels. Whether the observed alterations translate into increased fractures rate is still unclear. Current data is sparse and further studies are required to evaluate the possible adverse impact of nephrectomy on bone health. This is a review of the literature exploring the impact of nephrectomy on mineral disturbances and bone health.

Przypisy

  • 1. Akimoto T., Kimura T., Watanabe Y., Ishikawa N., Iwazu Y., Saito O., Muto S., Yagisawa T., Kusano E.: The impact of nephrectomy and renal transplantation on serum levels of soluble Klotho protein. Transplant. Proc., 2013; 45: 134-136
    Google Scholar
  • 2. Arasu A., Cawthon P.M., Lui L.Y., Do T.P., Arora P.S., Cauley J.A., Ensrud K.E., Cummings S.R., Study of Osteoporotic Fractures Research Group: Serum sclerostin and risk of hip fracture in older Caucasian women. J. Clin. Endocrinol. Metab., 2012; 97: 2027-2032
    Google Scholar
  • 3. Ardawi M.S., Rouzi A.A., Al-Sibiani S.A., Al-Senani N.S., Qari M.H., Mousa S.A.: High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the center of excellence for osteoporosis research study. J. Bone Miner. Res., 2012; 27: 2592-2602
    Google Scholar
  • 4. Bagrodia A., Mehrazin R., Bazzi W.M., Silberstein J., Malcolm J.B., Stroup S.P., Raheem O., Wake R.W., Kane C.J., Patterson A.L., Wan J.Y., Derweesh I.H.: Comparison of rates and risk factors for development of osteoporosis and fractures after radical or partial nephrectomy. Urology, 2011; 78: 614-619
    Google Scholar
  • 5. Bieniasz M., Domagala P., Kwiatkowski A., Gozdowska J., Krzysztof O., Kieszek R.A., Trzebicki J., Durlik M., Rowinski W., Chmura A.: The assessment of residual kidney function after living donor nephrectomy. Transplant. Proc., 2009; 41: 91-92
    Google Scholar
  • 6. Bieniasz M., Kwiatkowski A., Domagała P., Gozdowska J., Kieszek R., Ostrowski K., Deptuła A., Durlik M., Paczek L., Chmura A.: Serum concentration of vitamin D and parathyroid hormone after living kidney donation. Transplant. Proc., 2009; 41: 3067-3068
    Google Scholar
  • 7. Bonjour J.P.: Calcium and phosphate: a duet of ions playing for bone health. J. Am. Coll. Nutr., 2011; 30 (Suppl. 1): 438S-448S
    Google Scholar
  • 8. Boyce B.F., Xing L.: Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res. Ther., 2007; 9 (Suppl. 1): S1
    Google Scholar
  • 9. Capitanio U., Terrone C., Antonelli A., Minervini A., Volpe A., Furlan M., Matloob R., Regis F., Fiori C., Porpiglia F., Di Trapani E., Zacchero M., Serni S., Salonia A., Carini M., et al.: Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a-T1b renal mass and normal preoperative renal function. Eur. Urol., 2015; 67: 683-689
    Google Scholar
  • 10. Chapman D., Moore R., Klarenbach S., Braam B.: Residual renal function after partial or radical nephrectomy for renal cell carcinoma. Can. Urol. Assoc. J., 2010; 4: 337-343
    Google Scholar
  • 11. Choi S.K., Song C.: Risk of chronic kidney disease after nephrectomy for renal cell carcinoma. Korean J. Urol., 2014; 55: 636-642
    Google Scholar
  • 12. Delanaye P., Souberbielle J.C., Lafage-Proust M.H., Jean G., Cavalier E.: Can we use circulating biomarkers to monitor bone turnover in CKD haemodialysis patients? Hypotheses and facts. Nephrol. Dial. Transplant., 2014; 29: 997-1004
    Google Scholar
  • 13. Derweesh I.H.: Bone health and chronic kidney disease: another reason for partial nephrectomy? Curr. Opin. Urol., 2014; 24: 629-632
    Google Scholar
  • 14. Evenepoel P., D’Haese P., Brandenburg V.: Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int., 2015; 88: 235-240
    Google Scholar
  • 15. Garg A.X., Pouget J., Young A., Huang A., Boudville N., Hodsman A., Adachi J.D., Leslie W.D., Cadarette S.M., Lok C.E., Monroy-Cuadros M., Prasad G.V., Thomas S.M., Naylor K., Treleavan D., et al.: Fracture risk in living kidney donors: a matched cohort study. Am. J. Kidney Dis., 2012; 59: 770-776
    Google Scholar
  • 16. Gaston R.S., Kumar V., Matas A.J.: Reassessing medical risk in living kidney donors. J. Am. Soc. Nephrol., 2015; 26: 1017-1019
    Google Scholar
  • 17. Gossmann J., Wilhelm A., Kachel H.G., Jordan J., Sann U., Geiger H., Kramer W., Scheuermann E.H.: Long-term consequences of live kidney donation follow-up in 93% of living kidney donors in a singletransplant center. Am. J. Transplant., 2005; 5: 2417-2424
    Google Scholar
  • 18. Gutiérrez O.M., Januzzi J.L., Isakova T., Laliberte K., Smith K., Collerone G., Sarwar A., Hoffmann U., Coglianese E., Christenson R., Wang T.J., deFilippi C., Wolf M.: Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation, 2009; 119: 2545-2552
    Google Scholar
  • 19. Gutiérrez O.M., Mannstadt M., Isakova T., Rauh-Hain J.A., Tamez H., Shah A., Smith K., Lee H., Thadhani R., Jüppner H., Wolf M.: Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med., 2008; 359: 584-592
    Google Scholar
  • 20. Isakova T., Cai X., Lee J., Katz R., Cauley J.A., Fried L.F., Hoofnagle A.N., Satterfield S., Harris T.B., Shlipak M.G., Sarnak M.J., Ix J.H., Health ABC Study: Associations of FGF23 with change in bone mineral density and fracture risk in older individuals. J. Bone Miner. Res., 2016; 31: 742-748
    Google Scholar
  • 21. Isakova T., Xie H., Yang W., Xie D., Anderson A.H., Scialla J., Wahl P., Gutiérrez O.M., Steigerwalt S., He J., Schwartz S., Lo J., Ojo A., Sondheimer J., Hsu C.Y., et al.: Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA, 2011; 305: 2432-2439
    Google Scholar
  • 22. Ix J.H., Katz R., Kestenbaum B.R., de Boer I.H., Chonchol M., Mukamal K.J., Rifkin D., Siscovick D.S., Sarnak M.J., Shlipak M.G.: Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J. Am. Coll. Cardiol., 2012; 60: 200-207
    Google Scholar
  • 23. Jadoul M., Albert J.M., Akiba T., Akizawa T., Arab L., Bragg-Gresham J.L., Mason N., Prutz K.G., Young E.W., Pisoni R.L.: Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the dialysis outcomes and practice patterns study. Kidney Int., 2006; 70: 1358-1366
    Google Scholar
  • 24. Kakareko K., Rydzewska-Rosolowska A., Brzosko S., Gozdzikiewicz-Lapinska J., Koc-Zorawska E., Samocik P., Kozlowski R., Mysliwiec M., Naumnik B., Hryszko T.: Renal handling of sclerostin in response to acute glomerular filtration decline. Horm. Metab. Res., 2016; 48: 457-461
    Google Scholar
  • 25. Kasiske B.L., Kumar R., Kimmel P.L., Pesavento T.E., Kalil R.S., Kraus E.S., Rabb H., Posselt A.M., Anderson-Haag T.L., Steffes M.W., Israni A.K., Snyder J.J., Singh R.J., Weir M.R.: Abnormalities in biomarkers of mineral and bone metabolism in kidney donors. Kidney Int., 2016; 90: 861-868
    Google Scholar
  • 26. Kim H.R., Nam B.Y., Kim D.W., Kang M.W., Han J.H., Lee M.J., Shin D.H., Doh F.M., Koo H.M., Ko K.I., Kim C.H., Oh H.J., Yoo T.H., Kang S.W., Han D.S., et al.: Circulating α-klotho levels in CKD and relationship to progression. Am. J. Kidney Dis., 2013; 61: 899-909
    Google Scholar
  • 27. Larcher A., Capitanio U., Terrone C., Volpe A., De Angelis P., Dehó F., Fossati N., Dell›Oglio P., Antonelli A., Furlan M., Simeone C., Serni S., Carini M., Minervini A., Fiori C., et al.: Elective nephron sparing surgery decreases other cause mortality relative to radical nephrectomy only in specific subgroups of patients with renal cell carcinoma. J. Urol., 2016; 196: 1008-1103
    Google Scholar
  • 28. Lepage R., Légaré G., Racicot C., Brossard J.H., Lapointe R., Dagenais M., D›Amour P.: Hypocalcemia induced during major and minor abdominal surgery in humans. J. Clin. Endocrinol. Metab., 1999; 84: 2654-2658
    Google Scholar
  • 29. Li X., Xue C., Wang L., Tang D., Huang J., Zhao Y., Chen Y., Zhao D., Shi Q., Wang Y., Shu B.: Osteoprotective effects of osthole in a mouse model of 5/6 nephrectomy through inhibiting osteoclast formation. Mol. Med. Rep., 2016; 14: 3769-3776
    Google Scholar
  • 30. Ljungberg B., Bensalah K., Canfield S., Dabestani S., Hofmann F., Hora M., Kuczyk M.A., Lam T., Marconi L., Merseburger A.S., Mulders P., Powles T., Staehler M., Volpe A., Bex A.: EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol., 2015; 67: 913-924
    Google Scholar
  • 31. Magnusson P., Sharp C.A., Magnusson M., Risteli J., Davie M.W., Larsson L.: Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney Int., 2001; 60: 257-265
    Google Scholar
  • 32. Mirza M.A., Karlsson M.K., Mellström D., Orwoll E., Ohlsson C., Ljunggren O., Larsson T.E.: Serum fibroblast growth factor-23 (FGF-23) and fracture risk in elderly men. J. Bone Miner. Res., 2011; 26: 857-864
    Google Scholar
  • 33. Moody W.E., Ferro C.J., Edwards N.C., Chue C.D., Lin E.L., Taylor R.J., Cockwell P., Steeds R.P., Townend J.N., CRIB-Donor Study Investigators: Cardiovascular effects of unilateral nephrectomy in living kidney donors. Hypertension, 2016; 67: 368-377
    Google Scholar
  • 34. Naylor K.L., Garg A.X.: Bone health in living kidney donors. Curr. Opin. Urol., 2014; 24: 624-628
    Google Scholar
  • 35. Naylor K.L., McArthur E., Leslie W.D., Fraser L.A., Jamal S.A., Cadarette S.M., Pouget J.G., Lok C.E., Hodsman A.B., Adachi J.D., Garg A.X.: The three-year incidence of fracture in chronic kidney disease. Kidney Int., 2014; 86: 810-818
    Google Scholar
  • 36. Ponte B., Trombetti A., Hadaya K., Ernandez T., Fumeaux D., Iselin C., Martin P.Y., de Seigneux S.: Acute and long term mineral metabolism adaptation in living kidney donors: A prospective study. Bone, 2014; 62: 36-42
    Google Scholar
  • 37. Russo P.: End stage and chronic kidney disease: associations with renal cancer. Front. Oncol., 2012; 2: 28
    Google Scholar
  • 38. Scialla J.J., Xie H., Rahman M., Anderson A.H., Isakova T., Ojo A., Zhang X., Nessel L., Hamano T., Grunwald J.E., Raj D.S., Yang W., He J., Lash J.P., Go A.S., et al.: Fibroblast growth factor-23 and cardiovascular events in CKD. J. Am. Soc. Nephrol., 2014; 25: 349-360
    Google Scholar
  • 39. Scosyrev E., Messing E.M., Sylvester R., Campbell S., Van Poppel H.: Renal function after nephron-sparing surgery versus radical nephrectomy: Results from EORTC randomized trial 30904. Eur. Urol., 2014; 65: 372-377
    Google Scholar
  • 40. Seo M.Y., Yang J., Lee J.Y., Kim K., Kim S.C., Chang H., Won N.H., Kim M.G., Jo S.K., Cho W., Kim H.K.: Renal Klotho expression in patients with acute kidney injury is associated with the severity of the injury. Korean J. Intern. Med., 2015; 30: 489-495
    Google Scholar
  • 41. Tentori F., McCullough K., Kilpatrick R.D., Bradbury B.D., Robinson B.M., Kerr P.G., Pisoni R.L.: High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int., 2014; 85: 166-173
    Google Scholar
  • 42. Thompson R.H., Boorjian S.A., Lohse C.M., Leibovich B.C., Kwon E.D., Cheville J.C., Blute M.L.: Radical nephrectomy for pT1a renal masses may be associated with decreased overall survival compared with partial nephrectomy. J. Urol., 2008; 179: 468-471
    Google Scholar
  • 43. Ureña P., De Vernejoul M.C.: Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int., 1999; 55: 2141-2156
    Google Scholar
  • 44. Van Poppel H., Da Pozzo L., Albrecht W., Matveev V., Bono A., Borkowski A., Colombel M., Klotz L., Skinner E., Keane T., Marreaud S., Collette S., Sylvester R.: A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur. Urol., 2011; 59: 543-552
    Google Scholar
  • 45. Wei K., Yin Z., Xie Y.: Roles of the kidney in the formation, remodeling and repair of bone. J. Nephrol., 2016; 29: 349-357
    Google Scholar
  • 46. Westerberg P.A., Ljunggren O., Larsson T.E., Wadström J., Linde T.: Fibroblast growth factor-23 and mineral metabolism after unilateral nephrectomy. Nephrol. Dial. Transplant., 2010; 25: 4068-4071
    Google Scholar
  • 47. Young A., Hodsman A.B., Boudville N., Geddes C., Gill J., Goltzman D., Jassal S.V., Klarenbach S., Knoll G., Muirhead N., Prasad G.V., Treleaven D., Garg A.X., Donor Nephrectomy Outcomes Research (DONOR) Network: Bone and mineral metabolism and fibroblast growth factor 23 levels after kidney donation. Am. J. Kidney Dis., 2012; 59: 761-769
    Google Scholar

Pełna treść artykułu

Przejdź do treści