Hsps odpowiedzialne za oporność komórek raka szyjki macicy na indukcję apoptozy pod wpływem ostolu i tamoksyfenu

ORYGINALNY ARTYKUŁ

Hsps odpowiedzialne za oporność komórek raka szyjki macicy na indukcję apoptozy pod wpływem ostolu i tamoksyfenu

Joanna Jakubowicz-Gil 1 , Roman Paduch 2 , Krystyna Skalicka-Woźniak 3 , Joanna Sumorek-Wiadro 1 , Adrian Zając 1 , Antoni Gawron 1

1. Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Lublin, Poland
2. Department of Virology and Immunology, Maria Curie-Sklodowska University, Lublin, Poland
3. Chair and Department of Pharmacognosy with Medical Plant Unit, Medical University of Lublin, Poland

Opublikowany: 2019-10-25
DOI: 10.5604/01.3001.0013.5447
GICID: 01.3001.0013.5447
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2019; 73 : 563-571

 

Abstrakt

Aim: The aim of the present study was to investigate the efficacy of osthole (7-metoxy-8-isopenthenocoumarin) alone and combined with tamoxifen (TAM) in the elimination of human cervical cancer cells via programmed death. The involvement of heat shock proteins, i.e. well-known molecular chaperones, will be investigated. Material/Methods: Three human cervical cancer cell lines, infected with human papilloma virus (HPV), i.e. HeLa (HPV 18), SiHa (HPV 16), and CaSki (HPV 16 and 18), were used in the experiments. After osthole and TAM treatment, cells stained with fluorochromes were analyzed microscopically according to apoptotic, autophagic, and necrotic morphology. Hsp27, Hsp72, and Hsp90 levels were analyzed by immunoblotting. Transfection with specific siRNA was used for blocking of Hsp expression. Results: In the HeLa, CaSki, and SiHa cell lines, osthole and TAM applied alone had no significant effect on cell death induction. This was correlated with an overexpression of heat shock proteins 27, 72, and 90. In the case of a combination of both drugs, the level of apoptosis was elevated only in SiHa cells. Preincubation with osthole followed by TAM addition as well as simultaneous incubation with both drugs was the most effective. This was correlated with the inhibition of Hsp27, Hsp72, and Hsp90 expression. Blocking of Hsp expression with specific siRNA increased the sensitivity of the studied cell lines to the induction of apoptosis, but not to autophagy or necrosis. Conclusions: Our results indicated that the elimination of heat shock proteins from cervical cancer cells sensitized them to initiation of apoptosis after osthole and tamoxifen treatment.

Przypisy

  • 1. Ajiro M., Zheng Z.M.: E6^E7, a novel splice isoform protein of human papillomavirus 16, stabilizes viral E6 and E7 oncoproteins via HSP90 and GRP78. MBio, 2015; 6: e02068–e020614
    Google Scholar
  • 2. Ariazi E.A., Cunliffe H.E., Lewis-Wambi J.S., Slifker M.J., Willis A.L., Ramos P., Tapia C., Kim H.R., Yerrum S., Sharma C.G., Nico­las E., Balagurunathan Y., Ross E.A., Jordan V.C.: Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time. Proc. Natl. Acad. Sci. USA, 2011; 108: 18879–18886
    Google Scholar
  • 3. Barot K.P., Jain S.V., Kremer L., Singh S., Gathe M.D.: Recent ad­vances and therapeutic journey of coumarins: current status and perspectives. Med. Chem. Res., 2015; 24: 2771–2798
    Google Scholar
  • 4. Castle P.E., Ashfaq R., Ansari F., Muller C.Y.: Immunohistoche­mical evaluation of heat shock proteins in normal and preinvasive lesions of the cervix. Cancer Lett., 2005; 229: 245–252
    Google Scholar
  • 5. Ciocca D.R., Calderwood S.K.: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005; 10: 86–103
    Google Scholar
  • 6. Den Boom J.A., Pyeon D., Wang S.S., Horswill M., Schiffman M., Sherman M., Zuna R.E., Wang Z., Hewitt S.M., Pearson R., Schott M., Chung L., He Q., Lambert P.O, Walker J., et al.: Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signalling. Proc. Natl. Acad. Sci. USA, 2015; 112: E3255–E3264
    Google Scholar
  • 7. Grenman S., Shapira A., Carey T.E.: In vitro response of cervi­cal cancer cell lines CaSki, HeLa and ME-180 to the antiestrogen tamoxifen. Gynecol. Oncol., 1988; 30: 228–238
    Google Scholar
  • 8. Jakubowicz-Gil J., Bądziul D., Langner E., Wertel I., Zając A., Rzeski W.: Temozolomide and sorafenib as programmed cell death inducers of human glioma cells. Pharmacol. Rep., 2017; 69: 779–787
    Google Scholar
  • 9. Jarząb A., Grabarska A., Kiełbus M., Jeleniewicz W., Dmoszyń­ska-Graniczka M., Skalicka-Woźniak K., Sieniawska E., Polberg K., Stepulak A.: Osthole induces apoptosis, suppresses cell-cycle pro­gression and proliferation of cancer cells. Anticancer Res., 2014; 34: 6473–6480
    Google Scholar
  • 10. Jiang G., Liu J., Ren B., Tang Y, Owusu L., Li M., Zhang J., Liu L., Li W.: Anti-tumor effects of osthole on ovarian cancer cells in vitro. J. Ethnopharmacol., 2016; 193: 368–376
    Google Scholar
  • 11. Khar A., Ali A.M.: Serum protects HeLa cells from antiestrogen ef­fects in culture. Eur. J. Cancer Clin. Oncol., 1987; 23: 761–763
    Google Scholar
  • 12. Lo W.Y., Lai C.C., Hua C.H., Tsai M.H., Huang S.Y., Tsai C.H., Tsai F.J.: S100A8 is identified as a biomarker of HPV18-infected oral squamo­us cell carcinomas by suppression subtraction hybridization, clinical proteomics analysis, and immunohistochemistry staining. J. Proteome Res., 2007; 6: 2143–2151
    Google Scholar
  • 13. Majumdar S.K., Valdellon J.A., Brown K.A.: In vitro investigations on the toxicity and cell death induced by tamoxifen on two non-breast cancer cell types. J. Biomed. Biotechnol., 2001; 1: 99–107
    Google Scholar
  • 14. Radin D.P., Patel P.: Delineating the molecular mechanisms of ta­moxifen’s oncolytic actions in estrogen receptor-negative cancers. Eur. J. Pharmacol., 2016; 781: 173–180
    Google Scholar
  • 15. Rondón-Lagos M., Villegas V.E., Rangel N., Sánchez M.C., Zaphiro­poulos P.G.: Tamoxifen resistance: emerging molecular targets. Int. J. Mol. Sci., 2016; 17: E1357
    Google Scholar
  • 16. Salami S., Karami-Tehrani F.: Biochemical studies of apoptosis in­duced by tamoxifen in estrogen receptor positive and negative breast cancer cell lines. Clin. Biochem., 2003; 36: 247–253
    Google Scholar
  • 17. Xu X., Zhang Y., Qu D., Jiang T., Li S.: Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt path­way. J. Exp. Clin. Cancer Res., 2011; 30: 33
    Google Scholar
  • 18. Zhang L., Jiang G., Yao F., He Y., Liang G., Zhang Y., Hu B., Wu Y., Li Y., Liu H.: Growth inhibition and apoptosis induced by osthole, a natu­ral coumarin, in hepatocellular carcinoma. PLoS One, 2012; 7: e37865
    Google Scholar
  • 19. Zhou L., Zhu T., Yang L., Wang B., Liang X., Lu L., Tsao Y.P., Chen S.L., Li J., Xiao X.: Long-term protection against human papillomavirus e7­-positive tumor by a single vaccination of adeno-associated virus vectors encoding a fusion protein of inactivated e7 of human papillomavirus 16/18 and heat shock protein 70. Hum. Gene Ther., 2010; 21: 109–119
    Google Scholar
  • 20. Zong J., Wang C., Liu B., Liu M., Cao Y., Sun X., Yao Y., Sun G.: Hu­man hsp70 and HPV16 oE7 fusion protein vaccine induces an effective antitumor efficacy. Oncol. Rep., 2013; 30: 407–412
    Google Scholar

Pełna treść artykułu

Skip to content