Zaburzenia różnicowania adipocytów oraz metabolizmu i transportu lipidów w adipocytach – główne przyczyny genetycznie uwarunkowanych lipodystrofii*

ARTYKUŁ PRZEGLĄDOWY

Zaburzenia różnicowania adipocytów oraz metabolizmu i transportu lipidów w adipocytach – główne przyczyny genetycznie uwarunkowanych lipodystrofii*

Agnieszka Dettlaff-Pokora 1

1. Katedra i Zakład Biochemii Gdański Uniwersytet Medyczny, Gdańsk, Polska

Opublikowany: 2019-12-19
DOI: 10.5604/01.3001.0013.6553
GICID: 01.3001.0013.6553
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2019; 73 : 741-761

 

Abstrakt

Lipodystrofie są heterogenną grupą chorób tkanki tłuszczowej z jej częściowym lub całkowitym zanikiem. Zwykle wyróżnia się cztery główne grupy lipodystrofii klasycznych: a) wrodzoną uogólnioną; b) nabytą uogólnioną; c) wrodzoną częściową i d) nabytą częściową. W lipodystrofii wrodzonej często dochodzi do pierwotnych zaburzeń adipogenezy i nieprawidłowego różnicowania adipocytów. Powoduje to powstawanie komórek tłuszczowych o funkcji termogenicznej. Lipodystrofia może być wynikiem nieprawidłowej syntezy triacylogliceroli i fosfolipidów, składników kropli lipidowych adipocytów, budujących krople lipidowe, a także nieprawidłowego uwalniania kwasów tłuszczowych czy też ich wewnątrzkomórkowego transportu. Lipodystrofia może być także spowodowana obniżeniem odporności tkanki tłuszczowej na uszkodzenie mechaniczne albo nieprawidłową budową i działaniem cytoszkieletu i blaszki jądrowej. Brak tkanki tłuszczowej prowadzi często do wzrostu poziomu triacylogliceroli w surowicy i ektopowego odkładania się lipidów w różnych narządach; wzrostu stężenia cholesterolu całkowitego w surowicy; obniżenia stężenia HDL-cholesterolu w surowicy. Ektopowe odkładanie się lipidów jest szczególnie nasilone w wątrobie. Może doprowadzić do jej stłuszczenia, hepatomegalii, a czasami do marskości. Zaburzenia zależą od masy utraconej tkanki tłuszczowej i mogą się pojawiać we wczesnym okresie życia, zwłaszcza u pacjentów z lipodystrofią uogólnioną. Patologiami towarzyszącymi lipodystrofii są zwykle insulinooporność i cukrzyca typu 2. W ostatnich latach opisano wiele nowych typów lipodystrofii występujących w Polsce i na świecie. Doskonalenie metod diagnostycznych w genetyce medycznej umożliwia dokładne określenie genotypu choroby i poprawne zdiagnozowanie pacjentów cierpiących na lipodystrofię. Istnieje więc potrzeba przybliżenia molekularnych podstaw tych zespołów chorobowych klinicystom, którzy zajmują się tymi rzadkimi i bardzo rzadkimi chorobami.

Przypisy

  • 1. Ahmadian M., Suh J.M., Hah N., Liddle C., Atkins A.R., Downes M.,Evans R.M.: PPARγ signaling and metabolism: the good, the bad andthe future. Nat. Med., 2013; 19: 557–566
    Google Scholar
  • 2. Akinci B., Onay H., Demir T., Ozen S., Kayserili H., Akinci G., NurB., Tuysuz B., Nuri Ozbek M., Gungor A., Yildirim Simsir I., Altay C.,Demir L., Simsek E., Atmaca M. i wsp.: Natural history of congenitalgeneralized lipodystrophy: A nationwide study from Turkey. J. Clin.Endocrinol. Metab., 2016; 101: 2759–2767
    Google Scholar
  • 3. Albert J.S., Yerges-Armstrong L.M., Horenstein R.B., PollinT.I., Sreenivasan U.T., Chai S., Blaner W.S., Snitker S., O’ConnellJ.R., Gong D.W., Breyer R.J. 3rd, Ryan A.S., McLenithan J.C., ShuldinerA.R., SztalrydC., Damcott C.M.: Null mutation in hormonesensitivelipase gene and risk of type 2 diabetes. N. Engl. J. Med.,2014; 370: 2307–2315
    Google Scholar
  • 4. Alcantara D., Elmslie F., Tetreault M., Bareke E., Hartley T.; Care4RareConsortium, Majewski J., Boycott K., Innes A.M., Dyment D.A.,O’Driscoll M.: SHORT syndrome due to a novel de novo mutation inPRKCE (protein kinase Cɛ) impairing TORC2-dependent AKT activation.Hum. Mol. Genet., 2017; 26: 3713–3721
    Google Scholar
  • 5. Altomare D.A., Khaled A.R.: Homeostasis and the importance fora balance between AKT/mTOR activity and intracellular signaling.Curr. Med. Chem. 2012; 19: 3748–3762
    Google Scholar
  • 6. Arai Y., Takayama M., Abe Y., Hirose N.: Adipokines and aging. J. Atheroscler. Thromb., 2011; 18: 545–550
    Google Scholar
  • 7. Ball N.J., Cowan B.J., Hashimoto S.A.: Lobular panniculitis at the site of subcutaneous interferon beta injections for the treatment of multiple sclerosis can histologically mimic pancreatic panniculitis. A study of 12 cases. J. Cutan. Pathol., 2009; 36: 331–337
    Google Scholar
  • 8. Barak Y, Nelson M.C., Ong E.S., Jones Y.Z., Ruiz-Lozano P., Chien K.R., Koder A., Evans R.M.: PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell., 1999; 4: 585–595
    Google Scholar
  • 9. Bastard J.P., Caron M., Vidal H., Jan V., Auclair M., Vigouroux C., Luboinski J., Laville M., Maachi M., Girard P.M., Rozenbaum W., Levan P., Capeau J.: Association between altered expression of adipogenic factor SREBP1 in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet, 2002; 359: 1026–1031
    Google Scholar
  • 10. Bastiani M., Liu L., Hill M.M., Jedrychowski M.P., Nixon S.J., Lo H.P., Abankwa D., Luetterforst R., Fernandez-Rojo M., Breen M.R., Gygi S.P., Vinten J., Walser P.J., North K.N., Hancock J.F., Pilch P.F., Parton R.G.: MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell. Biol., 2009; 185: 1259–1273
    Google Scholar
  • 11. Bergo M.O., Gavino B., Ross J., Schmidt W.K., Hong C., Kendall L.V., Mohr A., Meta M., Genant H., Jiang Y., Wisner E.R., Van Bruggen N., Carano R.A., Michaelis S., Griffey S.M., Young S.G.: Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness and a prelamin A processing defect. Proc. Natl. Acad. Sci. USA, 2002; 99: 13049–13054
    Google Scholar
  • 12. Bickel P.E, Tansey J.T., Welte M.A.: PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim. Biophys. Acta, 2009; 1791: 419–440
    Google Scholar
  • 13. Brehm A., Liu Y., Sheikh A., Marrero B., Omoyinmi E., Zhou Q., Montealegre G., Biancotto A., Reinhardt A., Almeida de Jesus A., Pelletier M., Tsai W.L., Remmers E.F., Kardava L., Hill S. i wsp.: Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest., 2015; 125: 4196–4211
    Google Scholar
  • 14. Brown R.J., Arajuo-Vilar D., Cheung P.T., Dunger D., Garg A., Jack M., Mungai L., Oral E.A., Patni N., Rother K.I., von Schnurbein J., Sorkina E., Stanley T., Vigouroux C., Wabitsch M., Williams R., Yorifuji T.: The diagnosis and managmant of lipodystrophy syndromes: a multi-society practice guideline. J. Clin. Endocrinol. Metab., 2016; 101: 4500–4511
    Google Scholar
  • 15. Capanni C., Mattioli E., Columbaro M., Lucarelli E., Parnaik V.K., Novelli G., Wehnert M., Cenni V., Maraldi N.M., Squarzoni S., Lattanzi G.: Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum. Mol. Genet., 2005; 14: 1489–1502
    Google Scholar
  • 16. Cortés V.A., Curtis D.E., Sukumaran S., Shao X., Parameswara V., Rashid S., Smith A.R., Ren J., Esser V., Hammer R.E., Agarwal A.K., Horton J.D., Garg A.: Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab., 2009; 9: 165–176
    Google Scholar
  • 17. Davies B.S., Coffinier C., Yang S.H., Barnes R.H. 2nd, Jung H.J., Young S.G., Fong L.G.: Investigating the purpose of prelamin A processing. Nucleus, 2011; 2: 4–9
    Google Scholar
  • 18. Davies B.S., Fong L.G., Yang S.H., Coffinier C., Young S.G.: The posttranslational processing of prelamin A and disease. Annu. Rev. Genomics Hum. Genet., 2009; 10: 153–174
    Google Scholar
  • 19. Davis K.E., Moldes M., Farmer S.R.: The forkhead transcription factor FoxC2 inhibits white adipocyte differentiation. J. Biol. Chem., 2004; 279: 42453–42461
    Google Scholar
  • 20. Davis M.R., Arner E., Duffy C.R., De Sousa P.A., Dahlman I., Arner P., Summers K.M.: Expression of FBN1 during adipogenesis: Relevance to the lipodystrophy phenotype in Marfan syndrome and related conditions. Mol. Genet. Metab., 2016; 119: 174–185
    Google Scholar
  • 21. Dávalos A., Fernández-Hernando C., Sowa G., Derakhshan B., Lin M.I., Lee J.Y., Zhao H., Luo R., Colangelo C., Sessa W.C.: Quantitative proteomics of caveolin-1-regulated proteins: characterization of polymerase I and transcript release factor/CAVIN-1 in endothelial cells. Mol. Cell. Proteomics., 2010; 9: 2109–2124
    Google Scholar
  • 22. De Brasi D., Brunetti-Pierri N., Di Micco P., Andria G., Sebastio G.: New syndrome with generalized lipodystrophy and a distinctive facial appearance: confirmation of Keppen-Lubinski syndrome? Am. J. Med. Genet. A, 2003; 117:194–195
    Google Scholar
  • 23. Dechat T., Pfleghaar K., Sengupta K., Shimi T., Shumaker D.K., Solimando L., Goldman R.D.: Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes. Dev., 2008; 22: 832–853
    Google Scholar
  • 24. de Renty C., Ellis N.A.: Bloom’s syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res. Rev., 2017; 33: 36–51
    Google Scholar
  • 25. Dettlaff-Pokora A., Sledzinski T., Swierczynski J.: Up-regulation Mttp and Apob gene expression in rat liver is related to post-lipectomy hypertriglyceridemia. Cell. Physiol. Biochem., 2015; 36: 1767–1777
    Google Scholar
  • 26. Dettlaff-Pokora A., Sledzinski T., Swierczynski J.: Up-regulation of orexigenic and down-regulation of anorexigenic neuropeptide gene expression in rat hypothalamus after partial lipectomy. J. Appl. Biomed. 2015; 13: 105–112
    Google Scholar
  • 27. Diaz A., Vogiatzi M.G., Sanz M.M., German J.: Evaluation of short stature, carbohydrate metabolism and other endocrinopathies in Bloom’s syndrome. Horm. Res., 2006; 66: 111–117
    Google Scholar
  • 28. Duerrschmid C., He Y., Wang C., Li C., Bournat J.C., Romere C., Saha P.K., Lee M.E., Phillips K.J., Jain M., Jia P., Zhao Z., Farias M., Wu Q., Milewicz D.M. i wsp.: Asprosin is a centrally acting orexigenic hormone. Nat. Med., 2017; 23: 1444–1453
    Google Scholar
  • 29. Dyment D.A., Gibson W.T., Huang L., Bassyouni H., Hegele R.A., Innes A.M.: Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli-Seip syndrome. Eur. J. Med. Genet., 2014; 57: 524–526
    Google Scholar
  • 30. Faria C.A., Moraes R.S., Sobral-Filho D.C., Rego A.G., Baracho M.F., Egito E.S., Brandão-Neto J.: Autonomic modulation in patients with congenital generalized lipodystrophy (Berardinelli-Seip syndrome). Europace, 2009; 11: 763–769
    Google Scholar
  • 31. Fei W., Li H., Shui G., Kapterian T.S., Bielby C., Du X., Brown A.J., Li P., Wenk M.R., Liu P., Yang H.: Molecular characterization of seipin and its mutants: implications for seipin in triacylglycerol synthesis. J. Lipid. Res., 2011; 52: 2136–2147
    Google Scholar
  • 32. Fernandez-Rojo M.A., Ramm G.A.: Caveolin-1 function in liver physiology and disease. Trends. Mol. Med., 2016; 22: 889–904
    Google Scholar
  • 33. Fernández-Rojo M.A., Restall C., Ferguson C., Martel N., Martin S., Bosch M., Kassan A., Leong G.M., Martin S.D., McGee S.L., Muscat G.E., Anderson R.L., Enrich C., Pol A., Parton R.G.: Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: implications for liver regeneration. Hepatology, 2012; 55: 1574–1584
    Google Scholar
  • 34. Finkelstein J.L., Gala P., Rochford R., Glesby M.J., Mehta S.: HIV/AIDS and lipodystrophy: implications for clinical management in resource-limited settings. J. Int. AIDS. Soc., 2015; 18: 19033
    Google Scholar
  • 35. Francis G.A., Li G., Casey R., Wang J., Cao H., Leff T., Hegele R.A.: Peroxisomal proliferator activated receptor-γ deficiency in a Canadian kindred with familial partial lipodystrophy type 3 (FPLD3). BMC Med. Genet., 2006; 7: 3
    Google Scholar
  • 36. Gandotra S., Le Dour C., Bottomley W., Cervera P., Giral P., Reznik Y., Charpentier G., Auclair M., Delépine M., Barroso I., Semple R.K., Lathrop M., Lascols O., Capeau J., O’Rahilly i wsp.: Perilipin deficiency and autosomal dominant partial lipodystrophy. N. Engl. J. Med., 2011; 364: 740–748
    Google Scholar
  • 37. Gandotra S., Lim K., Girousse A., Saudek V., O’Rahilly S., Savage D.B.: Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J. Biol. Chem., 2011; 286: 34998–35006
    Google Scholar
  • 38. Garg A.: Lipodystrophies. Am. J. Med., 2000; 108: 143–152
    Google Scholar
  • 39. Garg A., Hernandez M.D., Sousa A.B., Subramanyam L., Martínezde Villarreal L., dos Santos H.G., Barboza O.: An autosomal recessivesyndrome of joint contractures, muscular atrophy, microcytic anemia,and panniculitis-associated lipodystrophy. J. Clin. Endocrinol.Metab., 2010; 95: E58–E63
    Google Scholar
  • 40. George S., Rochford J.J., Wolfrum C., Gray S.L., Schinner S., WilsonJ.C., Soos M.A., Murgatroyd P.R., Williams R.M., Acerini C.L.,Dunger D.B., Barford D., Umpleby A.M., Wareham N.J., Davies H.A.,Schafer A.J., StoffelM., O’Rahilly S., Barroso I.: A family with severeinsulin resistance and diabetes due to a mutation in AKT2. Science,2004; 304: 1325–1328
    Google Scholar
  • 41. Gesta S., Tseng Y.H., Kahn C.R.: Developmental origin of fat:tracking obesity to its source. Cell, 2007; 131: 242–256
    Google Scholar
  • 42. Gojanovich A.D., Bustos D.M., Uhart M.: Differential expressionand accumulation of 14-3-3 paralogs in 3T3-L1 preadipocytes anddifferentiatedcells. Biochem. Biophys. Rep., 2016; 7: 106–112
    Google Scholar
  • 43. Grahn T.H., Kaur R., Yin J., Schweiger M., Sharma V.M., Lee M.J.,Ido Y., Smas C.M., Zechner R., Lass A., Puri V.: Fat-specific protein 27(FSP27) interacts with adipose triglyceride lipase (ATGL) to regulatelipolysis and insulin sensitivity in human adipocytes. J. Biol. Chem.,2014; 289: 12029–12039
    Google Scholar
  • 44. Guillín-Amarelle C., Sánchez-Iglesias S., Araújo-Vilar D.: Uncommonlipodystrophic syndromes. Med. Clin., 2015; 144: 80–87
    Google Scholar
  • 45. Han B., Copeland C.A., Kawano Y., Rosenzweig E.B., Austin E.D.,Shahmirzadi L., Tang S., Raghunathan K., Chung W.K., KenworthyA.K.: Characterization of a caveolin-1 mutation associated with bothpulmonary arterial hypertension and congenital generalized lipodystrophy.Traffic, 2016; 17: 1297–1312
    Google Scholar
  • 46. Hegele R.A., Anderson C.M., Wang J., Jones D.C., Cao H.: Associationbetween nuclear lamin A/C R482Q mutation and partial lipodystrophywith hyperinsulinemia, dyslipidemia, hypertension,and diabetes. Genome Res., 2000; 10: 652–658
    Google Scholar
  • 47. Heink S., Ludwig D., Kloetzel P.M., Krüger E.: IFN-γ-induced immuneadaptation of the proteasome system is an accelerated andtransient response. Proc. Natl. Acad. Sci. USA, 2005; 102: 9241–9246
    Google Scholar
  • 48. Huang-Doran I., Tomlinson P., Payne F., Gast A., Sleigh A., BottomleyW., Harris J., Daly A., Rocha N., Rudge S., Clark J., Kwok A., Romeo S.,McCann E., Müksch B. i wsp.: Insulin resistance uncoupled from dyslipidemiadue to C-terminal PIK3R1 mutations. JCI Insight, 2016; 1: e88766
    Google Scholar
  • 49. Hussain I., Patni N., Ueda M., Sorkina E., Valerio C.M., CochranE., Brown R.J., Peeden J., Tikhonovich Y., Tiulpakov A., Stender S.R.S.,Klouda E., Tayeh M.K., Innis J.W., Meyer A. i wsp.: A novel generalizedlipodystrophy-associated progeroid syndrome due to recurrentheterozygous LMNA p.T10I mutation. J. Clin. Endocrinol. Metab.,2018; 103: 1005–1014
    Google Scholar
  • 50. Imai T., Takakuwa R., Marchand S., Dentz E., Bornert J.M., MessaddeqN., Wendling O., Mark M., Desvergne B., Wahli W., ChambonP., Metzger D.: Peroxisome proliferator-activated receptor γ is requiredin mature white and brown adipocytes for their survival in themouse. Proc. Natl. Acad. Sci. USA, 2004; 101: 4543–4547
    Google Scholar
  • 51. Janani C., Ranjitha Kumari B.D.: PPAR gamma gene – a review.Diabetes Metab. Syndr. 2015; 9: 46–50
    Google Scholar
  • 52. Jéru I., Vatier C., Araujo-Vilar D., Vigouroux C., Lascols O.: Clinicalutility gene card for: congenital generalized lipodystrophy. Eur.J. Hum.Genet., 2016; 24: 1649
    Google Scholar
  • 53. Karikkineth A.C., Scheibye-Knudsen M., Fivenson E., CroteauD.L., Bohr V.A.: Cockayne syndrome: Clinical features, model systemsand pathways. Ageing Res. Rev., 2017; 33: 3–17
    Google Scholar
  • 54. Kim Y.J., Cho S.Y., Yun C.H., Moon Y.S., Lee T.R., Kim S.H.: Transcriptionalactivation of Cidec by PPARγ2 in adipocyte. Biochem. Biophys.Res. Commun., 2008; 377: 297–302
    Google Scholar
  • 55. Kitano K.: Structural mechanisms of human RecQ helicases WRNand BLM. Front. Genet., 2014; 5: 366
    Google Scholar
  • 56. Klatka M., Rysz I., Kozyra K., Polak A., Kołłątaj W.: SHORT syndromein a two-year-old girl – case report. Ital. J. Pediatr., 2017; 43: 44
    Google Scholar
  • 57. Klupa T., Szopa M., Skupien J., Wojtyczek K., Cyganek K., KowalskaI., Malecki M.T.: LMNA gene mutation search in Polish patients:new features of the heterozygous Arg482Gln mutation phenotype.Endocrine, 2009; 36: 518–523
    Google Scholar
  • 58. Knebel B., Kotzka J., Lehr S., Hartwig S., Avci H., Jacob S., NitzgenU., Schiller M., März W., Hoffmann M.M., Seemanova E., Haas J., Muller-Wieland D.: A mutation in the c-fos gene associated with congenitalgeneralized lipodystrophy. Orphanet. J. Rare. Dis., 2013; 8: 119
    Google Scholar
  • 59. Kozusko K., Tsang V., Bottomley W., Cho Y.H., Gandotra S., MimmackM.L., Lim K., Isaac I., Patel S., Saudek V., O’Rahilly S., SrinivasanS., Greenfield J.R., Barroso I., Campbell L.V., Savage D.B.: Clinical andmolecular characterization of a novel PLIN1 frameshift mutationidentified in patients with familial partial lipodystrophy. Diabetes,2015; 64: 299–310
    Google Scholar
  • 60. Krawiec P., Mełges B., Pac-Kożuchowska E., Mroczkowska-JuchkiewiczA., Czerska K.: Fitting the pieces of the puzzle together: a casereport of the Dunnigan-type of familial partial lipodystrophy in theadolescent girl. BMC Pediatr., 2016; 16: 38
    Google Scholar
  • 61. Lammerding J., Schulze P.C., Takahashi T., Kozlov S., SullivanT., Kamm R.D., Stewart C.L., Lee R.T.: Lamin A/C deficiency causesdefective nuclear mechanics and mechanotransduction. J. Clin. Invest.,2004; 113: 370–378
    Google Scholar
  • 62. László A., Simon M.: Serum lipid and lipoprotein levels in prematureageing syndromes: total lipodystrophy and Cockayne syndrome.Arch. Gerontol. Geriatr., 1986; 5:189–196
    Google Scholar
  • 63. Le Lay S., Blouin C.M., Hajduch E., Dugail I.: Filling up adipocyteswith lipids. Lessons from caveolin-1 deficiency. Biochim. Biophys.Acta, 2009; 1791: 514–518
    Google Scholar
  • 64. Le Lay S., Hajduch E., Lindsay M.R., Le Lièpvre X., Thiele C., FerréP., Parton R.G., Kurzchalia T., Simons K., Dugail I.: Cholesterol-inducedcaveolin targeting to lipid droplets in adipocytes: a role forcaveolar endocytosis. Traffic, 2006; 7: 549–561
    Google Scholar
  • 65. Lewandowski K.C., Lewiński A., Dąbrowska K., Jakubowski L.,Gach A.: Familial partial lipodystrophy as differential diagnosis ofpolycystic ovary syndrome. Endokrynol. Pol., 2015; 66: 550–554
    Google Scholar
  • 66. Liu L., Brown D., McKee M., Lebrasseur N.K., Yang D., AlbrechtK.H., Ravid K., Pilch P.F.: Deletion of cavin/PTRF causes global lossof caveolae, dyslipidemia, and glucose intolerance. Cell. Metab.,2008; 8: 310–317
    Google Scholar
  • 67. Liu L., Jiang Q., Wang X., Zhang Y., Lin R.C., Lam S.M., Shui G.,Zhou L., Li P., Wang Y., Cui X., Gao M., Zhang L., Lv Y., Xu G. i wsp.:Adipose-specific knockout of SEIPIN/BSCL2 results in progressivelipodystrophy. Diabetes, 2014; 63: 2320–2331
    Google Scholar
  • 68. Liu Y., Ramot Y., Torrelo A., Paller A.S., Si N., Babay S., Kim P.W.,Sheikh A., Lee C.C., Chen Y., Vera A., Zhang X., Goldbach-ManskyR., Zlotogorski A.: Mutations in proteasome subunit β type 8 causechronic atypical neutrophilic dermatosis with lipodystrophy andelevated temperature with evidence of genetic and phenotypic heterogeneity.Arthritis. Rheum., 2012: 64: 895–907
    Google Scholar
  • 69. Lloyd D.J., Trembath R.C., Shackleton S.: A novel interactionbetween lamin A and SREBP1: implications for partial lipodystrophyand other laminopathies. Hum. Mol. Genet., 2002; 11: 769–777
    Google Scholar
  • 70. Lotta L.A., Gulati P., Day F.R., Payne F., Ongen H., van de BuntM., Gaulton K.J., Eicher J.D., Sharp S.J., Luan J., De Lucia Rolfe E.,Stewart I.D., Wheeler E., Willems S.M., Adams C. i wsp.: Integrativegenomic analysis implicates limited peripheral adipose storagecapacity in the pathogenesis of human insulin resistance. Nat.Genet., 2017; 49:17–26
    Google Scholar
  • 71. Ludwig A., Howard G., Mendoza-Topaz C., Deerinck T., MackeyM., Sandin S., Ellisman M.H., Nichols B.J.: Molecular compositionand ultrastructure of the caveolar coat complex. PLoS Biol., 2013;11: e1001640
    Google Scholar
  • 72. Madej-Pilarczyk A., Niezgoda A., Janus M., Wojnicz R., MarchelM., Fidziańska A., Grajek S., Hausmanowa-Petrusewicz I.: Limb-girdlemuscular dystrophy with severe heart failure overlapping withlipodystrophyin a patient with LMNA mutation p.Ser334del. J. Appl.Genet., 2017; 58: 87–91
    Google Scholar
  • 73. Marion-Letellier R., Savoye G., Ghosh S.: Fatty acids, eicosanoidsand PPAR gamma. Eur. J. Pharmacol. 2016; 785: 44–49
    Google Scholar
  • 74. Martin S., Fernandez-Rojo M.A., Stanley A.C., Bastiani M., OkanoS., Nixon S.J., Thomas G., Stow J.L., Parton R.G.: Caveolin-1 deficiencyleads to increased susceptibility to cell death and fibrosis inwhite adipose tissue: characterization of a lipodystrophic model.PLoS One, 2012; 7: e46242
    Google Scholar
  • 75. Masotti A., Uva P., Davis-Keppen L., Basel-Vanagaite L., CohenL., Pisaneschi E., Celluzzi A., Bencivenga P., Fang M., Tian M., Xu X.,Cappa M., Dallapiccola B.: Keppen-Lubinsky syndrome is caused bymutations in the inwardly rectifying K+ channel encoded by KCNJ6.Am. J. Hum. Genet., 2015; 96: 295–300
    Google Scholar
  • 76. McMahon K.A., Zajicek H., Li W.P., Peyton M.J., Minna J.D.,HernandezV.J., Luby-Phelps K., Anderson R.G.: SRBC/cavin-3 isa caveolin adapterprotein that regulates caveolae function. EMBOJ., 2009; 28: 1001–1015
    Google Scholar
  • 77. Montes de Oca R., Andreassen P.R., Wilson K.L.: Barrier-toautointegrationfactor influences specific histone modifications.Nucleus, 2011; 2: 580–590
    Google Scholar
  • 78. Mori S., Yokote K., Morisaki N., Saito Y., Yoshida S.: Inheritableabnormal lipoprotein metabolism in Werner’s syndromesimilar to familial hypercholesterolaemia. Eur. J. Clin. Invest.,1990; 20: 137–142
    Google Scholar
  • 79. Muchir A., Worman H.J.. The nuclear envelope and humandisease. Physiology, 2004; 19: 309–314
    Google Scholar
  • 80. Murata M., Peränen J., Schreiner R., Wieland F., Kurzchalia T.V.,Simons K.: VIP21/caveolin is a cholesterol-binding protein. Proc.Natl. Acad. Sci. USA, 1995; 92: 10339–10343
    Google Scholar
  • 81. Nabrdalik K., Strózik A., Minkina-Pędras M., Jarosz-Chobot P.,Młynarski W., Grzeszczak W., Gumprecht J.: Dunnigan-type familialpartial lipodystrophy associated with the heterozygous R482W mutationin LMNA gene – case study of three women from one family.Endokrynol. Pol., 2013; 64: 306–311
    Google Scholar
  • 82. Nanjan M.J., Mohammed M., Prashantha Kumar B.R., ChandrasekarM.J.: Thiazolidinediones as antidiabetic agents: A criticalreview. Bioorg. Chem., 2018; 77: 548–567
    Google Scholar
  • 83. Pagac M., Cooper D.E., Qi Y., Lukmantara I.E., Mak H.Y., Wu Z.,Tian Y., Liu Z., Lei M., Du X., Ferguson C., Kotevski D., Sadowski P.,Chen W., Boroda S. i wsp.: SEIPIN regulates lipid droplet expansionand adipocyte development by modulating the activity of glycerol-3-phosphate acyltransferase. Cell Rep., 2016; 17: 1546–1559
    Google Scholar
  • 84. Paolacci S., Bertola D., Franco J., Mohammed S., Tartaglia M.,Wollnik B., Hennekam R.C.: Wiedemann-Rautenstrauch syndrome:A phenotype analysis. Am. J. Med. Genet. A, 2017; 173: 1763–1772
    Google Scholar
  • 85. Paquet N., Box J.K., Ashton N.W., Suraweera A., Croft L.V., UrquhartA.J., Bolderson E., Zhang S.D, O’Byrne K.J., Richard D.J.: Néstor-Guillermo progeria syndrome: a biochemical insight into barrierto-autointegration factor 1, alanine 12 threonine mutation. BMC.Mol. Biol., 2014; 15: 27
    Google Scholar
  • 86. Park J.Y., Javor E.D., Cochran E.K., DePaoli A.M., Gorden P.: Longtermefficacy of leptin replacement in patients with Dunnigan-typefamilial partial lipodystrophy. Metabolism, 2007; 56: 508–516
    Google Scholar
  • 87. Payne F., Lim K., Girousse A., Brown R.J., Kory N., Robbins A.,Xue Y., Sleigh A., Cochran E., Adams C., Dev Borman A., Russel-JonesD., Gorden P., Semple R.K., Saudek V. i wsp.: Mutations disruptingthe Kennedy phosphatidylcholine pathway in humans with congenitallipodystrophy and fatty liver disease. Proc. Natl. Acad. Sci.USA, 2014; 111: 8901–8906
    Google Scholar
  • 88. Prontera P., Micale L., Verrotti A., Napolioni V., Stangoni G.,Merla G.: A new homozygous IGF1R variant defines a clinically recognizableincomplete dominant form of SHORT syndrome. Hum.Mutat., 2015; 36: 1043–1047
    Google Scholar
  • 89. Rajab A., Straub V., McCann L.J., Seelow D., Varon R., Barresi R.,Schulze A., Lucke B., Lützkendorf S., Karbasiyan M., Bachmann S.,Spuler S., Schuelke M.: Fatal cardiac arrhythmia and long-QT syndromein a new form of congenital generalized lipodystrophy withmuscle rippling (CGL4) due to PTRF-CAVIN mutations. PLoS Genet.,2010; 6: e1000874
    Google Scholar
  • 90. Rosen E.D., Spiegelman B.M.: What we talk about when we talkabout fat. Cell, 2014; 156: 20–44
    Google Scholar
  • 91. Rothberg K.G., Heuser J.E., Donzell W.C., Ying Y.S., Glenney J.R.,Anderson R.G.: Caveolin, a protein component of caveolae membranecoats. Cell, 1992; 68: 673–682
    Google Scholar
  • 92. Rubio-Cabezas O., Puri V., Murano I., Saudek V., Semple R.K.,Dash S., Hyden C.S., Bottomley W., Vigouroux C., Magré J., Raymond-Barker P., Murgatroyd P.R., Chawla A., Skepper J.N., ChatterjeeV.K.i wsp.: Partial lipodystrophy and insulin resistant diabetes in a patientwith a homozygous nonsensemutation in CIDEC. EMBO Mol.Med., 2009; 1: 280–287
    Google Scholar
  • 93. Sasaki H., Yanagi K., Ugi S., Kobayashi K., Ohkubo K., Tajiri Y.,MaegawaH., Kashiwagi A., Kaname T.: Definitive diagnosis of mandibularhypoplasia, deafness, progeroid features and lipodystrophy(MDPL) syndrome caused by a recurrent de novo mutation in thePOLD1 gene. Endocr. J., 2018; 65: 227–238
    Google Scholar
  • 94. Savage D.B., Tan G.D., Acerini C.L, Jebb S.A, Agostini M., GurnellM., Williams R.L., Umpleby A.M., Thomas E.L., Bell J.D., Dixon A.K.,Dunne F., Boiani R., Cinti S., Vidal-Puig A. i wsp.: Human metabolicsyndrome resultingfrom dominant-negative mutations in the nuclearreceptor peroxisomeproliferator-activated receptor-γ. Diabetes,2003; 52: 910–917
    Google Scholar
  • 95. Seifert U., Bialy L.P., Ebstein F., Bech-Otschir D., Voigt A.,Schröter F., Prozorovski T., Lange N., Steffen J., Rieger M., KuckelkornU., Aktas O., Kloetzel P.M., Krüger E.: Immunoproteasomespreserve protein homeostasisupon interferon-induced oxidativestress. Cell, 2010; 142: 613–624
    Google Scholar
  • 96. Shappell S.B., Gupta R.A., Manning S., Whitehead R., Boeglin W.E.,Schneider C., Case T., Price J., Jack G.S., Wheeler T.M., Matusik R.J.,Brash A.R., Dubois R.N.: 15S-Hydroxyeicosatetraenoic acid activatesperoxisomeproliferator-activated receptor γ and inhibits proliferationin PC3 prostate carcinoma cells. Cancer Res. 2001; 61: 497–503
    Google Scholar
  • 97. Shi Y., Cheng D.: Beyond triglyceride synthesis: the dynamicfunctionalroles of MGAT and DGAT enzymes in energy metabolism.Am. J. Physiol. Endocrinol. Metab. 2009; 297: E10–E18
    Google Scholar
  • 98. Simha V., Garg A.: Body fat distribution and metabolic derangementsin patients with familial partial lipodystrophy associated withmandibuloacral dysplasia. J. Clin. Endocrinol. Metab., 2002; 87:776–785
    Google Scholar
  • 99. Soto M.E., Iturriaga Hernández A.V., Guarner Lans V., Zuñiga-MuñozA., Aranda Fraustro A., Velázquez Espejel R., Pérez-Torres I.:Participationof oleic acid in the formation of the aortic aneurysmin Marfan syndrome patients. Prostaglandins Other Lipid Mediat.,2016; 123: 46–55
    Google Scholar
  • 100. Ström K., Gundersen T.E., Hansson O., Lucas S., Fernandez C.,Blomhoff R., Holm C.: Hormone-sensitive lipase (HSL) is also a retinylester hydrolase: evidence from mice lacking HSL. FASEB J., 2009;23: 2307–2316
    Google Scholar
  • 101. Subauste A.R., Das A.K., Li X., Elliott B.G., Evans C., El AzzounyM., Treutelaar M., Oral E., Leff T., Burant C.F.: Alterations in lipidsignalingunderlie lipodystrophy secondary to AGPAT2 mutations.Diabetes, 2012; 61: 2922–2931
    Google Scholar
  • 102. Summers K.M., Nataatmadja M., Xu D., West M.J., McGill J.J., WhightC., Colley A., Adès L.C.: Histopathology and fibrillin-1 distributionin severeearly onset Marfan syndrome. Am. J. Med. Genet. A, 2005; 139: 2–8
    Google Scholar
  • 103. Summers K.M., Raza S., van Nimwegen E., Freeman T.C., HumeD.A.: Co-expression of FBN1 with mesenchyme-specific genes inmouse cell lines: implications for phenotypic variability in Marfansyndrome. Eur. J. Hum. Genet., 2010; 18: 1209–1215
    Google Scholar
  • 104. Sun Z., Gong J., Wu H., Xu W., Wu L., Xu D., Gao J., Wu J.W.,Yang H., Yang M., Li P.: Perilipin1 promotes unilocular lipid dropletformationthrough the activation of Fsp27 in adipocytes. Nat. Commun.,2013; 4: 1594
    Google Scholar
  • 105. Tan J.S., Seow C.J., Goh V.J., Silver D.L.: Recent advances in understandingproteins involved in lipid droplet formation, growthand fusion. J. Genet. Genomics, 2014; 41: 251–259
    Google Scholar
  • 106. Tang Z., Scherer P.E., Okamoto T., Song K., Chu C., Kohtz D.S.,Nishimoto I., Lodish H.F., Lisanti M.P.: Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantlyin muscle. J. Biol. Chem., 1996; 271: 2255–2261
    Google Scholar
  • 107. Torello A.: CANDLE syndrome as a paradigm of proteasome-relatedautoinflammation. Front. Immunol., 2017; 8: 927
    Google Scholar
  • 108. Torrelo A., Patel S., Colmenero I., Gurbindo D., Lendínez F.,Hernández A., López-Robledillo J.C., Dadban A., Requena L., PallerA.S.: Chronic atypical neutrophilic dermatosis with lipodystrophyand elevated temperature (CANDLE) syndrome. J. Am. Acad. Dermatol.,2010; 62: 489–495
    Google Scholar
  • 109. Tsukahara T., Tsukahara R., Fujiwara Y., Yue J., Cheng Y., GuoH., Bolen A., Zhang C., Balazs L., Re F., Du G., Frohman M.A., BakerD.L., Parrill A.L., Uchiyama A. i wsp.: Phospholipase D2-dependentinhibition of the nuclear hormone receptor PPARγ by cyclic phosphatidicacid. Mol. Cell., 2010; 39: 421–432
    Google Scholar
  • 110. Vaz B., Popovic M., Newman J.A., Fielden J., Aitkenhead H.,Halder S., Singh A.N., Vendrell I., Fischer R., Torrecilla I., DrobnitzkyN., Freire R., Amor D.J., Lockhart P.J., Kessler B.M. i wsp.: MetalloproteaseSPRTN/DVC1 orchestrates replication-coupled DNA-proteincrosslink repair. Mol. Cell. 2016; 64: 704–719
    Google Scholar
  • 111. Weedon M.N., Ellard S., Prindle M.J., Caswell R., Lango Allen H.,Oram R., Godbole K., Yajnik C.S., Sbraccia P., Novelli G., Turnpenny P.,McCann E., Goh K.J., Wang Y., Fulford J. i wsp.: An in-frame deletionat the polymerase active site of POLD1 causes a multisystem disorderwith lipodystrophy. Nat. Genet., 2013; 45: 947–950
    Google Scholar
  • 112. Wolfrum C., Shih D.Q., Kuwajima S., Norris A.W., Kahn C.R.,Stoffel M.: Role of Foxa-2 in adipocyte metabolism and differentiation.J. Clin. Invest., 2003; 112: 345–356
    Google Scholar
  • 113. Xia B., Cai G.H., Yang H., Wang S.P., Mitchell G.A., Wu J.W.: Adiposetissue deficiency of hormone-sensitive lipase causes fatty liverin mice. PLoS Genet., 2017; 13: e1007110
    Google Scholar
  • 114. Xirotagaros G., Hernández-Ostiz S., Aróstegui J.I., Torrelo A.:Newly described autoinflammatory diseases in pediatric dermatology.Pediatr. Dermatol., 2016; 33: 602–614
    Google Scholar
  • 115. Yang W., Thein S., Wang X., Bi X., Ericksen R.E., Xu F., Han W.:BSCL2/seipin regulates adipogenesis through actin cytoskeletonremodelling. Hum. Mol. Genet., 2014; 23: 502–513
    Google Scholar
  • 116. Yang Y., Liu L., Naik I., Braunstein Z., Zhong J., Ren B.: Transcriptionfactor C/EBP homologous protein in health and diseases.Front. Immunol., 2017; 8: 1612
    Google Scholar
  • 117. Yokote K., Chanprasert S., Lee L., Eirich K., Takemoto M., WatanabeA., Koizumi N., Lessel D., Mori T., Hisama F.M., Ladd P.D., AngleB., Baris H., Cefle K., Palanduz S. i wsp.: WRN mutation update: mutationspectrum, patient registries, and translational prospects. Hum.Mutat., 2017; 38: 7–15
    Google Scholar
  • 118. You M.H., Song M.S., Lee S.K., Ryu P.D., Lee S.Y., Kim D.Y.: Voltage-gated K+ channels in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Pharmacol. Sin.,2013; 34: 129–136
    Google Scholar
  • 119. Yousefnia S., Momenzadeh S., Seyed Forootan F., Ghaedi K.,Nasr Esfahani M.H.: The influence of peroxisome proliferator-activatedreceptor γ (PPARγ) ligands on cancer cell tumorigenicity.Gene, 2018; 649: 14–22
    Google Scholar
  • 120. Zolotov S., Xing C., Mahamid R., Shalata A., Sheikh-AhmadM., Garg A.: Homozygous LIPE mutation in siblings with multiplesymmetric lipomatosis, partial lipodystrophy, and myopathy. Am.J. Med. Genet. A, 2017; 173: 190–194
    Google Scholar

Pełna treść artykułu

Skip to content