Ekstrakty Cannabis sativa L. oraz Humulus lupulus uzyskane metodą ekstrakcji nadkrytycznym dwutlenkiem węgla i ich wpływ na aktywność ludzkich makrofagów

ORYGINALNY ARTYKUŁ

Ekstrakty Cannabis sativa L. oraz Humulus lupulus uzyskane metodą ekstrakcji nadkrytycznym dwutlenkiem węgla i ich wpływ na aktywność ludzkich makrofagów

Aleksandra Gregorius 1 , Wojciech Krzyczkowski 1 , Marta Wierucka 1 , Julia Kupińska 1 , Agnieszka Dębczak 2 , Urszula Łopatek 2 , Katarzyna Tyśkiewicz 2 , Rafał Wiejak 2 , Olga Wrona 2 , Edward Rój 2

1. Biovico L.L.C., Gdynia, Poland
2. New Chemical Syntheses Institute, Supercritical Extraction Department, Pulawy, Poland

Opublikowany: 2019-12-30
DOI: 10.5604/01.3001.0013.6827
GICID: 01.3001.0013.6827
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2019; 73 : 782-790

 

Abstrakt

Herbal extracts are promising immunomodulating compounds. Their standardization may improve clinical outcome in various conditions related to inflammatory state. The aim of this study was to assess the utility of Cannabis sativa L. and Humulus lupulus extracts obtained by supercritical carbon dioxide (scCO2) in the reduction of pro-inflammatory cytokines release after LPS stimulation in the in vitro model. After scCO2 extraction, the cytotoxic potential of the obtained compounds was determined. The highest non-cytotoxic concentrations were selected for further inflammatory testing. PMA-differentiated U937 cells were used as an LPS induced model of the inflammation to assess the extracts potential to decrease the level of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. Either individually tested or in combination scCO2 extracts markedly reduced the level of released pro-inflammatory cytokines in comparison to LPS stimulated positive control. Our results show that the usage of standardized Cannabis sativa L. and Humulus lupulus extracts might be beneficial in reducing the inflammatory state. Application of the mixed extracts not only reduces the need for a high concentration of pure compounds, but also broadens the possible therapeutic effect. Moreover, scCO2 extraction may serve as the efficient method of obtaining functional anti-inflammatory extracts from either hop cones or cannabis.

Przypisy

  • 1. Akazawa H., Kohno H., Tokuda H., Suzuki N., Yasukawa K., KimuraY., Manosroi A., Manosroi J., Akihisa T.: Anti-inflammatoryand anti-tumor-promoting effects of 5-deprenyllupulonol C andother compounds from hop (Humulus lupulus L.). Chem. Biodivers.,2012; 9: 1045–1054
    Google Scholar
  • 2. Bassus S., Mahnel R., Scholz T., Wegert W., Westrup D., KirchmaierC.M.: Effect of dealcoholized beer (Bitburger Drive) consumptionon hemostasis in humans. Alcohol. Clin. Exp. Res., 2004; 28: 786–791
    Google Scholar
  • 3. Bland J.S., Minich D., Lerman R., Darland G., Lamb J., Tripp M., GraysonN.: Isohumulones from hops (Humulus lupulus) and their potentialrole in medical nutrition therapy. PharmaNutrition, 2015; 3: 46–52
    Google Scholar
  • 4. Burstein S.: Cannabidiol (CBD) and its analogs: A review of theireffects on inflammation. Bioorg. Med. Chem., 2015; 23: 1377–1385
    Google Scholar
  • 5. Burstein S.H., Zurier R.B.: Cannabinoids, endocannabinoids, andrelated analogs in inflammation. AAPS J., 2009; 11: 109–119
    Google Scholar
  • 6. Carrier E.J., Auchampach J.A., Hillard C.J.: Inhibition of an equilibrativenucleoside transporter by cannabidiol: A mechanism ofcannabinoid immunosuppression. Proc. Natl. Acad. Sci. USA, 2006;103: 7895–7900
    Google Scholar
  • 7. Castillo P.E., Younts T.J., Chávez A.E., Hashimotodani Y.: Endocannabinoidsignaling and synaptic function. Neuron, 2012; 76: 70–81
    Google Scholar
  • 8. Costa B., Colleoni M., Conti S., Parolaro D., Franke C., TrovatoA.E., Giagnoni G.: Oral anti-inflammatory activity of cannabidiol, anon-psychoactive constituent of cannabis, in acute carrageenan-inducedinflammation in the rat paw. Naunyn. Schmiedebergs. Arch.Pharmacol., 2004; 369: 294–299
    Google Scholar
  • 9. Costa B., Trovato A.E., Comelli F., Giagnoni G., Colleoni M.: Thenon-psychoactive cannabis constituent cannabidiol is an orally effectivetherapeutic agent in rat chronic inflammatory and neuropathicpain. Eur. J. Pharmacol., 2007; 556: 75–83
    Google Scholar
  • 10. Expert Committee on Drug Dependence. https://www.who.int/medicines/access/controlled-substances/WHOCBDReport-May2018-2.pdf (10.01.2019)
    Google Scholar
  • 11. Fiar Z.: Phytocannabinoids and endocannabinoids. Curr. DrugAbuse Rev., 2009; 2: 51–75
    Google Scholar
  • 12. Fitzcharles M.A., Häuser W.: Cannabinoids in the management ofmusculoskeletal or rheumatic diseases. Curr. Rheumatol. Rep., 2016; 18: 76
    Google Scholar
  • 13. Guindon J., Hohmann A.G.: The endocannabinoid system andpain. CNS Neurol. Disord. Drug Targets, 2009; 8: 403–421
    Google Scholar
  • 14. Hines L.M., Rimm E.B.: Moderate alcohol consumption and coronaryheart disease: a review. Postgrad. Med. J., 2001; 77: 747–752
    Google Scholar
  • 15. Hougee S., Faber J., Sanders A., Berg W.B., Garssen J., Smit H.F.,Hoijer M.A.: Selective inhibition of COX-2 by a standardized CO2extract of Humulus lupulus in vitro and its activity in a mouse modelof zymosan-induced arthritis. Planta Med., 2006; 72: 228–233
    Google Scholar
  • 16. Huestis M.A.: Human cannabinoid pharmacokinetics. Chem.Biodivers., 2007; 4: 1770–1804
    Google Scholar
  • 17. Karabín M., Hudcová T., Jelínek L., Dostálek P.: Biologically activecompounds from hops and prospects for their use. Compr. Rev.Food Sci. Food Saf., 2016; 15: 542–567
    Google Scholar
  • 18. Kozela E., Juknat A., Kaushansky N., Rimmerman N., Ben-NunA., Vogel Z.: Cannabinoids decrease the Th17 inflammatory autoimmunephenotype. J. Neuroimmune Pharmacol., 2013; 8: 1265–1276
    Google Scholar
  • 19. Lawrence T.: The nuclear factor NF-kappaB pathway in inflammation.Cold Spring Harb. Perspect. Biol., 2009; 1: a001651
    Google Scholar
  • 20. Lee I.S., Lim J., Gal J., Kang J.C., Kim H.J., Kang B.Y., Choi H.J.:Anti-inflammatory activity of xanthohumol involves heme oxygenase- 1 induction via NRF2-ARE signaling in microglial BV2 cells.Neurochem. Int., 2011; 58: 153–160
    Google Scholar
  • 21. Lu H.C., Mackie K.: An introduction to the endogenous cannabinoidsystem. Biol. Psychiatry, 2016; 79: 516–525
    Google Scholar
  • 22. MacCallum C.A., Russo E.B.: Practical considerations in medicalcannabis administration and dosing. Eur. J. Intern. Med., 2018; 49: 12–19
    Google Scholar
  • 23. Mahli A., Koch A., Fresse K., Schiergens T., Thasler W.E., SchönbergerC., Bergheim I., Bosserhoff A., Hellerbrand C.: Iso-alpha acidsfrom hops (Humulus lupulus) inhibit hepatic steatosis, inflammation,and fibrosis. Lab. Invest., 2018; 98: 1614–1626
    Google Scholar
  • 24. Mecha M., Feliú A., Iñigo P.M., Mestre L., Carrillo-Salinas F.J.,Guaza C.: Cannabidiol provides long-lasting protection against thedeleterious effects of inflammation in a viral model of multiplesclerosis: A role for A2A receptors. Neurobiol. Dis., 2013; 59: 141–150
    Google Scholar
  • 25. Meucci R.D., Fassa A.G., Faria N.M.: Prevalence of chronic lowback pain: systematic review. Rev. Saude Publica, 2015; 49: S0034-89102015000100408
    Google Scholar
  • 26. Oláh A., Szekanecz Z., Bíró T.: Targeting cannabinoid signalingin the immune system: „High”-ly exciting questions, possibilities,and challenges. Front. Immunol., 2017; 8: 1487
    Google Scholar
  • 27. Perrotin-Brunel H.: Sustainable production of cannabinoids withsupercritical carbon dioxide technologies. 2011. http://resolver.tudelft.nl/uuid:c1b4471f-ea42-47cb-a230-5555d268fb4c (10.04.2019)
    Google Scholar
  • 28. Philpott H.T., O’Brien M., McDougall J.J.: Attenuation of earlyphase inflammation by cannabidiol prevents pain and nerve damagein rat osteoarthritis. Pain, 2017; 158: 2442–2451
    Google Scholar
  • 29. Pisanti S., Malfitano A.M., Ciaglia E., Lamberti A., Ranieri R., CuomoG., Abate M., Faggiana G., Proto M.C., Fiore D., Laezza C., BifulcoM.: Cannabidiol: State of the art and new challenges for therapeuticapplications. Pharmacol. Ther., 2017; 175: 133–150
    Google Scholar
  • 30. Rajan T.S., Giacoppo S., Iori R., De Nicola G.R., Grassi G., PollastroF., Bramanti P., Mazzon E.: Anti-inflammatory and antioxidanteffects of a combination of cannabidiol and moringin in LPS-stimulatedmacrophages. Fitoterapia, 2016; 112: 104–115
    Google Scholar
  • 31. Ribeiro A., Ferraz-de-Paula V., Pinheiro M.L., Vitoretti L.B., Mariano-Souza D.P., Quinteiro-Filho W.M., Akamine A.T., Almeida V.I.,Quevedo J., Dal-Pizzol F., Hallak J.E., Zuardi A.W., Crippa J.A., Palermo–Neto J.: Cannabidiol, a non-psychotropic plant-derived cannabinoid,decreases inflammation in a murine model of acute lung injury: Rolefor the adenosine A2A receptor. Eur. J. Pharmacol., 2012; 678: 78–85
    Google Scholar
  • 32. Richardson D., Pearson R.G., Kurian N., Latif M.L., Garle M.J.,Barrett D.A., Kendall D.A., Scammell B.E., Reeve A.J., Chapman V.:Characterisation of the cannabinoid receptor system in synovialtissue and fluid in patients with osteoarthritis and rheumatoid arthritis.Arthritis Res. Ther., 2008; 10: R43
    Google Scholar
  • 33. Rock E.M., Limebeer C.L., Parker L.A.: Effect of cannabidiolic acidand Δ9–tetrahydrocannabinol on carrageenan-induced hyperalgesiaand edema in a rodent model of inflammatory pain. Psychopharmacology,2018; 235: 3259–3271
    Google Scholar
  • 34. Rom S., Persidsky Y.: Cannabinoid receptor 2: Potential rolein immunomodulation and neuroinflammation. J. NeuroimmunePharmacol., 2013; 8: 608–620
    Google Scholar
  • 35. Saliba S.W., Jauch H., Gargouri B., Keil A., Hurrle T., Volz N., MohrF., van der Stelt M., Bräse S., Fiebich B.L.: Anti-neuroinflammatoryeffects of GPR55 antagonists in LPS-activated primary microglialcells. J. Neuroinflammation, 2018; 15: 322
    Google Scholar
  • 36. Sohrabvandi S., Mortazavian A.M., Rezaei K.: Health-relatedaspects of beer: A review. Int. J. Food Prop., 2012; 15: 350–373
    Google Scholar
  • 37. Szafran B., Lee J.H., Borazjani A., Morrison P., Zimmerman G.,Andrzejewski K.L., Ross M.K., Kaplan B.L.: Characterization of endocannabinoid-metabolizing enzymes in human peripheral bloodmononuclear cells under inflammatory conditions. Molecules,2018; 23: E3167
    Google Scholar
  • 38. Van Cleemput M., Cattoor K., De Bosscher K., Haegeman G., DeKeukeleire D., Heyerick A.: Hop (Humulus lupulus)–derived bitteracids as multipotent bioactive compounds. J. Nat. Prod., 2009; 72:1220–1230
    Google Scholar
  • 39. Van Cleemput M., Heyerick A., Libert C., Swerts K., Philippé J.,De Keukeleire D., Haegeman G., De Bosscher K.: Hop bitter acids efficientlyblock inflammation independent of GRα, PPARα, or PPARγ.Mol. Nutr. Food Res., 2009; 53: 1143–1155
    Google Scholar
  • 40. Vučković S., Srebro D., Vujović K.S., Vučetić Č., Prostran M.:Cannabinoids and pain: New insights from old molecules. Front.Pharmacol., 2018; 9: 1259
    Google Scholar
  • 41. Watkins B.A.: Endocannabinoids, exercise, pain, and a path tohealth with aging. Mol. Aspects Med., 2018; 64: 68–78
    Google Scholar
  • 42. Zurier R.B.: Prospects for cannabinoids as anti-inflammatoryagents. J. Cell. Biochem., 2003; 88: 462–466
    Google Scholar

Pełna treść artykułu

Skip to content