Epigenetyka i nutrigenetyka witaminy C, implikacje kliniczne z uwzględnieniem okresu ciąży
Jolanta Wasilewska 1 , Tadeusz Wasilewski 2 , Krzysztof Zwierz 3Abstrakt
Vitamin C, first described over 90 years ago, is still being discovered by scientists today. Current epigenetic, nutrigenetic, and nutrigenomic research has given us a new understanding on why vitamin C is essential for optimal health at every stage of life. Ascorbic acid is involved in epigenetic reprogramming as an indispensable enzymatic cofactor in DNA demethylation in early preimplantation of embryos in utero, a process regulating fetal growth and development. Another role of vitamin C in pregnancy is associated with genetic variants in sodium-dependent vitamin C transporters (SVCT) that may be connected with spontaneous preterm birth as a result of premature membrane rupture. Vitamin C, as an exogenous antioxidant supports an endogenous, internal antioxidant system and protects against damage to DNA and cell membranes, especially against lipid peroxidation in tissues like brain or reproductive cells. Currently, ascorbic acid is believed to be a neuromodulator of glutamatergic, dopaminergic, and GABAergic transmission pointing to its role as a modulator of human behavior. Genetic variants of vitamin C transporters are considered to be one of many possible predisposing factors associated with Chronic Non-Communicable Diseases (NCDs) such as cancer, cardiovascular disease, osteoporosis, or neurodegenerative diseases (all are characterized by a significant overproduction of free radicals). The most efficient in protection against free-radical damage to DNA are fresh vegetables and fruits containing ascorbic acid, as advised by WHO and FAO (FAO/WHO 2004). Consuming 5 servings of fresh and cold vegetables and fruits daily allows for a constant supply of vitamin C and prevents its deficiency.
Przypisy
- 1. Amir Shaghaghi M., Bernstein C.N., Serrano León A., El-Gabalawy H., Eck P.: Polymorphisms in the sodium-dependent ascorbate transporter gene SLC23A1 are associated with susceptibility to Crohn disease. Am. J. Clin. Nutr., 2014; 99: 378–383
Google Scholar - 2. Andrew A.S., Gui J., Sanderson A.C., Mason R.A., Morlock E.V., Schned A.R., Kelsey K.T., Marsit C.J., Moore J.H., Karagas M.R.: Bladder cancer SNP panel predicts susceptibility and survival. Hum. Genet., 2009; 125: 527–539
Google Scholar - 3. Angulo C., Maldonado R., Pulgar E., Mancilla H., Córdova A., Villarroel F., Castro M.A., Concha I.I.: Vitamin C and oxidative stress in the seminiferous epithelium. Biol. Res., 2011; 44: 169–180
Google Scholar - 4. Auer B.L., Auer D., Rodgers A.L.: Relative hyperoxaluria, crystalluriaand haematuria after megadose ingestion of vitamin C. Eur. J.Clin. Invest., 1998; 28: 695–700
Google Scholar - 5. Bakker G.C., van Erk M.J., Pellis L., Wopereis S., Rubingh C.M.,Cnubben N.H., Kooistra T., van Ommen B., Hendriks H.F.: An antiinflammatorydietary mix modulates inflammation and oxidative andmetabolic stress in overweight men: a nutrigenomics approach. Am.J. Clin. Nutr., 2010; 91: 1044–1059
Google Scholar - 6. Benton D.: The influence of large doses of vitamin C on psychologicalfunctioning. Psychopharmacology, 1981; 75: 98–99
Google Scholar - 7. Benzie I.F.: Evolution of antioxidant defence mechanisms. Eur.J. Nutr., 2000; 39: 53–61
Google Scholar - 8. Berger M.M.: Vitamin C requirements in parenteral nutrition.Gastroenterology, 2009; 137: S70–S78
Google Scholar - 9. Blackburn A.R.2nd, Hamrick M.W., Chutkan N., Sangani R., WallerJ.L., Corpe R., Prasad P.D., Isales C.M., Ganapathy V., Fulzele S.:Comparative analysis of sodium coupled vitamin C transporters 2in human osteoarthritis grade 1 and grade 3 tissues. BMC Musculoskelet.Disord., 2014; 15: 9
Google Scholar - 10. Blaszczak W., Barczak W., Masternak J., Kopczyński P., ZhitkovichA., Rubiś B.: Vitamin C as a modulator of the response to cancertherapy. Molecules, 2019; 24: E453
Google Scholar - 11. Borglykke A., Grarup N., Sparsø T., Linneberg A., Fenger M.,Jeppesen J., Hansen T., Pedersen O., Jørgensen T.: Genetic variantSLC2A2 is associated with risk of cardiovascular disease – assessingthe individual and cumulative effect of 46 type 2 diabetes relatedgenetic variants. PLoS One, 2012; 7: e50418
Google Scholar - 12. Bray M.S.: Genomics, genes, and environmental interaction: therole of exercise. J. Appl. Physiol., 2000; 88: 788–792
Google Scholar - 13. Cahill L., Corey P.N., El-Sohemy A.: Vitamin C deficiency in a populationof young Canadian adults. Am. J. Epidemiol., 2009; 170: 464–471
Google Scholar - 14. Cahill L.E., El-Sohemy A.: Haptoglobin genotype modifies theassociation between dietary vitamin C and serum ascorbic acid deficiency.Am. J. Clin. Nutr., 2010; 92: 1494–1500
Google Scholar - 15. Camarena V., Wang G.: The epigenetic role of vitamin C in healthand disease. Cell. Mol. Life Sci., 2016; 73: 1645–1658
Google Scholar - 16. Carey M., Ramírez J.C., Wu S., Wu H.: A big data pipeline: Identifyingdynamic gene regulatory networks from time-course GeneExpression Omnibus data with applications to influenza infection.Stat. Methods Med. Res., 2018; 27: 1930–1955
Google Scholar - 17. Chen A.A., Marsit C.J., Christensen B.C., Houseman E.A., McCleanM.D., Smith J.F., Bryan J.T., Posner M.R., Nelson H.H., Kelsey K.T.:Genetic variation in the vitamin C transporter, SLC23A2, modifiesthe risk of HPV16-associated head and neck cancer. Carcinogenesis,2009; 30: 977–981
Google Scholar - 18. Childs A., Jacobs C., Kaminski T., Halliwell B., Leeuwenburgh C.:Supplementation with vitamin C and N-acetyl-cysteine increasesoxidative stress in humans after an acute muscle injury induced byeccentric exercise. Free Radic. Biol. Med., 2001; 31: 745–753
Google Scholar - 19. Chmurzynska A.: Fetal programming: link between early nutrition,DNA methylation, and complex diseases. Nutr. Rev., 2010;68: 87–98
Google Scholar - 20. Ciesielski P., Jóźwiak P., Krześlak A.: TET proteins and epigeneticmodifications in cancers. Postępy Hig. Med. Dośw., 2015; 69:1371–1383
Google Scholar - 21. Conde-Agudelo A., Romero R., Kusanovic J.P., Hassan S.S.: Supplementationwith vitamins C and E during pregnancy for the preventionof preeclampsia and other adverse maternal and perinataloutcomes: a systematic review and metaanalysis. Am. J. Obstet. Gynecol.,2011; 204: 503
Google Scholar - 22. Corpe C.P., Eck P., Wang J., Al-Hasani H., Levine M.: Intestinaldehydroascorbic acid (DHA) transport mediated by the facilitativesugar transporters, GLUT2 and GLUT8. J. Biol. Chem., 2013; 288:9092–9101
Google Scholar - 23. da Costa D.M., de Lima G.P., Faria M.H., Rabenhorst S.H.: Polymorphismsof folate pathway enzymes (methylenetetrahydrofolatereductase and thymidylate synthase) and their relationship withthymidylate synthase expression in human astrocytic tumors. DNACell. Biol., 2012; 31: 57–66
Google Scholar - 24. Da Costa L.A., Garcia-Bailo B., Badawi A., El-Sohemy A.: Geneticdeterminants of dietary antioxidant status. Prog. Mol. Biol. Trnasl.Sci., 2012; 108: 179–200
Google Scholar - 25. Da Costa L.A., Badawi A., El-Sohemy A.: Nutrigenetics and modulationof oxidative stress. Ann. Nutr. Metab., 2012; 60: 27–36
Google Scholar - 26. Dalgård C., Christiansen L., Vogel U., Dethlefsen C., Tjønneland A., Overvad K.: Variation in the sodium-dependent vitamin C transporter 2 gene is associated with risk of acute coronary syndrome among women. PLoS One, 2013; 8: e70421
Google Scholar - 27. Daruwala R., Song J., Koh W.S., Rumsey S.C., Levine M.: Cloningand functional characterization of the human sodium–dependentvitamin C transporters hSVCT1 and hSVCT2. FEBS Lett., 1999; 460:480–484
Google Scholar - 28. Davidson C.M., Northrup H., King T.M., Fletcher J.M., TownsendI., Tyerman G.H., Au K.S.: Genes in glucose metabolism and associationwith spina bifida. Reprod. Sci., 2008; 15: 51–58
Google Scholar - 29. de Jong T.M., Jochens A., Jockel–Schneider Y., Harks I., DommischH., Graetz C., Flachsbart F., Staufenbiel I., Eberhard J., FolwacznyM., Noack B., Meyle J., Eickholz P., Gieger C., Grallert H., etal.: SLC23A1 polymorphism rs6596473 in the vitamin C transporterSVCT1 is associated with aggressive periodontitis. J. Clin. Periodontol.,2014; 41: 531–540
Google Scholar - 30. Diplock A.T., Charleux J.L., Crozier-Willi G., Kok F.J., Rice-EvansC., Roberfroid M., Stahl W., Vina-Ribes J.: Functional food scienceand defence against reactive oxidative species. Br. J. Nutr., 1998;80: S77–S112
Google Scholar - 31. Dolinoy D.C.: The agouti mouse model: an epigenetic biosensorfor nutritional and environmental alterations on the fetal epigenome.Nutr. Rev., 2008; 66: S7–S11
Google Scholar - 32. Duell E.J., Lujan-Barroso L., Llivina C., Muñoz X., Jenab M., Boutron-Ruault M.C., Clavel-Chapelon F., Racine A., Boeing H., BuijsseB., Canzian F., Johnson T., Dalgård C., Overvad K., Tjønneland A., etal.: Vitamin C transporter gene (SLC23A1 and SLC23A2) polymorphisms,plasma vitamin C levels, and gastric cancer risk in the EPICcohort. Genes Nutr., 2013; 8: 549–560
Google Scholar - 33. Eck P.: Nutrigenomics of vitamin C absorption and transport.Curr. Opin. Food Sci., 2018; 20: 100–104
Google Scholar - 34. El-Sohemy A.: Nutrigenetics. Forum Nutr., 2007; 60: 25–30
Google Scholar - 35. Erichsen H.C., Engel S.A., Eck P.K., Welch R., Yeager M., LevineM., Siega-Riz A.M., Olshan A.F., Chanock S.J.: Genetic variation in thesodium-dependent vitamin C transporters, SLC23A1, and SLC23A2and risk for preterm delivery. Am. J. Epidemiol., 2006; 163: 245–254
Google Scholar - 36. Erichsen H.C., Peters U., Eck P., Welch R., Schoen R.E., YeagerM., Levine M., Hayes R.B., Chanock S.: Genetic variation in sodium–dependent vitamin C transporters SLC23A1 and SLC23A2 and riskof advanced colorectal adenoma. Nutr. Cancer, 2008; 60: 652–659
Google Scholar - 37. Esteban M.A., Pei D.: Vitamin C improves the quality of somaticcell reprogramming. Nat. Genet., 2012; 44: 366–367
Google Scholar - 38. Fischer A.P., Miles S.L.: Ascorbic acid, but not dehydroascorbicacid increases intracellular vitamin C content to decrease hypoxiainducible factor-1 alpha activity and reduce malignant potentialin human melanoma. Biomed. Pharmacother., 2017; 86: 502–513
Google Scholar - 39. Foksinski M., Gackowski D., Rozalski R., Siomek A., Guz J., SzpilaA., Dziaman T., Olinski R.: Effects of basal level of antioxidants onoxidative DNA damage in humans. Eur. J. Nutr., 2007; 46: 174–180
Google Scholar - 40. Frei B., England L., Ames B.N.: Ascorbate is an outstanding antioxidantin human blood plasma. Proc. Natl. Acad. Sci. USA, 1989;86: 6377–6381
Google Scholar - 41. Genomes Project Consortium, Auton A., Brooks L.D., DurbinR.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthyS., McVean G.A., Abecasis G.R.: A global reference for human geneticvariation. Nature, 2015; 526: 68–74
Google Scholar - 42. Głowacki S., Błasiak J.: Role of 5-hydroxymethylcytosine andTET proteins in epigenetic regulation of gene expression. PostepyBiochem., 2013; 59: 64–69
Google Scholar - 43. Goel N., Karir P., Garg V.K.: Role of DNA methylation in humanage prediction. Mech. Ageing Dev., 2017; 166: 33–41
Google Scholar - 44. Grimaldi K.A., van Ommen B., Ordovas J.M., Parnell L.D., MathersJ.C., Bendik I., Brennan L., Celis-Morales C., Cirillo E., Daniel H., deKok B., El-Sohemy A., Fairweather-Tait S.J., Fallaize R., Fenech M., etal.: Proposed guidelines to evaluate scientific validity and evidencefor genotype-based dietary advice. Genes Nutr., 2017; 12: 35
Google Scholar - 45. Guz J., Gackowski D., Foksinski M., Rozalski R., Olinski R.: Comparisonof the absolute level of epigenetic marks 5-methylcytosine,5-hydroxymethylcytosine, and 5-hydroxymethyluracil between humanleukocytes and sperm. Biol. Reprod., 2014; 91: 55
Google Scholar - 46. Guz J., Oliński R.: The role of vitamin C in epigenetic regulation.Postępy Hig. Med. Dośw., 2017; 71: 747–760
Google Scholar - 47. Harrison F.E., May J.M.: Vitamin C function in the brain: vitalrole of the ascorbate transporter SVCT2. Free Radic. Biol. Med.,2009; 46: 719–730
Google Scholar - 48. Hood L., Rowen. L.: The Human Genome Project: big sciencetransforms biology and medicine. Genome Med., 2013; 5: 79
Google Scholar - 49. Hsu C.C., Kao W.L., Steffes M.W., Gambir T., Brancati F.L., HeiligC.W., Shuldiner A.R., Boerwinkle E.A., Coresh J.: Genetic variationof glucose transporter-1 (GLUT1) and albuminuria in 10,278 EuropeanAmericans and African Americans: a case-control study inthe Atherosclerosis Risk in Communities (ARIC) study. BMC Med.Genet., 2011; 12: 16
Google Scholar - 50. Janda K., Kasprzyk M., Wolska J.: Vitamin C – structure, properties,occurence and functions. Pomeranian J. Life Sci., 2015; 61: 419–425
Google Scholar - 51. Jang W., Kim H., Lee B.E., Chang N.: Maternal fruit and vegetableor vitamin C consumption during pregnancy is associated with fetalgrowth and infant growth up to 6 months: results from the KoreanMothers and Children’s Environmental Health (MOCEH) cohortstudy. Nutr. J., 2018; 17: 105
Google Scholar - 52. Jiang Y., Langley B., Lubin F.D., Renthal W., Wood M.A., YasuiD.H., Kumar A., Nestler E.J., Akbarian S., Beckel-Mitchener A.C.: Epigeneticsin the nervous system. J. Neurosci., 2008; 28: 11753–11759
Google Scholar - 53. Johnston C.S., Corte C.: People with marginal vitamin C statusare at high risk of developing vitamin C deficiency. J. Am. Diet. Assoc.,1999; 99: 854–856
Google Scholar - 54. Johnston C.S., Solomon R.E., Corte C.: Vitamin C depletion isassociated with alterations in blood histamine and plasma free carnitinein adults. J. Am. Coll. Nutr., 1996; 15: 586–591
Google Scholar - 55. Kakkoura M.G., Sokratous K., Demetriou C.A., Loizidou M.A., LoucaidesG., Kakouri E., Hadjisavvas A., Kyriacou K.: Mediterraneandiet-gene interactions: A targeted metabolomics study in Greek-Cypriotwomen. Mol. Nutr. Food Res., 2017; 61: 1600558
Google Scholar - 56. Kalmbach D.A., Schneider L.D., Cheung J., Bertrand S.J., KariharanT., Pack A.I., Gehrman P.R.: Genetic basis of chronotype in humans:Insights from three landmark GWAS. Sleep, 2017; 40: zsw048
Google Scholar - 57. Kapka-Skrzypczak L., Niedźwiecka J., Cyranka M., KruszewskiM.K., Skrzypczak M., Wojtyła A.: Nutrigenomics – perspectives ofpersonalized nutrition. Pediatr. Endocrinol. Diabetes Metab., 2011;17: 222–226
Google Scholar - 58. Kępka A., Chojnowska S., Okungbowa O.E., Zwierz K.: The role ofcarnitine in the perinatal period. Dev. Period. Med., 2014; 18: 417–425
Google Scholar - 59. Kim Y., Kim M.G.: HPLC-UV method for the simultaneous determinationsof ascorbic acid and dehydroascorbic acid in humanplasma. Transl. Clin. Pharmacol., 2016; 24: 37–42
Google Scholar - 60. Kinlay S., Behrendt D., Fang J.C., Delagrange D., Morrow J., WitztumJ.L., Rifai N., Selwyn A.P., Creager M.A., Ganz P.: Long-term effectof combined vitamins E and C on coronary and peripheral endothelialfunction. J. Am. Coll. Cardiol., 2004; 43: 629–634
Google Scholar - 61. Kohlmeier M., De Caterina R., Ferguson L.R., Görman U., AllayeeH., Prasad C., Kang J.X., Nicoletti C.F., Martinez J.A.: Guide and positionof the International Society of Nutrigenetics/Nutrigenomicson Personalized Nutrition: Part 2 – ethics, challenges and endeavorsof precision nutrition. J. Nutrigenet. Nutrigenomics, 2016; 9: 28–46
Google Scholar - 62. Konstantynowicz J., Porowski T., Zoch-Zwierz W., WasilewskaJ., Kadziela-Olech H., Kulak W., Owens S.C., Piotrowska-JastrzebskaJ., Kaczmarski M.: A potential pathogenic role of oxalate in autism.Eur. J. Paediatr. Neurol., 2012; 16: 485–491
Google Scholar - 63. Laukkanen O., Lindström J., Eriksson J., Valle T.T., Hämäläinen H.,Ilanne-Parikka P., Keinänen-Kiukaanniemi S., Tuomilehto J., UusitupaM., Laakso M., Finnish Diabetes Prevention Study: Polymorphismsin the SLC2A2 (GLUT2) gene are associated with the conversion fromimpaired glucose tolerance to type 2 diabetes: the Finnish DiabetesPrevention Study. Diabetes, 2005; 54: 2256–2260
Google Scholar - 64. Lee Chong T., Ahearn E.L., Cimmino L.: Reprogramming the epigenomewith vitamin C. Front. Cell. Dev. Biol., 2019; 7: 128
Google Scholar - 65. Lee J., Giordano S., Zhang J.: Autophagy, mitochondria and oxidativestress: Cross-talk and redox signalling. Biochem. J., 2012; 441: 523–540
Google Scholar - 66. Levine M.: New concepts in the biology and biochemistry ofascorbic acid. N. Engl. J. Med., 1986; 314: 892–902
Google Scholar - 67. Levine M., Padayatty S.J., Espey M.G.: Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries.Adv. Nutr., 2011; 2: 78–88
Google Scholar - 68. Lim D.J., Sharma Y., Thompson C.H.: Vitamin C and alcohol: acall to action. BMJNPH, 2018; 0: 1–6
Google Scholar - 69. Lindblad M., Tveden-Nyborg P., Lykkesfeldt J.: Regulation of vitaminC homeostasis during deficiency. Nutrients, 2013; 5: 2860–2879
Google Scholar - 70. Linster C.L., Van Schaftingen E.: Vitamin C. Biosynthesis, recyclingand degradation in mammals. FEBS J., 2007; 274: 1–22
Google Scholar - 71. Liu C., Zhong C., Chen R., Zhou X., Wu J., Han J., Li X., Zhang Y.,Gao Q., Xiao M., Hu X., Xiong G., Han W., Yang X., Hao L., et al.: Higherdietary vitamin C intake is associated with a lower risk of gestationaldiabetes mellitus: A longitudinal cohort study. Clin. Nutr., 2019 (in press)
Google Scholar - 72. Lykkesfeldt J., Loft S., Poulsen H.E.: Determination of ascorbicacid and dehydroascorbic acid in plasma by high-performance liquidchromatography with coulometric detection – are they reliablebiomarkers of oxidative stress? Anal. Biochem., 1995; 229: 329–335
Google Scholar - 73. Manning J., Mitchell B., Appadurai D.A., Shakya A., Pierce L.J.,Wang H., Nganga V., Swanson P.C., May J.M., Tantin D., SpangrudeG.J.: Vitamin C promotes maturation of T-cells. Antioxid. Redox Signal.,2013; 19: 2054–2067
Google Scholar - 74. Martin C.L., Sotres-Alvarez D., Siega-Riz A.M.: Maternal dietarypatterns during the second trimester are associated with pretermbirth. J. Nutr., 2015; 145: 1857–1864
Google Scholar - 75. Mashour S., Turner J.F.Jr., Merrell R.: Acute renal failure, oxalosis,and vitamin C supplementation: a case report and review of theliterature. Chest, 2000; 118: 561–563
Google Scholar - 76. McEvoy C.T., Milner K.F., Scherman A.J., Schilling D.G., Tiller C.J.,Vuylsteke B., Shorey-Kendrick L.E., Spindel E.R., Schuff R., MitchellJ., Peters D., Metz J., Haas D., Jackson K., Tepper R.S., et al.: VitaminC to decrease the effects of smoking in pregnancy on infant lungfunction (VCSIP): Rationale, design, and methods of a randomized,controlled trial of vitamin C supplementation in pregnancy for theprimary prevention of effects of in utero tobacco smoke exposureon infant lung function and respiratory health. Contemp. Clin.Trials, 2017; 58: 66–77
Google Scholar - 77. Meier S., Mattheisen M., Vassos E., Strohmaier J., Treutlein J., JosefF., Breuer R., Degenhardt F., Mühleisen T.W., Müller-Myhsok B., SteffensM., Schmael C., McMahon F.J., Bipolar Disorder Genome Study,Nöthen M.M., et al. Genome-wide significant association between a‘negative mood delusions’ dimension in bipolar disorder and geneticvariation on chromosome 3q26.1. Transl. Psychiatry, 2012; 2: e165
Google Scholar - 78. Meyer T.E., Boerwinkle E., Morrison A.C., Volcik K.A., SandersonM., Coker A.L., Pankow J.S., Folsom A.R.: Diabetes genes and prostatecancer in the atherosclerosis risk in communities study. CancerEpidemiol. Biomarkers Prev., 2010; 19: 558–565
Google Scholar - 79. Minegaki T., Kuwahara A., Yamamori M., Nakamura T., Okuno T.,Miki I., Omatsu H., Tamura T., Hirai M., Azuma T., Sakaeda T., NishiguchiK.: Genetic polymorphisms in SLC23A2 as predictive biomarkersof severe acute toxicities after treatment with a definitive 5-fluorouracil/cisplatin-based chemoradiotherapy in Japanese patients withesophageal squamous cell carcinoma. Int. J. Med. Sci., 2014; 11: 321–326
Google Scholar - 80. Nasr S.H., Kashtanova Y., Levchuk V., Markowitz G.S.: Secondaryoxalosis due to excess vitamin C intake. Kidney Int., 2006; 70: 1672
Google Scholar - 81. Niki E.: Interaction of ascorbate and alpha-tocopherol. Ann. N.Y. Acad. Sci., 1987; 498: 186–199
Google Scholar - 82. O’Neill C.M., Minihane A.M.: The impact of fatty acid desaturasegenotype on fatty acid status and cardiovascular health in adults.Proc. Nutr. Soc., 2017; 76: 64–75
Google Scholar - 83. Ostrowska J., Makieła M., Zwierz K.: Udział stresu oksydacyjnegow uszkodzeniach wątroby. Med. Sci. Rev. Hepatol., 2004; 4: 28–32
Google Scholar - 84. Padayatty S.J., Katz A., Wang Y., Eck P., Kwon O., Lee J.H., ChenS., Corpe C., Dutta A., Dutta S.K., Levine M.: Vitamin C as an antioxidant:evaluation of its role in disease prevention. J. Am. Coll. Nutr.,2003; 22: 18–35
Google Scholar - 85. Padayatty S.J., Levine M.: Vitamin C: the known and the unknownand Goldilocks. Oral Dis., 2016; 22: 463–493
Google Scholar - 86. Page T., Hodgkinson A.D., Ollerenshaw M., Hammonds J.C., DemaineA.G.: Glucose transporter polymorphisms are associated with clear-cell renal carcinoma. Cancer Genet. Cytogenet., 2005; 163: 151–155
Google Scholar - 87. Pajares M.A., Pérez-Sala D.: Mammalian sulfur amino acid metabolism:A nexus between redox regulation, nutrition, epigenetics,and detoxification. Antioxid. Redox Signal., 2018; 29: 408–452
Google Scholar - 88. Parry S., Strauss J.F.3rd: Premature rupture of the fetal membranes.N. Engl. J. Med,. 1998; 338: 663–670
Google Scholar - 89. Plasschaert R.N., Bartolomei M.S.: Genomic imprinting in development,growth, behavior and stem cells. Development, 2014;141: 1805–1813
Google Scholar - 90. Ramos-Lopez O., Milagro F.I., Allayee H., Chmurzynska A., ChoiM.S., Curi R., De Caterina R., Ferguson L.R., Goni L., Kang J.X., KohlmeierM., Marti A., Moreno L.A., Pérusse L., Prasad C., et al.: Guide forcurrent nutrigenetic, nutrigenomic, and nutriepigenetic approachesfor precision nutrition involving the prevention and managementof chronic diseases associated with obesity. J. Nutrigenet. Nutrigenomics,2017; 10: 43–62
Google Scholar - 91. Roehrl M.H., Croft W.J., Liao Q., Wang J.Y., Kradin R.L.: Hemorrhagicpulmonary oxalosis secondary to a noninvasive Aspergillusniger fungus ball. Virchows. Arch., 2007; 451: 1067–1073
Google Scholar - 92. Rumbold A., Ota E., Nagata C., Shahrook S., Crowther C.A.: VitaminC supplementation in pregnancy. Cochrane Database Syst. Rev.,2015; 2015: CD004072
Google Scholar - 93. Saito T., Ikeda M., Asai K., Shimizu W.: Crystalline cardiomyopathydue to secondary oxalosis after short-bowel syndrome and end–stage renal failure. Clin. Res. Cardiol., 2016; 105: 714–716
Google Scholar - 94. Savini I., Catani M.V., Arnone R., Rossi A., Frega G., Del PrincipeD., Avigliano L.: Translational control of the ascorbic acid transporterSVCT2 in human platelets. Free Radic. Biol. Med., 2007; 42: 608–616
Google Scholar - 95. Savini I., Rossi A., Pierro C., Avigliano L., Catani M.V.: SVCT1and SVCT2: key proteins for vitamin C uptake. Amino Acids, 2008;34: 347–355
Google Scholar - 96. Scott L.J., Mohlke K.L., Bonnycastle L.L., Willer C.J., Li Y., DurenW.L., Erdos M.R., Stringham H.M., Chines P.S., Jackson A.U., Prokunina-Olsson L., Ding C.J., Swift A.J., Narisu N., Hu T., et al.: A genome–wide association study of type 2 diabetes in Finns detects multiplesusceptibility variants. Science, 2007; 316: 1341–1345
Google Scholar - 97. Senthilkumari S., Talwar B., Dharmalingam K., Ravindran R.D.,Jayanthi R., Sundaresan P., Saravanan C., Young I.S., Dangour A.D.,Fletcher A.E.: Polymorphisms in sodium-dependent vitamin C transporter genes and plasma, aqueous humor and lens nucleus ascorbateconcentrations in an ascorbate depleted setting. Exp. Eye Res.,2014; 124: 24–30
Google Scholar - 98. Shaghaghi M.A., Kloss O., Eck P.: Genetic variation in humanvitamin C transporter genes in common complex diseases. Adv.Nutr., 2016; 7: 287–298
Google Scholar - 99. Shah K., Desilva S., Abbruscato T.: The role of glucose transportersin brain disease: diabetes and Alzheimer’s disease. Int. J. Mol.Sci., 2012; 13: 12629–12655
Google Scholar - 100. Shorey-Kendrick L.E., McEvoy C.T., Ferguson B., Burchard J.,Park B.S., Gao L., Vuylsteke B.H., Milner K.F., Morris C.D., SpindelE.R.: Vitamin C prevents offspring DNA methylation changes associatedwith maternal smoking in pregnancy. Am. J. Respir. Crit. CareMed., 2017; 196: 745–755
Google Scholar - 101. Siega-Riz A.M., Promislow J.H., Savitz D.A., Thorp J.M.Jr., McDonaldT.: Vitamin C intake and the risk of preterm delivery. Am. J.Obstet. Gynecol., 2003; 189: 519–525
Google Scholar - 102. Siomek A., Gackowski D., Szpila A., Brzóska K., Guz J., SochanowiczB., Kruszewski M.: Epigenetic modifications and NF-κB pathwayactivity in Cu,Zn-SOD-deficient mice. Mol. Cell. Biochem.,2014; 397: 187–194
Google Scholar - 103. Skibola C.F., Bracci P.M., Halperin E., Nieters A., Hubbard A.,Paynter R.A., Skibola D.R., Agana L., Becker N., Tressler P., ForrestM.S., Sankararaman S., Conde L., Holly E.A., Smith M.T.: Polymorphismsin the estrogen receptor 1 and vitamin C and matrix metalloproteinasegene families are associated with susceptibility tolymphoma. PLoS One, 2008; 3: e2816
Google Scholar - 104. Stepien K.M., Prinsloo P., Hitch T., McCulloch T.A., Sims R.: Acuterenal failure, microangiopathic haemolytic anemia, and secondaryoxalosis in a young female patient. Int. J. Nephrol., 2011; 2011: 679160
Google Scholar - 105. Subramanian V.S., Srinivasan P., Wildman A.J., Marchant J.S.,Said H.M.: Molecular mechanism(s) involved in differential expressionof vitamin C transporters along the intestinal tract. Am. J. Physiol.Gastrointest. Liver Physiol., 2017; 312: G340–G347
Google Scholar - 106. Tsukaguchi H., Tokui T., Mackenzie B., Berger U.V., Chen X.Z.,Wang Y., Brubaker R.F., Hediger M.A.: A family of mammalian Na+–dependent L-ascorbic acid transporters. Nature, 1999; 399: 70–75
Google Scholar - 107. Unic A., Nikolac Gabaj N., Miler M., Culej J., Lisac A., Horvat A.,Vrkic N.: Ascorbic acid – A black hole of urine chemistry screening.J. Clin. Lab. Anal., 2018; 32: e22390
Google Scholar - 108. Vazquez-Chantada M., Gonzalez-Lahera A., Martinez-Arranz I.,Garcia-Monzon C., Regueiro M.M., Garcia-Rodriguez J.L., SchlangenK.A., Mendibil I., Rodriguez-Ezpeleta N., Lozano J.J., Banasik K., Justesen J.M., Joergensen T., Witte D.R., Lauritzen T., et al.: Solute carrierfamily 2 member 1 is involved in the development of nonalcoholicfatty liver disease. Hepatology, 2013; 57: 505–514
Google Scholar - 109. Wade K.H., Forouhi N.G., Cook D.G., Johnson P., McConnachieA., Morris R.W., Rodriguez S., Ye Z., Ebrahim S., Padmanabhan S.,Watt G., Bruckdorfer K.R., Wareham N.J., Whincup P.H., Chanock S.,et al.: Variation in the SLC23A1 gene does not influence cardiometabolicoutcomes to the extent expected given its association withL-ascorbic acid. Am. J. Clin. Nutr., 2015; 101: 202–209
Google Scholar - 110. Wang T., Chen K., Zeng X., Yang J., Wu Y., Shi X., Qin B., ZengL., Esteban M.A., Pan G., Pei D.: The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependentmanner. Cell Stem Cell, 2011; 9: 575–857
Google Scholar - 111. Wideman G.L., Baird G.H., Bolding O.T.: Ascorbic acid deficiencyand premature rupture of fetal membranes. Am. J. Obstet Gynecol.,1964; 88: 592–595
Google Scholar - 112. Wilson J.X.: Regulation of vitamin C transport. Annu. Rev. Nutr.,2005; 25: 105–125
Google Scholar - 113. Wright M.E., Andreotti G., Lissowska J., Yeager M., ZatonskiW., Chanock S.J., Chow W.H., Hou L.: Genetic variation in sodium–dependent ascorbic acid transporters and risk of gastric cancer inPoland. Eur. J. Cancer, 2009; 45: 1824–1830
Google Scholar - 114. Yaich S., Chaabouni Y., Charfeddine K., Zaghdane S., Kharrat M.,Kammoun K., Makni S., Boudawara T., Hachicha J.: Secondary oxalosisdue to excess vitamin C intake: A cause of graft loss in a renaltransplant recipient. Saudi J. Kidney Dis. Transpl., 2014; 25: 113–116
Google Scholar - 115. Yin T., Li N.F., Heizhati M., Zhang J., Zhang J., Zhou L., ChangG.: Association of glucose transporter 4 genetic polymorphisms withobstructive sleep apnea syndrome in Han Chinese general population:a cross-section study. Lipids Health Dis., 2014; 13: 12
Google Scholar - 116. Zanon-Moreno V., Ciancotti-Olivares L., Asencio J., Sanz P., Ortega-Azorin C., Pinazo-Duran M.D., Corella D.: Association betweena SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucomain a Mediterranean population. Mol. Vis., 2011; 17: 2997–3004
Google Scholar - 117. Zhang H.M., Wakisaka N., Maeda O., Yamamoto T.: Vitamin Cinhibits the growth of a bacterial risk factor for gastric carcinoma:Helicobacter pylori. Cancer, 1997; 80: 1897–1903
Google Scholar