Wrażliwość wielolekoopornych szczepów Escherichia coli na ceftolozan z tazobaktamem i ceftazydym z awibaktamem – badanie in vitro
Patrycja Zalas-Więcek 1 , Eugenia Gospodarek-Komkowska 1Abstrakt
Aim: Escherichia coli is one of the Gram-negative bacteria, known to cause many nosocomial infections. Multi-drug (MDR) and extensively-drug resistant (XDR). E. coli are of particular note, due to significant limitations in antibiotic therapy. Ceftolozane-tazobactam and ceftazidime-avibactam are novel therapeutic options against Gram-negative bacteria; hence the aim of this study was to evaluate and compare the in vitro activity of ceftolozane-tazobactam and ceftazidime-avibactam against MDR and XDR clinical E. coli isolates. Material/Methods: The study included 100 non-replicate E. coli isolates derived from clinical samples of patients hospitalized in teaching hospitals. Bacteria were identified by applying mass spectrometry in the MALDI Biotyper system (Bruker). ESBL (blaCTX-M-1group, blaCTX-M-9group) and carbapenemase (blaKPC, blaVIM, blaNDM, blaOXA-48, blaOXA-181) genes were detected using the eazyplex® SuperBug CRE test, based on a loop-mediated isothermal amplification (LAMP). The in vitro susceptibility to ceftolozane-tazobactam and ceftazidime-avibactam was tested using validated MIC Test strips (Liofilchem). Results: All 84 extended-spectrum β-lactamase-producing (ESBL) E. coli isolates were susceptible to ceftazidime-avibactam and 83 to ceftolozane-tazobactam. Among 17 E. coli isolates with resistance to at least one of the carbapenems, three (17.6%) were susceptible to ceftolozane-tazobactam and ceftazidime-avibactam. All 14 blaVIM gene-positive E. coli isolates were resistant to both ceftolozane-tazobactam and ceftazidime-avibactam. Both antibiotics were active against blaCTX-M-9group and blaOXA-48 gene-positive E. coli isolates, but they were not active against blaCTX-M-1group and blaVIM gene-positive isolates. Conclusions: Ceftolozane-tazobactam and ceftazidime-avibactam are alternative, non-carbapenem therapeutic options for ESBL-positive E. coli strains, and they are promising in the treatment of carbapenem-resistant E. coli strains, but not for those carrying the metallo-β-lactamase enzymes. Both drug combinations have comparable activity against ESBL, however, lower MIC values were found for ceftazidime-avibactam.
Przypisy
- 1. Alatoom A., Elsayed H., Lawlor K., AbdelWareth L., El-Lababidi R.,Cardona L., Mooty M., Bonilla M.F., Nusair A., Mirza I.: Comparisonof antimicrobial activity between ceftolozane-tazobactam and ceftazidime-avibactam against multidrug-resistant isolates of Escherichiacoli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Int. J.Infect. Dis., 2017; 62: 39–43
Google Scholar - 2. Bouxom H., Fournier D., Bouiller K., Hocquet D., Bertrand X.:Which non-carbapenem antibiotics are active against extended–spectrum β-lactamase-producing Enterobacteriaceae? Int. J. Antimicrob.Agents, 2018; 52: 100–103
Google Scholar - 3. de Jonge B.L., Karlowsky J.A., Kazmierczak K.M., Biedenbach D.J,Sahm D.F., Nichols W.W.: In vitro susceptibility to ceftazidime-avibactamof carbapenem-nonsusceptible Enterobacteriaceae isolates collectedduring the INFORM global surveillance study (2012 to 2014).Antimicrob. Agents Chemother., 2016; 60: 3163–3169
Google Scholar - 4. Doi Y., Potoski B.A., Adams-Haduch J.M., Sidjabat H.E., PasculleA.W., Paterson D.L.: Simple disk-based method for detectionof Klebsiella pneumoniae carbapenemase-type beta-lactamase byuse of a boronic acid compound. J. Clin. Microbiol., 2008; 46:4083–4086
Google Scholar - 5. ECDC. Surveillance of antimicrobial resistance in Europe – Annualreport of the European Antimicrobial Resi-stance SurveillanceNetwork (EARS-Net) 2017
Google Scholar - 6. European Committee on Antimicrobial Susceptibility Testing Breakpointtables for interpretation of MICs and zone diameters Version9.0. 2019. http://eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf (15.05.2019)
Google Scholar - 7. Glupczynski Y., Huang T.D., Bouchahrouf W., Rezende de CastroR., Bauraing C., Gérard M., Verbruggen A.M., Deplano A., Denis O.,Bogaerts P.: Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals.Int. J. Antimicrob. Agents, 2012; 39: 168–172
Google Scholar - 8. Goodlet K.J., Nicolau D.P., Nailor M.D.: Ceftolozane/tazobactamand ceftazidime/avibactam for the treatment of complicated intra–abdominal infections. Ther. Clin. Risk. Manag., 2016; 12: 1811–1826
Google Scholar - 9. Grundmann H., Glasner C., Albiger B., Aanensen D.M., TomlinsonC.T., Andrasević A.T., Cantón R., Carmeli Y., Friedrich A.W., GiskeC.G., Glupczynski Y., Gniadkowski M., Livermore D.M., Nordmann P.,Poirel L., et al.: Occurrence of carbapenemase-producing Klebsiellapneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinationalstudy. Lancet Infect. Dis., 2017; 17: 153–163
Google Scholar - 10. Lee K., Lim Y.S., Yong D., Yum J.H., Chong Y.: Evaluation of theHodge test and the imipenem-EDTA double-disk synergy test for differentiatingmetallo-beta-lactamase producing isolates of Pseudomonasspp. and Acinetobacter spp. J. Clin. Microbiol., 2003; 41: 4623–4629
Google Scholar - 11. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., FalagasM.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-LiljequistB., Paterson D.L., Rice L.B., Stelling J., Struelens M.J., VatopoulosA., et al.: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interimstandard definitions for acquired resistance. Clin. Microbiol.Infect., 2012; 18: 268–281
Google Scholar - 12. Mokracka J., Oszyńska A., Kaznowski A.: Increased frequencyof integrons and β-lactamase-coding genes among extraintestinalEscherichia coli isolated with a 7-year interval. Antonie Van Leeuwenhoek,2017; 103: 163–174
Google Scholar - 13. Nordmann P., Poirel L., Dortet L.: Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg. Infect. Dis., 2012; 18:1503–1507
Google Scholar - 14. Ojdana D., Sacha P., Wieczorek P., Czaban S., Michalska A., JaworowskaJ., Jurczak A., Poniatowski B., Tryniszewska E.: The occurrenceof blaCTX-M, blaSHV, and blaTEM genes in extended spectrumβ-lactamase-positive strains of Klebsiella pneumoniae, Escherichia coliand Proteus mirabilis in Poland. Int. J. Antibiot., 2014; 2014: 935842
Google Scholar - 15. Pitout J.D., Laupland K.B.: Extended-spectrum beta-lactamase–producing Enterobacteriaceae: an emerging public-health concern.Lancet Infect. Dis., 2008; 8: 159–166
Google Scholar - 16. van Dijk K., Voets G.M., Scharringa J., Voskuil S., Fluit A.C., RottierW.C., Leverstein-Van Hall M.A., Cohen Stuart J.W.: A disc diffusionassay for detection of class A, B and OXA-48 carbapenemasesin Enterobacteriaceae using phenyl boronic acid, dipicolinic acid, andtemocillin. Clin. Microbiol. Infect., 2014; 20: 345–349
Google Scholar - 17. Vila J., Sáez-López E., Johnson J.R., Römling U., Dobrindt U., CantónR., Giske C.G., Naas T., Carattoli A., Martínez-Medina M., BoschJ., Retamar P., Rodríguez-Baño J., Baquero F., Soto S.M.: Escherichiacoli: an old friend with new tidings. FEMS Microbiol. Rev., 2016; 40:437–463
Google Scholar - 18. Zalas-Więcek P., Bogiel T., Wiśniewski K., Gospodarek-KomkowskaE.: Diversity of extended-spectrum beta-lactamase-producingEscherichia coli rods. Postępy Hig. Med. Dośw. 2017; 71: 214–219
Google Scholar