Wpływ procesów termicznych owoców i warzyw na ich indeks i ładunek glikemiczny

ORYGINALNY ARTYKUŁ

Wpływ procesów termicznych owoców i warzyw na ich indeks i ładunek glikemiczny

Danuta Górecka 1 , Patrycja Komolka 1 , Krzysztof Dziedzic 2 , Jarosław Walkowiak 3

1. Department of Gastronomy Science and Functional Foods, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
2. Institute of Plant-Derived Food Technology, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Poznań, Poland
3. Department of Pediatric Gastroenterology and Metabolic Diseases, Poznań, Poland

Opublikowany: 2020-06-26
DOI: 10.5604/01.3001.0014.2493
GICID: 01.3001.0014.2493
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2020; 74 : 205-212

 

Abstrakt

Aim: Diabetes is a metabolic disease caused, among others, by malnutrition. Therefore, more attention is paid to products containing carbohydrates, as they increase the blood glucose concentration. In order to prevent type 2 diabetes and obesity, it is recommended to consume food with a low glycaemic index (GI) and glycaemic load (GL). The GI value of foodstuffs is influenced by their composition, as well as physicochemical and biochemical changes occurring in raw materials during technological processes. The aim of the study was to determine the influence of technological processing on the glycaemic index and glycaemic load values of selected vegetables and fruit. Material/Methods: The research was conducted on cruciferous vegetables, carrots, potatoes and apples. The raw materials underwent pretreatment, which included washing, peeling, shredding and thermal processing. In order to determine the glycaemic index, clinical trials were conducted on 20 healthy people of both sexes, aged 20–60 years, normal weight (BMI 18–24.5). The content of dietary fibre and its fractions was also measured in the products. Results: The thermal treatment influenced the GI and GL values of the food products and content of dietary fibre. The highest GI and GL values were measured in the boiled and baked products, whereas the GI and GL values of the steamed foodstuffs were slightly lower. Conclusions: The results let us conclude that adequate handling of raw materials, i.e. appropriate thermal processing, may limit the development of type 2 diabetes. Diabetic patients are advised to use steaming as the preferable method of thermal processing of foodstuffs.

Przypisy

  • 1. Brand-Miller J., Atkinson F., Rowan A.: Effect of added carbohydrateson glycemic and insulin responses to children’s milk products. Nutrients,2013; 5: 23–31
    Google Scholar
  • 2. Brouwer-Brolsma E.M., Berendsen A.A., Sluik D., van de Wiel A.M.,Raben A., de Vries J.H., Brand-Miller J., Feskens E.J.: The glycaemic index–food-frequency questionnaire: Development and validation of a foodfrequency questionnaire designed to estimate the dietary intake ofglycaemic index and glycaemic load: An effort by the PREVIEW Consortium.Nutrients, 2018; 11: 13
    Google Scholar
  • 3. Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D.,Ohlrogge A.W., Malanda B.: IDF Diabetes Atlas: Global estimates of diabetesprevalence for 2017 and projections for 2045. Diabetes Res. Clin.Pract., 2018; 138: 271–281
    Google Scholar
  • 4. Czekajło A., Różańska D., Mandecka A., Konikowska K., Madalińska M.,Szuba A., Regulska-Ilow B.: Glycemic load and carbohydrates content inthe diets of cancer patients. Rocz. Panstw. Zakl. Hig., 2017; 68: 261–268
    Google Scholar
  • 5. Danaei G., Finucane M.M., Lu Y., Singh G.M., Cowan M.J., PaciorekC.J., Lin J.K., Farzadfar F., Khang Y.H., Stevens G.A., Rao M., Ali M.K., RileyL.M., Robinson C.A., Ezzati M.: National, regional, and global trends infasting plasma glucose and diabetes prevalence since 1980: systematicanalysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet, 2011; 378: 31–40
    Google Scholar
  • 6. Dhingra D., Michael M., Rajput H., Patil R.T.: Dietary fibre in foods:A review. J. Food Sci. Technol., 2012; 49: 255–266
    Google Scholar
  • 7. Dias-Martins A.M., Pessanha K.L., Pacheco S., Rodrigues J.A., CarvalhoC.W.: Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil:Food security, processing, health benefits and nutritional products.Food Res. Int., 2018; 109: 175–186
    Google Scholar
  • 8. Dolp R., Rehou S., Pinto R., Trister R., Jeschke M.G.: The effect of diabeteson burn patients: a retrospective cohort study. Crit. Care, 2019; 23: 28
    Google Scholar
  • 9. Ek K.L., Brand-Miller J., Copeland L.: Glycemic effect of potatoes.Food Chem., 2012; 133: 1230–1240
    Google Scholar
  • 10. Elleuch M., Bedigian D., Roiseux O., Besbes S., Blecker C., Attia H.:Dietary fibre and fibre-rich by-products of food processing: Characterisation,technological functionality and commercial applications:A review. Food Chem., 2011; 124: 411–421
    Google Scholar
  • 11. Englyst H.N., Kingman S.M., Cummings J.H.: Classification andmeasurement of nutritionally important starch fractions. Eur. J. Clin.Nutr., 1992; 46: S33–S50
    Google Scholar
  • 12. Fajkusova Z., Jadviscokova T., Pallayova M., Matuskova V., LuzaJ., Kuzmina G.: Glycaemic index of selected foodstuffs in healthypersons. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub.,2007; 151: 257–261
    Google Scholar
  • 13. Foster-Powell K., Holt S.H., Brand-Miller J.C.: International tableof glycemic index and glycemic load values: 2002. Am. J. Clin.Nutr., 2002; 76: 5–56
    Google Scholar
  • 14. Francis D.R., Bahado-Singh P.S., Smith A.M., Wheatley A.O., AsemotaH.N.: Glycemic index of some traditional fruits in Jamaica. Eur.J. Exp. Biol., 2018; 8: 15
    Google Scholar
  • 15. Fujii H., Iwase M., Ohkuma T., Ogata-Kaizu S., Ide H., Kikuchi Y.,Idewaki Y., Joudai T., Hirakawa Y., Uchida K., Sasaki S., NakamuraU., Kitazono T.: Impact of dietary fiber intake on glycemic control,cardiovascular risk factors and chronic kidney disease in Japanesepatients with type 2 diabetes mellitus: the Fukuoka Diabetes Registry.Nutr. J., 2013; 12: 159
    Google Scholar
  • 16. Gnagnarella P., Gandini S., La Vecchia C., Maisonneuve P.: Glycemicindex, glycemic load, and cancer risk: A meta-analysis. Am.J. Clin. Nutr., 2008; 87: 1793–1801
    Google Scholar
  • 17. Henry C.J., Lightowler H.J., Strik C.M., Storey M.: Glycaemic indexvalues for commercially available potatoes in Great Britain. Br.J. Nutr., 2005; 94: 917–921
    Google Scholar
  • 18. Hu J., Vecchia C.L., Gibbons L., Negri E., Mery L.: Nutrients andrisk of prostate cancer. Nutr. Cancer, 2010; 62: 710–718
    Google Scholar
  • 19. Huang M., Li J., Ha M.A., Riccardi G., Liu S.: A systematic reviewon the relations between pasta consumption and cardio-metabolicrisk factors. Nutr. Metab. Cardiovasc. Dis., 2017; 27: 939–948
    Google Scholar
  • 20. ISO 26642:2010: Food products – Determination of the glycaemicindex (GI) and recommendation for food classification
    Google Scholar
  • 21. Jenkins D.J., Kendall C.W., Augustin L.S., Franceschi S., Hamidi M.,Marchie A., Jenkins A.L., Axelsen M.: Glycemic index: overview of implicationsin health and disease. Am. J. Clin. Nutr., 2002; 76: 266S–273S
    Google Scholar
  • 22. Jenkins D.J., Wolever T.M., Taylor R.H., Barker H., Fielden H.,Baldwin J.M., Bowling A.C., Newman H.C., Jenkins A.L., Goff D.V.:Glycemic index of foods: A physiological basis for carbohydrateexchange. Am. J. Clin. Nutr., 1981; 34: 362–366
    Google Scholar
  • 23. Jin J.L., Cao Y.X., Wu L.G., You X.D., Guo Y.L., Wu N.Q., Zhu C.G., GaoY., Dong Q.T., Zhang H.W., Sun D., Liu G., Dong Q., Li J.J.: Triglycerideglucose index for predicting cardiovascular outcomes in patients withcoronary artery disease. J. Thorac. Dis., 2018; 10: 6137–6146
    Google Scholar
  • 24. Komolka P., Górecka D., Dziedzic K.: The effect of thermal processingof cruciferous vegetables on their content of dietary fiberand its fraction. Acta Sci. Pol. Technol. Aliment., 2012; 11: 347–354
    Google Scholar
  • 25. Kumar N., Puri N., Marotta F., Dhewa T., Calabrò S., Puniya M., CarterJ.: Diabesity: an epidemic with its causes, prevention and control withspecial focus on dietary regime. Funct. Foods Health Dis., 2017; 7: 1–16
    Google Scholar
  • 26. Lau E., Soong Y.Y., Zhou W., Henry J.: Can bread processing conditionsalter glycaemic response? Food Chem., 2015; 173: 250–256
    Google Scholar
  • 27. McCleary B.V., DeVries J.W., Rader J.I., Cohen G., Prosky L., MugfordD.C., Champ M., Okuma K.: Determination of total dietary fiber(CODEX definition) by enzymatic-gravimetric method and liquidchromatography: Collaborative study. J. AOAC Int., 2010; 93: 221–233
    Google Scholar
  • 28. McGee H.: On Food and Cooking. The Science and Lore of theKitchen. Scribner, New York 2004
    Google Scholar
  • 29. Morris K.L., Zemel M.B.: Glycemic index, cardiovascular disease,and obesity. Nutr. Rev., 1999; 57: 273–276
    Google Scholar
  • 30. Njoumi S., Amiot M.J., Rochette I., Bellagha S., Mouquet-RivierC.: Soaking and cooking modify the alpha-galacto-oligosaccharideand dietary fibre content in five Mediterranean legumes. Int. J. FoodSci. Nutr., 2019; 70: 551–561
    Google Scholar
  • 31. Ozyurt V.H., Ötles S.: Effect of food processing on the physicochemicalproperties of dietary fibre. Acta Sci. Pol. Technol. Aliment.,2016; 15: 233–245
    Google Scholar
  • 32. Premanath M., Gowdappa H.B., Mahesh M., Babu M.S.: A studyof glycemic index of ten Indian fruits by an alternate approach. E–Int. Sci. Res. J., 2011; 3: 11–18
    Google Scholar
  • 33. Punna R., Rao Paruchuri U.: Effect of maturity and processingon total, insoluble and soluble dietary fiber contents of Indian greenleafy vegetables. Int. J. Food Sci. Nutr., 2004; 55: 561–567
    Google Scholar
  • 34. Rodríguez R., Jiménez A., Fernández-Bolaños J., Guillén R., HerediaA.: Dietary fibre from vegetable products as source of functionalingredients. Trends Food Sci. Technol., 2006; 17: 3–15
    Google Scholar
  • 35. Sagum R., Arcot J.: Effect of domestic processing methods on thestarch, non-starch polysaccharides and in vitro starch and proteindigestibility of three varieties of rice with varying levels of amylose.Food Chem., 2000; 70: 107–111
    Google Scholar
  • 36. Schlesinger S., Chan D.S., Vingeliene S., Vieira A.R., Abar L.,Polemiti E., Stevens C.A., Greenwood D.C., Aune D., Norat T.: Carbohydrates,glycemic index, glycemic load, and breast cancer risk:A systematic review and dose-response meta-analysis of prospectivestudies. Nutr. Rev., 2017; 75: 420–441
    Google Scholar
  • 37. Soh N.L., Brand-Miller J.: The glycaemic index of potatoes: Theeffect of variety, cooking method and maturity. Eur. J. Clin. Nutr.,1999; 53: 249–254
    Google Scholar
  • 38. Tahvonen R., Hietanen R.M., Sihvonen J., Salminen E.: Influenceof different processing methods on the glycemic index of potato(Nicola). J. Food Compos. Anal., 2006; 19: 372–378
    Google Scholar
  • 39. Van Soest P.J., Robertson J.B., Lewis B.A.: Methods for dietaryfiber, neutral detergent fiber, and nonstarch polysaccharides in relationto animal nutrition. J. Dairy Sci., 1991; 74: 3583–3597
    Google Scholar
  • 40. Vega-López S., Venn B., Slavin J.L.: Relevance of the glycemicindex and glycemic load for body weight, diabetes, and cardiovasculardisease. Nutrients, 2018; 10: 1361
    Google Scholar
  • 41. Venn B.J., Green T.J.: Glycemic index and glycemic load: Measurementissues and their effect on diet-disease relationships. Eur. J.Clin. Nutr., 2007; 61: S122–S131
    Google Scholar
  • 42. Vidal A.C., Williams C.D., Allott E.H., Howard L.E., Grant D.J.,McPhail M., Sourbeer K.N., Hwa L.P., Boffetta P., Hoyo C., FreedlandS.J.: Carbohydrate intake, glycemic index and prostate cancer risk.Prostate, 2015; 75: 430–439
    Google Scholar
  • 43. Weickert M.O., Pfeiffer A.F.: Impact of dietary fiber consumptionon insulin resistance and the prevention of type 2 diabetes. J.Nutr., 2018; 148: 7–12
    Google Scholar
  • 44. Ye Y., Wu Y., Xu J., Ding K., Shan X., Xia D.: Association betweendietary carbohydrate intake, glycemic index and glycemic load, andrisk of gastric cancer. Eur. J. Nutr., 2017; 56: 1169–1177
    Google Scholar

Pełna treść artykułu

Skip to content