Koneksyna-43 w osteogenezie*

ARTYKUŁ PRZEGLĄDOWY

Koneksyna-43 w osteogenezie*

Krzysztof Łukowicz 1 , Karolina Fijał 1 , Aleksandra Nowak 1 , Anna M. Osyczka 1

1. Zakład Biologii i Obrazowania Komórki, Instytut Zoologii i Badań Biomedycznych, Wydział Biologii, Uniwersytet Jagielloński w Krakowie

Opublikowany: 2020-09-25
DOI: 10.5604/01.3001.0014.4153
GICID: 01.3001.0014.4153
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2020; 74 : 406-415

 

Abstrakt

Formowanie szkieletu oraz jego prawidłowe funkcjonowanie są możliwe dzięki wyspecjalizowanym komórkom tkanki kostnej: kościotwórczym osteoblastom, kościogubnym osteoklastom oraz osteocytom znajdującym się w jamkach kostnych. Połączenia szczelinowe są to transbłonowe kanały łączące sąsiadujące ze sobą komórki, dzięki którym możliwe jest bezpośrednie przekazywanie sygnałów przez komórki. Kanały typu szczelinowego, a konkretniej budujące je białka koneksynowe, wpływają głównie na proces obrotu kostnego, a zatem zarówno na budowę, jak i przebudowę kości. Szczególnie ważną koneksyną w tkance kostnej jest koneksyna-43 (Cx43), która jest niezbędna w prawidłowym przebiegu procesów kościotworzenia oraz w zachowaniu homeostazy kości. To jak ważna jest obecność Cx43 w kościach, pokazują defekty szkieletu w chorobach, takich jak dysplazja oczno-zębowo-palcowa (zespół ODD) czy dysplazja czaszkowo-trzonowa, wywołane mutacjami GJA1, genu kodującego Cx43. Wykazano również rolę Cx43 w różnicowaniu komórek macierzystych w komórki kostne, antyapoptycznym działaniu bisfosfonianów oraz odpowiedzi kości na bodźce hormonalne i mechaniczne. Poza koneksyną-43 w tkance kostnej stwierdzono również obecność innych koneksyn, takich jak: koneksyna-45, -46 oraz -37.

Przypisy

  • 1. Andrzejewska A., Lukomska B., Janowski M.: Concise review:Mesenchymal stem cells: From roots to boost. Stem Cells, 2019;37: 855–864
    Google Scholar
  • 2. Batra N., Kar R., Jiang J.X.: Gap junctions and hemichannels insignal transmission, function and development of bone. Biochim.Biophys. Acta, 2012; 1818: 1909–1918
    Google Scholar
  • 3. Bellido T., Plotkin L.I.: Novel actions of bisphosphonates inbone: preservation of osteoblast and osteocyte viability. Bone,2011; 49: 50–55
    Google Scholar
  • 4. Bivi N., PachecoCosta R., Brun L.R., Murphy T.R., Farlow, N.R.,Robling A.G., Bellido T., Plotkin L.I.: Absence of Cx43 selectivelyfrom osteocytes enhances responsiveness to mechanical force inmice. J. Orthop. Res., 2013; 31 1075–1081
    Google Scholar
  • 5. Bonewald L.F.: The role of the osteocyte in bone and non-bonedisease. Endocrinol. Metab. Clin. North Am., 2017; 46: 1–18
    Google Scholar
  • 6. Bonewald L.F.: The amazing osteocyte. J. Bone. Miner. Res.,2011; 26: 229–238
    Google Scholar
  • 7. Boyden L.M., Craiglow B.G., Zhou J., Hu R., Loring E.C., MorelK.D., Lauren C.T., Lifton R.P., Bilguvar K., Paller A.S., Choate K.A.:Dominant de novo mutations in GJA1 cause erythrokeratodermiavariabilis et progressiva, without features of oculodentodigitaldysplasia. J. Invest. Dermatol., 2015; 135: 1540–1547
    Google Scholar
  • 8. Briot K., Roux C.: Glucocorticoid-induced osteoporosis. RMDOpen, 2015: 1–8
    Google Scholar
  • 9. Brodzikowska A., Wojtowicz A., Galus R., Włodarski K.: Czynnikitranskrypcyjne w regulacji osteoblastogenezy i udział osteoblastóww regulacji osteoklastogenezy. Chir. Narzadow Ruchu Ortop. Pol.,2016; 81: 1–5
    Google Scholar
  • 10. Bruderer M., Richards R.G., Alini M., Stoddart M.J.: Role andregulation of RUNX2 in osteogenesis. Eur. Cell. Mater., 2014; 28:269–286
    Google Scholar
  • 11. Chaible L.M., Sanches D.S., Cogliati B., Mennecier G., Dagli M.L.:Delayed osteoblastic differentiation and bone development in Cx43knockout mice. Toxicol. Pathol., 2011; 39: 1046–1055
    Google Scholar
  • 12. Chen I.P., Wang, L., Jiang X., Aguila H.L., Reichenberger E.J.: APhe377del mutation in ANK leads to impaired osteoblastogenesisand osteoclastogenesis in a mouse model for craniometaphysealdysplasia (CMD). Hum. Mol. Genet., 2011; 20: 948–961
    Google Scholar
  • 13. Chen Y., Xu J., Liao H., Ma Z., Zhang Y., Chen H., Huang Z.,Hu J.: Prostaglandin E2 and Connexin 43 crosstalk in the osteogenesisinduced by extracorporeal shockwave. Med. Hypotheses,2016; 94: 123–125
    Google Scholar
  • 14. Chung D.J., Castro C. H., Watkins M., Stains J. P., Chung M.Y.,Szejnfeld V.L., Willecke K., Theis M., Civitelli R.: Low peak bonemass and attenuated anabolic response to parathyroid hormonein mice with an osteoblast-specific deletion of connexin 43. J. Cell.Sci., 2006, 119: 4187–4198
    Google Scholar
  • 15. Ellison D., Mugler A., Brennan M.D., Lee S.H., Huebner R.J.,Shamir E.R., Woo L.A., Kim J., Amar P., Nemenman I., Ewald A.J.,Levchenko A.: Cell-cell communication enhances the capacity ofcell ensembles to sense shallow gradients during morphogenesis.Proc. Natl. Acad. Sci. USA, 2016; 113: 679–688
    Google Scholar
  • 16. Fakhry M., Hamade E., Badran B., Buchet R., Magne D.: Molecularmechanisms of mesenchymal stem cell differentiation towardsosteoblasts. World J. Stem. Cells., 2013; 5: 136–148
    Google Scholar
  • 17. Florencio-Silva R., Sasso G.R., Sasso-Cerri E., Simões M.J., CerriP.S.: Biology of bone tissue: structure, function, and factors thatinfluence bone cells. Biomed. Res. Int., 2015; 2015: 421746
    Google Scholar
  • 18. Ghayor C., Rey A., Caverzasio J.: Prostaglandin-dependent activationof ERK mediates cell proliferation induced by transforminggrowth factor β in mouse osteoblastic cells. Bone, 2005; 36: 93–100
    Google Scholar
  • 19. Giaume J.A. Sáez J.C.: Role of connexinhemichannels in neurodegeneration.W: Neurodegenerative Diseases-Processes. IntechOpen, red.: Chuen-Chung Chang R. London 2011, 235–254
    Google Scholar
  • 20. Gradowski M., Jankiewicz U., Kowalczyk P.: Human diseasescaused by mutations in genes encoding connexin. Nowa Medycyna.2013; 4: 168–173
    Google Scholar
  • 21. Hu Y., Chen I.P., de Almeida S., Tiziani V., Do Amaral C.M.,Gowrishankar K., Passos-Bueno M.R., Reichenberger E.J.: A novelautosomal recessive GJA1 missense mutation linked to Craniometaphysealdysplasia. PLoS One, 2013; 8: e73576
    Google Scholar
  • 22. Ishikawa M., Williams G. L., Ikeuchi T., Sakai K., Fukumoto S.,Yamada, Y.: Pannexin 3 and connexin 43 modulate skeletal developmentthrough their distinct functions and expression patterns.J. Cell Sci., 2016; 129: 1018–1030
    Google Scholar
  • 23. Katoh M., Katoh M.: Molecular genetics and targeted therapyof WNT-related human diseases. Int. J. Mol. Med., 2017; 40: 587–606
    Google Scholar
  • 24. Kim J.H., Liu J.H., Wang J., Chen X., Zhang H., Kim S.H., Cui J.,Li R., Zhang W., Kong Y., Zhang J., Shui W., Lamplot J., Rogers M.R.,Zhao C. i wsp.: Wnt signaling in bone formation and its therapeuticpotential for bone diseases. Ther. Adv. Musculoskelet Dis.,2013; 5: 13–31
    Google Scholar
  • 25. Koziński K., Dobrzyń, A.: Szlak sygnałowy Wnt i jego rola wregulacji metabolizmu komórki. Postępy Hig. Med. Dośw., 2013;67: 1098–1108
    Google Scholar
  • 26. Kuo S.W., Rimando M.G., Liu Y.S., Lee O.K.: Intermittent administrationof parathyroid hormone 1-34 enhances osteogenesis ofhuman mesenchymal stem cells by regulating protein kinase Cδ.Int. J. Mol. Sci., 2017; 18: 2221
    Google Scholar
  • 27. Laird D.W.: Syndromic and non-syndromic disease-linked Cx43mutations. FEBS Lett., 2014; 588: 1339–1348
    Google Scholar
  • 28. Leithe E., Sirnes S., Fykerud T., Kjenseth A., Rivedal E.: Endocytosisand post-endocytic sorting of connexins. Biochim. Biophys.Acta, 2012; 1818: 1870–1879
    Google Scholar
  • 29. Lin F.X., Zheng G.Z., Chang B., Chen R.C., Zhang Q.H., Xie P., XieD., Yu G.Y., Hu Q.X., Liu D.Z., Du S.X., Li X.D.: Connexin 43 modulatesosteogenic differentiation of bone marrow stromal cells throughGSK-3beta/beta-catenin signaling pathways. Cell. Physiol. Biochem.,2018; 47: 161–175
    Google Scholar
  • 30. Lisowska B., Kosson D., Domaracka K.: Lights and shadows ofNSAIDs in bone healing: the role of prostaglandins in bone metabolism.Drug Des. Devel. Ther., 2018; 12: 1753–1758
    Google Scholar
  • 31. Liu W., Cui Y., Sun J., Cai L., Xie J.N., Zhou, X.: Transforminggrowth factor-β1 up-regulates connexin43 expression in osteocytesvia canonical Smad-dependent signaling pathway. Biosci.Rep., 2018; 38: BSR20181678
    Google Scholar
  • 32. Liu W., Zhang D., Li X., Zheng L., Cui C., Cui Y., Sun J., Xie J., ZhouX.: TGF-β1 facilitates cell-cell communication in osteocytes viaconnexin43-and pannexin1-dependent gap junctions. Cell DeathDiscov., 2019, 5: 141
    Google Scholar
  • 33. Lloyd S.A., Loiselle A.E., Zhang Y., Donahue H.J.: Shifting paradigmson the role of connexin43 in the skeletal response to mechanicalload. J. Bone Miner. Res., 2014; 29: 275–286
    Google Scholar
  • 34. Lohman A.W., Isakson B.E.: Differentiating connexin hemichannelsand pannexin channels in cellular ATP release. FEBS Lett.,2014; 588: 1379–1388
    Google Scholar
  • 35. Loiselle A.E., Jiang J.X., Donahue H.J.: Gap junction andhemichannel functions in osteocytes. Bone, 2013; 54: 205–212
    Google Scholar
  • 36. Loiselle A.E., Paul E.M., Lewis G.S., Donahue H.J.: Osteoblastand osteocyte‐specific loss of Connexin43 results in delayed boneformation and healing during murine fracture healing. J. Orthop.Res., 2013; 31: 147–154
    Google Scholar
  • 37. Long F.: Building strong bones: molecular regulation of theosteoblast lineage. Nat. Rev. Mol. Cell. Biol., 2012; 13: 27–38
    Google Scholar
  • 38. Martin K., Nathwani S., Bunyan R.: Craniometaphyseal dysplasia:A review and novel oral manifestation. J. Oral. Biol. Craniofac.Res., 2017; 2: 134–136
    Google Scholar
  • 39. Maxhimer J.B., Bradley J.P., Lee J.C.: Signaling pathways in osteogenesisand osteoclastogenesis: Lessons from cranial sutures andapplications to regenerative medicine. Genes Dis., 2015; 2: 57–68
    Google Scholar
  • 40. Moorer M.C., Stains J.P.: Connexin43 and the intercellular signalingnetwork regulating skeletal remodeling. Curr. Osteoporos.Rep., 2017; 15: 24–31
    Google Scholar
  • 41. Mu C., Lv T, Wang Z., Ma S., Ma J., Liu J., Yu J., Mu J.: Mechanicalstress stimulates the osteo/odontoblastic differentiation ofhuman stem cells from apical papilla via erk 1/2 and JNK MAPKpathways. Biomed. Res. Int., 2014; 2014: 494376
    Google Scholar
  • 42. Oshima A.: Structure and closure of connexin gap junctionchannels. FEBS Lett., 2014; 588: 1230–1237 43 Pace N.P., Benoit V., Agius D., Grima M.A., Parascandalo R.,Hilbert P., Borg I.: Two novel GJA1 variants in oculodentodigitaldysplasia. Mol. Genet. Genomic Med., 2019; 7: 882
    Google Scholar
  • 43. Calcif Tissue Int., 2014; 94: 55–67
    Google Scholar
  • 44. Pacheco-Costa R., Davis H.M., Sorenson C., Hon M.C., HassanI., Reginato R.D., Allen M.R.,, Bellido T., Plotkin L.I.: Defective cancellousbone structure and abnormal response to PTH in corticalbone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone,2015; 81: 632–643
    Google Scholar
  • 45. Pacheco-Costa R., Hassan I., Reginato R.D., Davis H.M., BruzzanitiA., Allen M.R., Plotkin L.I.: High bone mass in mice lackingCx37 because of defective osteoclast differentiation. J. Biol. Chem.,2014; 289: 8508–8520
    Google Scholar
  • 46. Pazianas M., van der Geest S., Miller P.: Bisphosphonates andbone quality. Bonekey Rep., 2014; 3: 529
    Google Scholar
  • 47. Plotkin L.I.: Connexin 43 hemichannels and intracellular signalingin bone cells. Front. Physiol., 2014, 5: 131
    Google Scholar
  • 48. Plotkin L.I., Laird D.W., Amedee J.: Role of connexins and pannexinsduring ontogeny, regeneration, and pathologies of bone.BMC Cell Biol., 2016; 17: 19
    Google Scholar
  • 49. Plotkin L.I., Manolagas S.C., Bellido T.: Transduction of cellsurvival signals by connexin-43 hemichannels. J. Biol. Chem., 2002;277: 8648–8657
    Google Scholar
  • 50. Plotkin L.I., Speacht T.L., Donahue H.J.: Cx43 and mechanotransductionin bone. Curr. Osteoporos. Rep., 2015; 13: 67–72
    Google Scholar
  • 51. Rahman M.S., Akhtar N., Jamil H.M., Banik R.S., AsaduzzamanS.M.: TGF-β/BMP signaling and other molecular events: regulationof osteoblastogenesis and bone formation. Bone Res., 2015; 3: 15005
    Google Scholar
  • 52. Ribeiro-Rodrigues T.M., Martins-Marques T., Morel S., KwakB.R., Girão H.: Role of connexin 43 in different forms of intercellularcommunication–gap junctions, extracellular vesicles and tunnellingnanotubes. J. Cell. Sci., 2017; 130: 3619–3630
    Google Scholar
  • 53. Rodríguez-Carballo E., Gámez B., Ventura, F.: p38 MAPK signalingin osteoblast differentiation. Front. Cell. Dev. Biol., 2016, 4: 40
    Google Scholar
  • 54. Rutkowski R., Kosztyła-Hojna B., Kańczuga-Koda L., SulkowskaM., Sulkowski S., Rutkowski K., Bronchoskopii S.P.: Struktura ifizjologiczna funkcja białek koneksynowychStructure and physiologicalfunctionof connexinproteins. Postępy Hig. Med. Dośw.,2008; 62: 632–641
    Google Scholar
  • 55. Sadr-Eshkevari P., Ashnagar S., Rashad A., Dietz M., JackowskiJ., Abdulazim A., Prochnow N.: Bisphosphonates and connexin 43: acritical review of evidence. Cell Commun. Adhes., 2014; 21: 241–247
    Google Scholar
  • 56. Savopoulos C., Dokos C., Kaiafa G., Hatzitolios A.: Adipogenesisand osteoblastogenesis: trans-differentiation in the pathophysiologyof bone disorders. Hippokratia, 2011; 15: 18–21
    Google Scholar
  • 57. Singh S., Qin C., Medarametla S., Hegde S.V.: Craniometaphysealdysplasia in a 14-month old: a case report and review of imagingdifferential diagnosis. Radiol. Case Rep., 2016; 11: 260–265
    Google Scholar
  • 58. Sinha K.M., Zhou X.: Genetic and molecular control of osterixin skeletal formation. J. Cell. Biochem., 2013; 114: 975–984
    Google Scholar
  • 59. Stains J.P., Civitelli R.: Connexins in the skeleton. Semin. Cell.Dev. Biol., 2016; 50: 31–39
    Google Scholar
  • 60. Stains J.P., Watkins M.P., Grimston S.K., Hebert C., Civitelli R.Molecular mechanisms of osteoblast/osteocyte regulation by connexin
    Google Scholar
  • 61. Ton Q.V., Iovine M.K.: Determining how defects in connexin43cause skeletal disease. Genesis, 2013; 51: 75–82
    Google Scholar
  • 62. Tu X., Rhee Y., Condon K., Bivi N., Allen M.R., Dwyer D., StolinaM., Turner C.H., Robling A.G., Plotkin L.I., Bellido T.: Sost downregulationand local Wnt signaling are required for the osteogenicresponse to mechanical loading. Bone, 2012; 50: 209–217
    Google Scholar
  • 63. Vazquez M., Evans B.A., Riccardi D., Evans S.L., Ralphs J.R.,Dillingham C.M., Mason D.J.: A new method to investigate howmechanical loading of osteocytes controls osteoblasts. Front. Endocrinol.,2014; 5: 208
    Google Scholar
  • 64. Verheule S., Kaese S.: Connexin diversity in the heart: insightsfrom transgenic mouse models. Front. Pharmacol., 2013; 4: 81
    Google Scholar
  • 65. Watkins M., Grimston S.K., Norris J.Y., Guillotin B., Shaw A.,Beniash E., Civitelli R.: Osteoblast connexin43 modulates skeletalarchitecture by regulating both arms of bone remodeling. Mol.Biol. Cell., 2011; 22: 1240–1251
    Google Scholar
  • 66. Wheater G., Elshahaly M., Tuck S.P., Datta H.K., van Laar J.M.:The clinical utility of bone marker measurements in osteoporosis.J. Transl. Med., 2013; 11: 201
    Google Scholar
  • 67. Witkowska-Zimny M., Wróbel E., Przybylski J.: Najważniejszeczynniki transkrypcyjne procesu osteoblastogenezy. Postępy Biol.Kom., 2009; 36: 695–705
    Google Scholar
  • 68. Wróbel E., Leszczynska J., Przybylski J.: Rola połączeń typuGap w komórkach tkanki kostnej. Postępy Biochem., 2011; 57: 4
    Google Scholar
  • 69. Wu J., Zhang W., Ran Q., Xiang Y., Zhong J.F., Li S.C., Li Z.: Thedifferentiation balance of bone marrow mesenchymal stem cellsis crucial to hematopoiesis. Stem Cells Int., 2018; 2018: 1540148
    Google Scholar
  • 70. Wu M., Chen G., Li Y.P.: TGF-β and BMP signaling in osteoblast,skeletal development, and bone formation, homeostasis and disease.Bone Res., 2016; 4: 16009
    Google Scholar
  • 71. Xu X.L., Gou W.L., Wang A.Y., Wang Y., Guo Q.Y., Lu Q., Lu S.B.,Peng J.: Basic research and clinical applications of bisphosphonatesin bone disease: what have we learned over the last 40 years? J.Transl. Med., 2013, 11: 303
    Google Scholar
  • 72. Zhang Y., Paul E.M., Sathyendra V., Davison A., Sharkey N.,Bronson S., Srinivasan S., Gross T.S., Donahue H.J.: Enhanced osteoclasticresorption and responsiveness to mechanical load in gapjunction deficient bone. PLoS One, 2011; 6: 23516
    Google Scholar
  • 73. Zhang Y.D., Zhao S.C., Zhu Z.S., Wang Y.F., Liu J.X., Zhang Z.C.,Xue F.: Cx43-and smad-mediated TGF-β/BMP signaling pathwaypromotes cartilage differentiation of bone marrow mesenchymalstem cells and inhibits osteoblast differentiation. Cell. Physiol.Biochem., 2017; 42: 1277–1293
    Google Scholar

Pełna treść artykułu

Skip to content