Ocena wpływu polimorfizmów PTGS1, PTGS2 i CYP2C9 na ból, skuteczność i bezpieczeństwo terapii NLPZ

ARTYKUŁ PRZEGLĄDOWY

Ocena wpływu polimorfizmów PTGS1, PTGS2 i CYP2C9 na ból, skuteczność i bezpieczeństwo terapii NLPZ

Miriam Dawidowicz 1 , Agnieszka Kula 1 , Paweł Świętochowski 2 , Zofia Ostrowska 1

1. Department of Medical and Molecular Biology, Medical University of Silesia in Zabrze, Poland
2. Individual Medical Practice

Opublikowany: 2020-11-27
DOI: 10.5604/01.3001.0014.5497
GICID: 01.3001.0014.5497
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2020; 74 : 504-516

 

Abstrakt

Cyclooxygenase 1 and 2 (COX-1, COX-2) are enzymes that catalyze the first reaction in the arachidonic acid pathway. COXs are the therapeutic target for non-steroidal anti-inflammatory drugs. Inhibition of COX enzymatic activity has an analgesic, anti-inflammatory and sometimes antiplatelet effect. Single-nucleotide polymorphisms (SNPs) within genes encoding COX-1 and COX-2 (PTGS1, PTGS2) influence the risk of pain and their intensity in some diseases. They also affect the effectiveness of NSAID therapy in rheumatoid diseases. Moreover, the relationship between certain polymorphisms of PTGS2 and a higher risk of migraine and the development of aspirin resistance in the prophylaxis of cardiovascular diseases was demonstrated. The isoform of cytochrome P450, CYP2C9 has a significant influence on the efficacy and safety of NSAID use. It is responsible for the metabolism and speed of removal of these drugs. The occurrence of some of its polymorphic forms is associated with a decrease in CYP2C9 enzymatic activity, leading to changes in the pharmacokinetics and pharmacodynamics of NSAIDs. The prolonged half-life and decrease in clearance of these drugs lead to serious side effects such as hepatotoxicity, nephrotoxicity, anaphylactic reactions, cardiovascular or gastrointestinal incidents. Studies on polymorphisms of cyclooxygenases and CYP2C9 may improve the safety and efficacy of NSAIDs therapy by adjusting the dose to individual polymorphic variants, as well as expanding knowledge about the pathomechanism of inflammatory diseases.

Przypisy

  • 1. Agúndez J.A., Blanca M., Cornejo-García J.A., García-MartínE.: Pharmacogenomics of cyclooxygenases. Pharmacogenomics,2015; 16: 501–522
    Google Scholar
  • 2. Anderson B.J.: Paracetamol (acetaminophen): Mechanisms ofaction. Paediatr. Anaesth., 2008; 18: 915–921
    Google Scholar
  • 3. Applebaum E., Nackley A.G., Bair E., Maixner W., Khan A.A.: Geneticvariants in cyclooxygenase-2 contribute to post-treatmentpain among endodontic patients. J. Endod., 2015; 41: 1214–1218
    Google Scholar
  • 4. Ayuso P., Plaza-Serón M.D., Blanca-López N., Doña I., CampoP., Canto G., Laguna J.J., Bartra J., Soriano-Gomis V., Blanca M.,Cornejo-García J.A., Perkins J.R.: Genetic variants in arachidonicacid pathway genes associated with NSAID-exacerbated respiratorydisease. Pharmacogenomics, 2015; 16: 825–839
    Google Scholar
  • 5. Beales I.: Recent advances in the management of peptic ulcerbleeding. F1000Re.s, 2017; 6: 1763
    Google Scholar
  • 6. Beales I.L.: Time to reappraise the therapeutic place of celecoxib.Ther. Adv. Chronic Dis., 2018; 9: 107–110
    Google Scholar
  • 7. Berinstein E., Levy A.: Recent developments and future directionsfor the use of pharmacogenomics in cardiovascular diseasetreatments. Expert Opin. Drug Metab. Toxicol., 2017; 13: 973–983
    Google Scholar
  • 8. Brooks J., Warburton R., Beales I.L.: Prevention of upper gastrointestinalhaemorrhage: Current controversies and clinical guidance.Ther. Adv. Chronic Dis., 2013; 4: 206–222
    Google Scholar
  • 9. Bruno A., Tacconelli S., Patrignani P.: Variability in the responseto non-steroidal anti-inflammatory drugs: Mechanisms and perspectives.Basic Clin. Pharmacol. Toxicol., 2014; 114: 56–63
    Google Scholar
  • 10. Burdan F., Chałas A., Szumiło J.: Cyklooksygenaza i prostanoidy– znaczenie biologiczne. Postępy Hig. Med. Dośw., 2006; 60: 129–141
    Google Scholar
  • 11. Cai H., Cai B., Sun L., Zhang H., Zhou S., Cao L., Guo H., Sun W.,Yan B., Davis S.M., Zhang Z., Liu X.: Association between PTGS1polymorphisms and functional outcomes in Chinese patients withstroke during aspirin therapy: Interaction with smoking. J. Neurol.Sci., 2017; 376: 211–215
    Google Scholar
  • 12. Cairns J.A.: The coxibs and traditional nonsteroidal anti-inflammatorydrugs: A current perspective on cardiovascular risks.Canadian J. Cardiol., 2007; 23: 125–131
    Google Scholar
  • 13. Cantaut-Belarif Y., Antri M., Pizzarelli R., Colasse S., Vaccari I.,Soares S., Renner M., Dallel R., Triller A., Bessis A.: Microglia controlthe glycinergic but not the GABAergic synapses via prostaglandinE2 in the spinal cord. J. Cell Biol., 2017; 216: 2979–2989
    Google Scholar
  • 14. Carbo M.J., Spoorenberg A., Maas F., Brouwer E., Bos R., BootsmaH., van der Veer E., Wink F., Arends S.: Ankylosing spondylitisdisease activity score is related to NSAID use, especially in patientstreated with TNF-α inhibitors. PLoS One, 2018; 13: e0196281
    Google Scholar
  • 15. Casado-Arroyo R., Bayrak F., Sarkozy A., Chierchia G.-B., de AsmundisC., Brugada P.: Role of ASA in the primary and secondaryprevention of cardiovascular events. Best Pract. Res. Clin. Gastroenterol.,2012; 26: 113–123
    Google Scholar
  • 16. Chandrasekharan N.V., Dai H., Roos K.L., Evanson N.K., TomsikJ., Elton T.S., Simmons D.L.: COX-3, a cyclooxygenase-1 variantinhibited by acetaminophen and other analgesic/antipyreticdrugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci.USA, 2002; 99: 13926–13931
    Google Scholar
  • 17. Chen L., Yang G., Grosser T.: Prostanoids and inflammatorypain. Prostaglandins Other Lipid Mediat., 2013; 104–105: 58–66
    Google Scholar
  • 18. Coma-Canella I., Velasc A.: Variability in individual responsivenessto aspirin: Clinical implications and treatment. Cardiovasc.Hematol. Disord. Drug Targets, 2007; 7: 274–287
    Google Scholar
  • 19. Cortes A., Maksymowych W.P., Wordsworth B.P., Inman R.D.,Danoy P., Rahman P., Stone M.A., Corr M., Gensler L.S., GladmanD., Morgan A., Marzo-Ortega H., Ward M.M., SPARCC (SpondyloarthritisResearch Consortium of Canada), TASC (Australo-Anglo-American Spondyloarthritis Consortium) i wsp.: Association studyof genes related to bone formation and resorption and the extentof radiographic change in ankylosing spondylitis. Ann. Rheum.Dis., 2015; 74: 1387–1393
    Google Scholar
  • 20. Crofford L.J.: Use of NSAIDs in treating patients with arthritis.Arthritis Res. Ther., 2013; 15: S2
    Google Scholar
  • 21. Dasdemir S., Cetinkaya Y., Gencer M., Ozkok E., Aydin M.,Cakmakoglu B.: Cox-2 gene variants in migraine. Gene, 2013; 518:292–295
    Google Scholar
  • 22. Derry S., Moore R.A., Gaskell H., McIntyre M., Wiffen P.J.: TopicalNSAIDs for acute musculoskeletal pain in adults. Cochrane DatabaseSyst. Rev., 2015; 2015: CD007402
    Google Scholar
  • 23. Derry S., Wiffen P.J., Moore R.A., McNicol E.D., Bell R.F., CarrD.B., McIntyre M., Wee B.: Oral nonsteroidal anti-inflammatorydrugs (NSAIDs) for cancer pain in adults. Cochrane Database Syst.Rev., 2017; 2017: CD012638
    Google Scholar
  • 24. Doña I., Blanca-López N., Torres M.J., García-Campos J., García-Núñez I., Gómez F., Salas M., Rondón C., Canto M.G., Blanca M.: Drughypersensitivity reactions: Response patterns, drug involved, andtemporal variations in a large series of patients. J. Investig. Allergol.Clin. Immunol., 2012; 22: 363–371
    Google Scholar
  • 25. England S., Bevan S., Docherty R.J.: PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal rootganglion neurones via the cyclic AMP-protein kinase A cascade. J.Physiol., 1996; 495: 429–440
    Google Scholar
  • 26. Fillingim R.B.: Individual differences in pain: Understandingthe mosaic that makes pain personal. Pain, 2017; 158: S11–S18
    Google Scholar
  • 27. Fu J., Li Z., Li N.: The association between COX-2 gene rs5275polymorphism and Nasopharyngeal carcinoma risk. Pathol. Res.Pract., 2018; 214: 1579–1582
    Google Scholar
  • 28. GeneCards. PTGS2 Gene(Protein Coding) Prostaglandin-EndoperoxideSynthase 2. https://www.genecards.org/cgi-bin/carddisp.pl?gene=PTGS2 (03.01.2018)
    Google Scholar
  • 29. Goodman T., Ferro A., Sharma P.: Pharmacogenetics of aspirinresistance: A comprehensive systematic review. Br. J. Clin. Pharmacol.,2008; 66: 222–232
    Google Scholar
  • 30. Graham G.G., Scott K.F.: Mechanism of action of paracetamol.Am. J. Ther., 2005; 12: 46–55
    Google Scholar
  • 31. Grosser T., Theken K.N., FitzGerald G.A.: Cyclooxygenase inhibition:Pain, inflammation, and the cardiovascular system. Clin.Pharmacol. Ther., 2017; 102: 611–622
    Google Scholar
  • 32. Hahn T., Heinzel S., Plichta M.M., Reif A., Lesch K.P., FallgatterA.J.: Neurovascular coupling in the human visual cortex is modulatedby cyclooxygenase-1 (COX-1) gene variant. Cereb Cortex,2011; 21: 1659–1666
    Google Scholar
  • 33. Harvey R.J., Depner U.B., Wässle H., Ahmadi S., Heindl C., ReinoldH., Smart T.G., Harvey K., Schütz B., Abo-Salem O.M., ZimmerA., Poisbeau P., Welzl H., Wolfer D.P., Betz H.: GlyR α3: An essentialtarget for spinal PGE2-mediated inflammatory pain sensitization.Science, 2004; 304: 884–887
    Google Scholar
  • 34. Helmersson J., Arnlöv J., Axelsson T., Basu S.: A polymorphismin the cyclooxygenase 1 gene is associated with decreased inflammatoryprostaglandin F2α formation and lower risk of cardiovasculardisease. Prostaglandins Leukot. Essent. Fatty Acids, 2009;80: 51–56
    Google Scholar
  • 35. Hingtgen C.M., Vasko M.R.: Prostacyclin enhances the evokedreleaseof substance P and calcitonin gene-related peptide fromrat sensory neurons. Brain Res., 1994; 655: 51–60
    Google Scholar
  • 36. Hu H.M., Kuo C.H., Lee C.H., Wu I.C., Lee K.W., Lee J.M., GoanY.G., Chou S.H., Kao E.L., Wu M.T., Wu D.C.: Polymorphism in COX-2modifies the inverse association between Helicobacter pylori seropositivityand esophageal squamous cell carcinoma risk in Taiwan:A case control study. BMC Gastroenterol., 2009; 9: 37
    Google Scholar
  • 37. Hurst E.A., Pang L.Y., Argyle D.J.: The selective cyclooxygenase- 2 inhibitor mavacoxib (Trocoxil) exerts anti-tumour effectsin vitro independent of cyclooxygenase-2 expression levels. Vet.Comp. Oncol., 2019;17: 194–207
    Google Scholar
  • 38. Iskander A., Gan T.J.: Novel analgesics in ambulatory surgicalpatients. Curr. Opin. Anaesthesiol., 2018; 31: 685–692
    Google Scholar
  • 39. Jaja C., Bowman L., Wells L., Patel N., Xu H., Lyon M., KutlarA.: Preemptive genotyping of CYP2C8 and CYP2C9 allelic variantsinvolved in NSAIDs metabolism for sickle cell disease pain management.Clin. Transl. Sci., 2015; 8: 272–280
    Google Scholar
  • 40. Jaja C., Patel N., Scott S.A., Gibson R., Kutlar A.: CYP2C9 allelicvariants and frequencies in a pediatric sickle cell disease cohort:Implications for NSAIDs pharmacotherapy. Clin. Transl. Sci., 2014;7: 396–401
    Google Scholar
  • 41. Jurado-Escobar R., Doña I., Perkins J.R., Bogas G., Pérez-sanchezN., Bartra J., Isidoro-García M., Torres Jaén M.J., Mayorga C., Cornejo-Garcia J.A.: Association of single nucleotide polymorphismsin PTGS1 and PTGS2 with aspirin-induced urticaria/angioedema.J. Allergy Clin. Immunol., 2019; 143: AB67
    Google Scholar
  • 42. Kawabata A.: Prostaglandin E2 and pain – an update. Biol.Pharm. Bull., 2011; 34: 1170–1173
    Google Scholar
  • 43. Khan A., Khan S., Kim Y.S.: Insight into pain modulation: Nociceptorssensitization and therapeutic targets. Curr. Drug Targets,2019; 20: 775–788
    Google Scholar
  • 44. Kielbasa W., Helton D.L.: A new era for migraine: Pharmacokineticand pharmacodynamic insights into monoclonal antibodieswith a focus on galcanezumab, an anti-CGRP antibody. Cephalalgia,2019; 39: 1284–1297
    Google Scholar
  • 45. Kim S.H., Kim D.H., Byeon J.Y., Kim Y.H., Kim D.H., Lim H.J., Lee C.M., Whang S.S., Choi C.I., Bae J.W., Lee Y.J., Jang C.G., Lee S.Y.: Effects of CYP2C9 genetic polymorphisms on the pharmacokinetics of celecoxib and its carboxylic acid metabolite. Arch. Pharm. Res., 2017; 40: 382–390
    Google Scholar
  • 46. Kirchheiner J., Meineke I., Freytag G., Meisel C., Roots I., Brockmöller J.: Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin. Pharmacol. Ther., 2002; 72: 62–75
    Google Scholar
  • 47. Kirchheiner J., Störmer E., Meisel C., Steinbach N., Roots I., Brockmöller J.: Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics, 2003; 13: 473–480
    Google Scholar
  • 48. Kohno T., Wang H., Amaya F., Brenner G.J., Cheng J.K., Ji R.R., Woolf C.J.: Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity. J. Neurosci., 2008; 28: 4533–4540
    Google Scholar
  • 49. Lee H.I., Bae J.W., Choi C.I., Lee Y.J., Byeon J.Y., Jang C.G., Lee S.Y.: Strongly increased exposure of meloxicam in CYP2C9*3/*3 individuals. Pharmacogenet. Genomics, 2014; 24: 113–117
    Google Scholar
  • 50. Lee J.J., Simmons D.L.: Antipyretic therapy: Clinical pharmacology.Handb. Clin. Neurol., 2018; 157: 869–881
    Google Scholar
  • 51. Lee K.H., Kim H.S., El-Sohemy A., Cornelis M.C., Uhm W.S.,Bae S.C.: Cyclooxygenase-2 genotype and rheumatoid arthritis. J.Rheumatol., 2006; 33: 1231–1234
    Google Scholar
  • 52. Lee S.J., Park M.K., Shin D.S., Chun M.H.: Variability of thedrug response to nonsteroidal anti-inflammatory drugs accordingto cyclooxygenase-2 genetic polymorphism. Drug Des. Devel. Ther.,2017; 11: 2727–2736
    Google Scholar
  • 53. Lee Y.S., Kim H., Wu T.X., Wang X.M., Dionne R.A.: Geneticallymediated interindividual variation in analgesic responses to cyclooxygenaseinhibitory drugs. Clin. Pharmacol. Ther., 2006; 79: 407–418
    Google Scholar
  • 54. Levinson S.R., Luo S., Henry M.A.: The role of sodium channelsin chronic pain. Muscle Nerve, 2012; 46: 155–165
    Google Scholar
  • 55. Li X.L., Cao J., Fan L., Wang Q., Ye L., Cui C.P., Wang Y.Z., Liu L., LiB., Wu R.J., Zhou F.C., Zhang J.H.: Genetic polymorphisms of HO-1 andCOX-1 are associated with aspirin resistance defined by light transmittanceaggregation in Chinese Han patients. Clin. Appl. Thromb.Hemost., 2013; 19: 513–521
    Google Scholar
  • 56. Liu R., Gong C., Tao L., Yang W., Zheng X., Ma P., Ding L.: Influenceof genetic polymorphisms on the pharmacokinetics of celecoxib andits two main metabolites in healthy Chinese subjects. Eur. J. Pharm.Sci., 2015; 79: 13–19
    Google Scholar
  • 57. Loke W.M., Sing K.L., Lee C.Y., Chong W.L., Chew S.E., Huang H.,Looi W.F., Quek A.M., Lim E.C., Seet R.C.: Cyclooxygenase-1 mediatedplatelet reactivity in young male smokers. Clin. Appl. Thromb.Hemost., 2014; 20: 371–377
    Google Scholar
  • 58. Luo D., Long Y., Chen G.J.: Cyclooxygenase-2 gene polymorphismsand risk of Alzheimer’s disease: A meta-analysis. J. Neurol.Sci., 2015; 359: 100–105
    Google Scholar
  • 59. Łabuz-Roszak B., Pierzchała K., Tyrpień K.: Resistance to acetylsalicylicacid in patients with type 2 diabetes mellitus is associatedwith lipid disorders and history of current smoking. J. Endocrinol.Invest., 2014; 37: 331–338
    Google Scholar
  • 60. Ma W., St-Jacques B., Rudakou U., Kim Y.N.: Stimulating TRPV1externalization and synthesis in dorsal root ganglion neurons contributesto PGE2 potentiation of TRPV1 activity and nociceptor sensitization.Eur. J. Pain, 2017; 21: 575–593
    Google Scholar
  • 61. Mantyh P.: Bone cancer pain: Causes, consequences, and therapeuticopportunities. Pain, 2013; 154: S54–S62
    Google Scholar
  • 62. Maree A.O., Curtin R.J., Chubb A., Dolan C., Cox D., O’Brien J.,Crean P., Shields D.C., Fitzgerald D.J.: Cyclooxygenase-1 haplotypemodulates platelet response to aspirin. J. Thromb. Haemost., 2005;3: 2340–2345
    Google Scholar
  • 63. Martínez C., Blanco G., Ladero J.M., García-Martín E., TaxoneraC., Gamito F.G., Diaz-Rubio M., Agúndez J.A.: Genetic predispositionto acute gastrointestinal bleeding after NSAIDs use. Br. J. Pharmacol.,2004; 141: 205–208
    Google Scholar
  • 64. Mathivanan S., Devesa I., Changeux J.P., Ferrer-Montiel A.:Bradykinin induces TRPV1 exocytotic recruitment in peptidergicnociceptors. Front. Pharmacol., 2016; 7: 178
    Google Scholar
  • 65. Moore A.E., Young L.E., Dixon D.A.: A common single-nucleotidepolymorphism in cyclooxygenase-2 disrupts microRNA-mediatedregulation. Oncogene, 2012; 31: 1592–1598
    Google Scholar
  • 66. Moriyama T., Higashi T., Togashi K., Iida T., Segi E., SugimotoY., Tominaga T., Narumiya S., Tominaga M.: Sensitization of TRPV1by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins.Mol. Pain, 2005; 1: 3
    Google Scholar
  • 67. Moskowitz M.A.: The neurobiology of vascular head pain. Ann.Neurol., 1984; 16: 157–168
    Google Scholar
  • 68. Mozaffari E., Doosti A., Arshi A., Faghani M.: Association ofCOX-2 promoter polymorphisms –765G/C and –1195A/G with migraine.Iran J. Public Health, 2016; 45: 1625–1635
    Google Scholar
  • 69. Nagao M., Sato Y., Yamauchi A.: A meta-analysis of PTGS1 andPTGS2 polymorphisms and NSAID intake on the risk of developingcancer. PLoS One, 2013; 8: e71126
    Google Scholar
  • 70. Nishihara I., Minami T., Watanabe Y., Ito S., Hayaishi O.: ProstaglandinE2 stimulates glutamate release from synaptosomes ofrat spinal cord. Neurosci. Lett., 1995; 196: 57–60
    Google Scholar
  • 71. Niu W., Qi Y., Wu Z., Liu Y., Zhu D., Jin W.: A meta-analysis ofreceptor for advanced glycation end products gene: Four wellevaluatedpolymorphisms with diabetes mellitus. Mol. Cell Endocrinol.,2012; 358: 9–17
    Google Scholar
  • 72. Ochoa D., Prieto-Pérez R., Román M., Talegón M., Rivas A.,Galicia I., Abad-Santos F., Cabaleiro T.: Effect of gender and CYP2C9and CYP2C8 polymorphisms on the pharmacokinetics of ibuprofenenantiomers. Pharmacogenomics, 2015; 16: 939–948
    Google Scholar
  • 73. Pelletier J.P., Martel-Pelletier J., Rannou F., Cooper C.: Efficacyand safety of oral NSAIDs and analgesics in the management ofosteoarthritis: Evidence from real-life setting trials and surveys.Semin. Arthritis Rheum., 2016; 45: S22–S27
    Google Scholar
  • 74. Pergolizzi J.V.,Jr. Raffa R.B., Nalamachu S., Taylor R.Jr.: Evolutionto low-dose NSAID therapy. Pain Manag., 2016; 6: 175–189
    Google Scholar
  • 75. Pergolizzi J.V.Jr., Taylor R.Jr., Raffa R.B.: Intranasal ketorolac aspart of a multimodal approach to postoperative pain. Pain Pract.,2015; 15: 378–388
    Google Scholar
  • 76. Pietras T., Szemraj J., Panek M., Witusik A., Banasiak M., AntczakA., Górski P.: Functional polymorphism of cyclooxygenase-2gene (G-765C) in chronic obstructive pulmonary disease patients.Mol. Biol. Rep., 2012; 39: 2163–2167
    Google Scholar
  • 77. Pilotto A., Seripa D., Franceschi M., Scarcelli C., Colaizzo D.,Grandone E., Niro V., Andriulli A., Leandro G., Di Mario F., DallapiccolaB.: Genetic susceptibility to nonsteroidal anti-inflammatorydrug-related gastroduodenal bleeding: Role of cytochrome P4502C9 polymorphisms. Gastroenterology, 2007; 133: 465–471
    Google Scholar
  • 78. Pinho-Ribeiro F.A., Verri W.A.Jr., Chiu I.M.: Nociceptor sensoryneuron-immune interactions in pain and inflammation. TrendsImmunol., 2017; 38: 5–19
    Google Scholar
  • 79. Prieto-Pérez R., Ochoa D., Cabaleiro T., Román M., Sánchez-Rojas S.D., Talegón M., Abad-Santos F.: Evaluation of the relationshipbetween polymorphisms in CYP2C8 and CYP2C9 and the pharmacokineticsof celecoxib. J. Clin. Pharmacol., 2013; 53: 1261–1267
    Google Scholar
  • 80. Qandil A.M.: Prodrugs of nonsteroidal anti-inflammatory drugs(NSAIDs), more than meets the eye: A critical review. Int. J. Mol.Sci., 2012; 13: 17244–17274
    Google Scholar
  • 81. Rodrigues A.D.: Integrated cytochrome P450 reaction phenotyping:Attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem.Pharmacol., 1999; 57: 465–480
    Google Scholar
  • 82. Sachs D., Villarreal C.F., Cunha F.Q., Parada C.A., Ferreira S.H.:The role of PKA and PKCε pathways in prostaglandin E2-mediatedhypernociception. Br. J. Pharmacol., 2009; 156: 826–834
    Google Scholar
  • 83. Samad T.A., Moore K.A., Sapirstein A., Billet S., Allchorne A.,Poole S., Bonventre J.V., Woolf C.J.: Interleukin-1β-mediated inductionof Cox-2 in the CNS contributes to inflammatory pain hypersensitivity.Nature, 2001; 410: 471–475
    Google Scholar
  • 84. Sandor P.S., Gantenbein A.R.: Migräneprophylaxe 2019 – dieRolle der CGRP Antagonisten. Ther. Umsch., 2018; 75: 455–457
    Google Scholar
  • 85. Schuh C.D., Brenneis C., Zhang D.D., Angioni C., SchreiberY., Ferreiros-Bouzas N., Pierre S., Henke M., Linke B., Nüsing R.,Scholich K., Geisslinger G.: Prostacyclin regulates spinal nociceptiveprocessing through cyclic adenosine monophosphate-inducedtranslocation of glutamate receptors. Anesthesiology, 2014; 120:447–458
    Google Scholar
  • 86. Sneader W.: The discovery of aspirin: A reappraisal. BMJ, 2000;321: 1591–1594
    Google Scholar
  • 87. SNPedia. rs1057910. https://www.snpedia.com/index.php/Rs1057910 (28.08.2018)
    Google Scholar
  • 88. SNPedia. rs1799853. https://www.snpedia.com/index.php/Rs1799853 (14.09.2018)
    Google Scholar
  • 89. Theken K.N.: Variability in analgesic response to non-steroidalanti-inflammatory drugs. Prostaglandins Other Lipid Mediat,2018; 139: 63–70
    Google Scholar
  • 90. Theken K.N., Hersh E.V., Lahens N.F., Lee H.M., Li X., GranquistE.J., Giannakopoulos H.E., Levin L.M., Secreto S.A., Grant G.R.,Detre J.A., FitzGerald G.A., Grosser T., Farrar J.T.: Variability inthe analgesic response to ibuprofen is associated with cyclooxygenaseactivation in inflammatory pain. Clin. Pharmacol. Ther.,2019; 106: 632–641
    Google Scholar
  • 91. van Booven D., Marsh S., McLeod H., Carrillo M.W., SangkuhlK., Klein T.E., Altman R.B.: Cytochrome P450 2C9-CYP2C9. Pharmacogenet.Genomics, 2010; 20: 277-281
    Google Scholar
  • 92. Vardeh D., Mannion R.J., Woolf C.J.: Toward a mechanism-basedapproach to pain diagnosis. J. Pain, 2016; 17: T50–T69
    Google Scholar
  • 93. Vardeh D., Wang D., Costigan M., Lazarus M., Saper C.B., WoolfC.J., FitzGerald G.A., Samad T.A.: COX2 in CNS neural cells mediatesmechanical inflammatory pain hypersensitivity in mice. J. Clin.Invest., 2009; 119: 287–294
    Google Scholar
  • 94. Wang C., Gu Y., Li G.W., Huang L.Y.: A critical role of the cAMPsensor Epac in switching protein kinase signalling in prostaglandinE2-induced potentiation of P2X3 receptor currents in inflamedrats. J. Physiol., 2007; 584: 191–203
    Google Scholar
  • 95. Wang H., Ehnert C., Brenner G.J., Woolf C.J.: Bradykinin andperipheral sensitization. Biol. Chem., 2006; 387: 11–14
    Google Scholar
  • 96. Wang H., Sun L., Jiang M., Liu L., Wang G.: -1195 A/G promotervariants of the cyclooxygenase-2 gene increases the risk of painoccurrence in endometriotic women. Clin. Exp. Obstet Gynecol.,2016; 43: 254–257
    Google Scholar
  • 97. Wang L., Bao S.H., Pan P.P., Xia M.M., Chen M.C., Liang B.Q.,Dai D.P., Cai J.P., Hu G.X. .: Effect of CYP2C9 genetic polymorphismon the metabolism of flurbiprofen in vitro. Drug Dev. Ind. Pharm.,2015; 41: 1363–1367
    Google Scholar
  • 98. Wang Y., Yi X.D., Lu H.L.: Influence of CYP2C9 and COX-2 geneticpolymorphisms on clinical efficacy of non-steroidal antiinflammatorydrugs in treatment of ankylosing spondylitis. Med.Sci. Monit., 2017; 23: 1775–1782
    Google Scholar
  • 99. Weng Z., Li X., Li Y., Lin J., Peng F., Niu W.: The association offour common polymorphisms from four candidate genes (COX-1,COX-2, ITGA2B, ITGA2) with aspirin insensitivity: A meta-analysis.PLoS One, 2013; 8: e78093
    Google Scholar
  • 100. Xu Z.H., Jiao J.R., Yang R., Luo B.Y., Wang X.F., Wu F.: Aspirinresistance: Clinical significance and genetic polymorphism. J. Int.Med. Res., 2012; 40: 282–292
    Google Scholar
  • 101. Yamagata K., Andreasson K.I., Kaufmann W.E., Barnes C.A.,Worley P.F.: Expression of a mitogen-inducible cyclooxygenase inbrain neurons: Regulation by synaptic activity and glucocorticoids.Neuron, 1993; 11: 371–386
    Google Scholar
  • 102. Yang J., Chen X., Zhou J., Hu S., Tang Y.: Associations of candidategene polymorphisms with poor responsiveness to aspirin: Ameta-analysis. Clin. Exp. Pharmacol. Physiol., 2018; 46: 404
    Google Scholar
  • 103. Zgorzalewicz M.: Patomechanizm migrenowych bólów głowy.Neurol. Dziec., 2005; 14: 7–14
    Google Scholar
  • 104. Zhang M., Yang Y., Zhao G., Di X., Xu L., Jiang N., Xu J., Xu X.:Effect of CYP2C9 3 mutant variants on meloxicam pharmacokineticsin a healthy Chinese population. Genet. Mol. Res., 2014;13: 831–837
    Google Scholar
  • 105. Zhou Y., Boudreau D.M., Freedman A.N.: Trends in the use ofaspirin and nonsteroidal anti-inflammatory drugs in the generalU.S. population. Pharmacoepidemiol. Drug Saf., 2014; 23: 43–50
    Google Scholar

Pełna treść artykułu

Skip to content