Czynnik neurotroficzny pochodzenia mózgowego jako potencjalne narzędzie terapeutyczne w leczeniu schorzeń układu nerwowego

ARTYKUŁ PRZEGLĄDOWY

Czynnik neurotroficzny pochodzenia mózgowego jako potencjalne narzędzie terapeutyczne w leczeniu schorzeń układu nerwowego

Wioletta Kazana 1 , Agnieszka Zabłocka 1

1. Laboratorium Immunobiologii Mikrobiomu, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu

Opublikowany: 2020-12-07
DOI: 10.5604/01.3001.0014.5678
GICID: 01.3001.0014.5678
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2020; 74 : 517-531

 

Abstrakt

Czynnik neurotroficzny pochodzenia mózgowego (BDNF) pełni ważną rolę w prawidłowym funkcjonowaniu układu nerwowego. Reguluje wzrost i przeżycie komórek nerwowych, uczestniczy w procesach związanych z pamięcią, uczeniem się oraz plastycznością synaptyczną. Nieprawidłowości związane z dystrybucją i sekrecją białka BDNF towarzyszą wielu chorobom układu nerwowego, w przebiegu których obserwuje się istotny spadek jego poziomu w mózgu. Zaburzenia w transporcie BDNF mogą występować m.in. w przypadku wystąpienia polimorfizmu pojedynczego nukleotydu w genie kodującym Bdnf (Val66Met), mogą się również pojawić z powodu zaburzeń w funkcjonowaniu białek zaangażowanych w transport wewnątrzkomórkowy, takich jak: huntingtyna (HTT), białko związane z huntingtyną 1 (HAP1), karboksypeptydaza E (CPE) czy sortilina 1 (SORT1). Jednym z celów terapeutycznych w leczeniu chorych ze schorzeniami układu nerwowego może być regulacja ekspresji i wydzielania białka BDNF przez komórki nerwowe. Potencjalne strategie terapeutyczne opierają się o bezpośrednią iniekcję białka do konkretnego obszaru mózgu, stosowanie wektorów wirusowych ekspresjonujących gen Bdnf, przeszczepianie komórek wytwarzających BDNF, stosowanie substancji pochodzenia naturalnego, stymulujących komórki układu nerwowego do wytwarzania BDNF lub użycie cząsteczek aktywujących główny receptor BDNF, jakim jest receptor kinazy tyrozynowej B (TrkB). Odpowiedni styl życia promujący aktywność fizyczną przyczynia się do podwyższenia poziomu BDNF w organizmie. W artykule podsumowano obecną wiedzę na temat biologicznej roli białka BDNF oraz białek zaangażowanych w transport wewnątrzkomórkowy tej neurotrofiny. Ponadto przedstawiono współczesne trendy badawcze mające na celu opracowanie metod terapeutycznych prowadzących do zwiększenia poziomu białka BDNF w mózgu.

Przypisy

  • 1. Abd El-Fattah A.A., Fahim A.T., Sadik N.A., Ali B.M.: Resveratroland dimethyl fumarate ameliorate depression-like behaviour ina rat model of chronic unpredictable mild stress. Brain Res., 2018;1701: 227–236
    Google Scholar
  • 2. Adachi N., Numakawa T., Richards M., Nakajima S., Kunugi H.:New insight in expression, transport, and secretion of brain-derivedneurotrophic factor: Implications in brain-related diseases.World J. Biol. Chem., 2014; 5: 409–428
    Google Scholar
  • 3. Alcalá-Barraza S.R., Lee M.S., Hanson L.R., McDonald A.A., FreyW.H. 2nd, McLoon L.K.: Intranasal delivery of neurotrophic factorsBDNF, CNTF, EPO, and NT-4 to the CNS. J. Drug Target, 2010;18: 179–190
    Google Scholar
  • 4. Al-Qudah M.A., Al-Dwairi A.: Mechanisms and regulation ofneurotrophin synthesis and secretion. Neurosciences, 2016; 21:306–313
    Google Scholar
  • 5. An J.J., Gharami K., Liao G.Y., Woo N.H., Lau A.G., Vanevski F.,Torre E.R., Jones K.R., Feng Y., Lu B., Xu B.: Distinct role of long3’ UTR BDNF mRNA in spine morphology and synaptic plasticityin hippocampal neurons. Cell, 2008; 134: 175–187
    Google Scholar
  • 6. Arregui L., Benítez J.A., Razgado L.F., Vergara P., Segovia J.:Adenoviral astrocyte-specific expression of BDNF in the striataof mice transgenic for Huntington’s disease delays the onset ofthe motor phenotype. Cell Mol. Neurobiol., 2011; 31: 1229–1243
    Google Scholar
  • 7. Barde Y.A., Edgar D., Thoenen H.: Purification of a new neurotrophicfactor from mammalian brain. EMBO J., 1982; 1: 549–553
    Google Scholar
  • 8. Bathina S., Das U.N.: Brain-derived neurotrophic factor and itsclinical implications. Arch. Med. Sci., 2015; 11: 1164–1178
    Google Scholar
  • 9. Bekinschtein P., Cammarota M., Katche C., Slipczuk L., RossatoJ.I., Goldin A., Izquierdo I., Medina J.H.: BDNF is essential topromote persistence of long-term memory storage. Proc. Natl.Acad. Sci. USA, 2008; 105: 2711–2716
    Google Scholar
  • 10. Bus B.A., Molendijk M.L., Penninx B.J., Buitelaar J.K., Kenis G.,Prickaerts J., Elzinga B.M., Voshaar R.C.: Determinants of serumbrain–derived neurotrophic factor. Psychoneuroendocrinology,2011; 36: 228–239
    Google Scholar
  • 11. Caviston J.P., Holzbaur E.L.: Huntingtin as an essential integratorof intracellular vesicular trafficking. Trends Cell Biol.,2009; 19: 147–155
    Google Scholar
  • 12. Chen Z.Y., Ieraci A., Teng H., Dall H., Meng C.X., Herrera D.G.,Nykjaer A., Hempstead B.L., Lee F.S.: Sortilin controls intracellularsorting of brain-derived neurotrophic factor to the regulatedsecretory pathway. J. Neurosci., 2005; 25: 6156–6166
    Google Scholar
  • 13. Cheng A., Coksaygan T., Tang H., Khatri R., Balice-Gordon R.J.,Rao M.S., Mattson M.P.: Truncated tyrosine kinase B brain-derivedneurotrophic factor receptor directs cortical neural stem cells toa glial cell fate by a novel signaling mechanism. J. Neurochem.,2007; 100: 1515–1530
    Google Scholar
  • 14. Cheng Y., Cawley N.X., Loh Y.P.: Carboxypeptidase E (NF-α1):A new trophic factor in neuroprotection. Neurosci. Bull., 2014;30: 692–696
    Google Scholar
  • 15. Colin E., Zala D., Liot G., Rangone H., Borrell-Pagès M., Li X.J.,Saudou F., Humbert S.: Huntingtin phosphorylation acts as a molecularswitch for anterograde/retrograde transport in neurons.EMBO J., 2008; 27: 2124–2134
    Google Scholar
  • 16. Conti A.C., Cryan J.F., Dalvi A., Lucki I., Blendy J.A.: cAMP responseelement-binding protein is essential for the upregulationof brain-derived neurotrophic factor transcription, but not thebehavioral or endocrine responses to antidepressant drugs. J. Neurosci.,2002; 22: 3262–3268
    Google Scholar
  • 17. Cunha C., Brambilla R., Thomas K.L.: A simple role for BDNF inlearning and memory? Front. Mol. Neurosci., 2010; 3: 1
    Google Scholar
  • 18. De la Cruz-Morcillo M.A., Berger J., Sánchez-Prieto R., Saada S.,Naves T., Guillaudeau A., Perraud A., Sindou P., Lacroix A., DescazeaudA., Lalloué F., Jauberteau M.O.: p75 neurotrophin receptorand pro-BDNF promote cell survival and migration in clear cellrenal cell carcinoma. Oncotarget, 2016; 7: 34480–34497
    Google Scholar
  • 19. De la Rosa A., Solana E., Corpas R., Bartrés-Faz D., Pallàs M.,Vina J., Sanfeliu C., Gomez-Cabrera M.C.: Long-term exercise trainingimproves memory in middle-aged men and modulates peripherallevels of BDNF and cathepsin B. Sci. Rep., 2019; 9: 3337
    Google Scholar
  • 20. del Toro D., Alberch J., Lázaro-Diéguez F., Martín-Ibáñez R., XifróX., Egea G., Canals J.M.: Mutant huntingtin impairs post-Golgitrafficking to lysosomes by delocalizing optineurin/Rab8 complexfrom the Golgi apparatus. Mol. Biol. Cell, 2009; 20: 1478–1492
    Google Scholar
  • 21. Dey N.D., Bombard M.C., Roland B.P., Davidson S., Lu M., RossignolJ., Sandstrom M.I., Skeel R.L., Lescaudron L., Dunbar G.L.:Genetically engineered mesenchymal stem cells reduce behavioraldeficits in the YAC 128 mouse model of Huntington’s disease.Behav. Brain Res., 2010; 214: 193–200
    Google Scholar
  • 22. Edelbrock A.N., Àlvarez Z., Simkin D., Fyrner T., Chin S.M.,Sato K., Kiskinis E., Stupp S.I.: Supramolecular nanostructure activatesTrkB receptor signaling of neuronal cells by mimickingbrain-derived neurotrophic factor. Nano Lett., 2018; 18: 6237–6247
    Google Scholar
  • 23. Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., KolachanaB.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., LuB., Weinberger D.R.: The BDNF val66met polymorphism affectsactivity-dependent secretion of BDNF and human memory andhippocampal function. Cell, 2003; 112: 257–269
    Google Scholar
  • 24. Falcicchia C., Paolone G., Emerich D. F., Lovisari F., Bell W. J.,Fradet T., Wahlberg L. U., Simonato M.: Seizure-suppressant andneuroprotective effects of encapsulated BDNF-producing cells ina rat model of temporal lobe epilepsy. Mol. Ther. Methods Clin.Dev., 2018; 9: 211–224
    Google Scholar
  • 25. Fernandes B.S., Molendijk M.L., Köhler C.A., Soares J.C., LeiteC.M., Machado-Vieira R., Ribeiro T.L., Silva J.C., Sales P.M., QuevedoJ., Oertel-Knöchel V., Vieta E., González-Pinto A., Berk M., CarvalhoA.F.: Peripheral brain-derived neurotrophic factor (BDNF) as abiomarker in bipolar disorder: A meta-analysis of 52 studies. BMCMed., 2015; 13: 289
    Google Scholar
  • 26. Fletcher J.L., Wood R.J., Nguyen J., Norman E.M., Jun C.M.,Prawdiuk A.R., Biemond M., Nguyen H.T., Northfield S.E., HughesR.A., Gonsalvez D.G., Xiao J., Murray S.S.: Targeting TrkB with abrain-derived neurotrophic factor mimetic promotes myelin repairin the brain. J. Neurosci., 2018; 38: 7088–7099
    Google Scholar
  • 27. Fonteles A.A., de Souza C.M., de Sousa Neves J.C., Menezes A.P.,Santos do Carmo M.R., Fernandes F.D., de Araújo P.R., de AndradeG.M.: Rosmarinic acid prevents against memory deficits in ischemicmice. Behav. Brain Res., 2016; 297: 91–103
    Google Scholar
  • 28. Fricker L.D.: Carboxypeptidase E and the identification of novelneuropeptides as potential therapeutic targets. Adv. Pharmacol.,2018; 82: 85–102
    Google Scholar
  • 29. Gauthier L.R., Charrin B.C., Borrell-Pagès M., Dompierre J.P.,Rangone H., Cordelières F.P., De Mey J., MacDonald M.E., LessmannV., Humbert S., Saudou F.: Huntingtin controls neurotrophic supportand survival of neurons by enhancing BDNF vesicular transportalong microtubules. Cell, 2004; 118: 127–138
    Google Scholar
  • 30. Greenberg M.E., Xu B., Lu B., Hempstead B.L.: New insightsin the biology of BDNF synthesis and release: Implications in CNSfunction. J. Neurosci., 2009; 29: 12764–12767
    Google Scholar
  • 31. Hanson I.M., Seawright A., van Heyningen V.: The human BDNFgene maps between FSHB and HVBS1 at the boundary of 11p13-p14. Genomics, 1992; 13: 1331–1333
    Google Scholar
  • 32. Herculano-Houzel S.: The remarkable, yet not extraordinary,human brain as a scaled-up primate brain and its associated cost.Proc. Natl. Acad. Sci. USA, 2012; 109: 10661–10668
    Google Scholar
  • 33. Huang E.J., Reichardt L.F.: Neurotrophins: Roles in neuronaldevelopment and function. Annu. Rev. Neurosci., 2001; 24: 677–736
    Google Scholar
  • 34. Huang P.T., Chen C.H., Hsu I.U., Salim S.A., Kao S.H., Cheng C.W.,Lai C.H., Lee C.F., Lin Y.F.: Huntingtin-associated protein 1 interactswith breakpoint cluster region protein to regulate neuronal differentiation.PLoS One, 2015; 10: e0116372
    Google Scholar
  • 35. Hurley L.L., Akinfiresoye L., Kalejaiye O., Tizabi Y.: Antidepressanteffects of resveratrol in an animal model of depression. Behav.Brain Res., 2014; 268: 1–7
    Google Scholar
  • 36. Hwang J.J., Park M.H., Choi S.Y., Koh J.Y.: Activation of the Trksignaling pathway by extracellular zinc. Role of metalloproteinases.J. Biol. Chem., 2005; 280: 11995–12001
    Google Scholar
  • 37. Ito K., Enomoto H.: Retrograde transport of neurotrophic factorsignaling: implications in neuronal development and pathogenesis.J. Biochem., 2016; 160: 77–85
    Google Scholar
  • 38. Iughetti L., Lucaccioni L., Fugetto F., Predieri B., Berardi A.,Ferrari F.: Brain-derived neurotrophic factor and epilepsy: A systematicreview. Neuropeptides, 2018; 72: 23–29
    Google Scholar
  • 39. Jang S.W., Liu X., Yepes M., Shepherd K.R., Miller G.W., Liu Y.,Wilson W.D., Xiao G., Blanchi B., Sun Y.E., Ye K.: A selective TrkBagonist with potent neurotrophic activities by 7,8-dihydroxyflavone.Proc. Natl. Acad. Sci. USA, 2010; 107: 2687–2692
    Google Scholar
  • 40. Ji L., Wu H.T., Qin X.Y., Lan R.: Dissecting carboxypeptidaseE: Properties, functions and pathophysiological roles in disease.Endocr. Connect., 2017; 6: R18–R38
    Google Scholar
  • 41. Jiang Y., Wei N., Lu T., Zhu J., Xu G., Liu X.: Intranasal brainderivedneurotrophic factor protects brain from ischemic insultvia modulating local inflammation in rats. Neuroscience, 2011;172: 398–405
    Google Scholar
  • 42. Katsu-Jiménez Y., Loría F., Corona J.C., Díaz-Nido J.: Gene transferof brain-derived neurotrophic factor (BDNF) prevents neurodegenerationtriggered by FXN deficiency. Mol. Ther., 2016; 24:877–889
    Google Scholar
  • 43. Kells A.P., Henry R.A., Connor B.: AAV-BDNF mediated attenuationof quinolinic acid-induced neuropathology and motor functionimpairment. Gene Ther., 2008; 15: 966–977
    Google Scholar
  • 44. Kim D.H., Jeon S.J., Son K.H., Jung J.W., Lee S., Yoon B.H., ChoiJ.W., Cheong J.H., Ko K.H., Ryu J.H.: Effect of the flavonoid, oroxylinA, on transient cerebral hypoperfusion-induced memory impairmentin mice. Pharmacol. Biochem. Behav., 2006; 85: 658–668
    Google Scholar
  • 45. Kishi T., Yoshimura R., Ikuta T., Iwata N.: Brain-derived neurotrophicfactor and major depressive disorder: Evidence frommeta-analyses. Front. Psychiatry, 2018; 8: 308
    Google Scholar
  • 46. Kowiański P., Lietzau G., Czuba E., Waśkow M., Steliga A., MoryśJ.: BDNF: A key factor with multipotent impact on brain signalingand synaptic plasticity. Cell. Mol. Neurobiol., 2018; 38: 579–593
    Google Scholar
  • 47. Laccone F., Christian W.: A recurrent expansion of a maternalallele with 36 CAG repeats causes Huntington disease in two sisters.Am. J. Hum. Genet., 2000; 66: 1145–1148
    Google Scholar
  • 48. Lampe K.J., Kern D.S., Mahoney M.J., Bjugstad K.B.: The administrationof BDNF and GDNF to the brain via PLGA microparticlespatterned within a degradable PEG-based hydrogel: Proteindistribution and the glial response. J. Biomed. Mater. Res. A, 2011;96: 595–607
    Google Scholar
  • 49. Lau A.G., Irier H.A., Gu J., Tian D., Ku L., Liu G., Xia M., FritschB., Zheng J.Q., Dingledine R., Xu B., Lu B., Feng Y.: Distinct 3’UTRsdifferentially regulate activity-dependent translation of brainderivedneurotrophic factor (BDNF). Proc. Natl. Acad. Sci. USA,2010; 107: 15945–15950
    Google Scholar
  • 50. Lessmann V., Gottmann K., Malcangio M.: Neurotrophin secretion:Current facts and future prospects. Prog. Neurobiol., 2003;69: 341–374
    Google Scholar
  • 51. Li Y., Chin L.S., Levey A.I., Li L.: Huntingtin-associated protein 1interacts with hepatocyte growth factor-regulated tyrosine kinasesubstrate and functions in endosomal trafficking. J. Biol. Chem.,2002; 277: 28212–28221
    Google Scholar
  • 52. Lim Y., Wu L.L., Chen S., Sun Y., Vijayaraj S.L., Yang M., BobrovskayaL., Keating D., Li X.J., Zhou X.F.: HAP1 is required forendocytosis and signalling of BDNF and its receptors in neurons.Mol. Neurobiol., 2018; 55: 1815–1830
    Google Scholar
  • 53. Lin J., Huang L., Yu J., Xiang S., Wang J., Zhang J., Yan X., CuiW., He S., Wang Q.: Fucoxanthin, a marine carotenoid, reversesscopolamine-induced cognitive impairments in mice and inhibitsacetylcholinesterase in vitro. Mar. Drugs, 2016; 14: 67
    Google Scholar
  • 54. Liu P. Z., Nusslock R.: Exercise-mediated neurogenesis in thehippocampus via BDNF. Front. Neurosci., 2018; 12: 52
    Google Scholar
  • 55. Lou H., Kim S.K., Zaitsev E., Snell C.R., Lu B., Loh Y.P.: Sortingand activity-dependent secretion of BDNF require interaction ofa specific motif with the sorting receptor carboxypeptidase E.Neuron, 2005; 45: 245–255
    Google Scholar
  • 56. Lu B., Nagappan G., Guan X., Nathan P.J., Wren P.: BDNF-basedsynaptic repair as a disease-modifying strategy for neurodegenerativediseases. Nat. Rev. Neurosci., 2013; 14: 401–416
    Google Scholar
  • 57. Lu B., Pang P.T., Woo N.H.: The yin and yang of neurotrophinaction. Nat. Rev. Neurosci, 2005; 6: 603–614
    Google Scholar
  • 58. Mackay C.P., Kuys S.S., Brauer S.G.: The effect of aerobic exerciseon brain-derived neurotrophic factor in people with neurologicaldisorders: A systematic review and meta-analysis. NeuralPlast., 2017; 2017: 4716197
    Google Scholar
  • 59. Maisonpierre P.C., Le Beau M.M., Espinosa R.3rd, Ip N.Y., BelluscioL., de la Monte S.M., Squinto S., Furth M.E., Yancopoulos G.D.:Human and rat brain–derived neurotrophic factor and neurotrophin-3: Gene structures, distributions and chromosomal localizations.Genomics, 1991; 10: 558–568
    Google Scholar
  • 60. Małczyńska P., Piotrowicz Z., Drabarek D., Langfort J., ChalimoniukM.: Rola mózgowego czynnika neurotroficznego (BDNF)w procesach neurodegeneracji oraz w mechanizmach neuroregeneracjiwywołanej wzmożoną aktywnością fizyczną. PostępyBiochem., 2019; 65: 2–8
    Google Scholar
  • 61. Markiewicz R., Kozioł M., Olajossy M., Masiak J.: Can brainderivedneurotrophic factor (BDNF) be an indicator of effective rehabilitation interventions in schizophrenia? Psychiatr. Pol., 2018;52: 819‐834
    Google Scholar
  • 62. Massa S.M., Yang T., Xie Y., Shi J., Bilgen M., Joyce J.N., NehamaD., Rajadas J., Longo F.M.: Small molecule BDNF mimetics activateTrkB signaling and prevent neuronal degeneration in rodents. J.Clin. Invest., 2010; 120: 1774–1785
    Google Scholar
  • 63. Mattson M.P., Duan W., Guo Z.: Meal size and frequency affectneuronal plasticity and vulnerability to disease: Cellular and molecularmechanisms. J. Neurochem., 2003; 84: 417–431
    Google Scholar
  • 64. Merkouris S., Barde Y.A., Binley K.E., Allen N.D., Stepanov A.V.,Wu N.C., Grande G., Lin C.W., Li M., Nan X., Chacon-Fernandez P.,DiStefano P.S., Lindsay R.M., Lerner R.A., Xie J.: Fully human agonistantibodies to TrkB using autocrine cell-based selection froma combinatorial antibody library. Proc. Natl. Acad. Sci. USA, 2018;115: E7023–E7032
    Google Scholar
  • 65. Miranda M., Morici J.F., Zanoni M.B., Bekinschtein P.: Brainderivedneurotrophic factor: A key molecule for memory in thehealthy and the pathological brain. Front. Cell. Neurosci., 2019;13: 363
    Google Scholar
  • 66. Moghbelinejad S., Nassiri-Asl M., Farivar T.N., Abbasi E.,Sheikhi M., Taghiloo M., Farsad F., Samimi A., Hajiali F.: Rutin activatesthe MAPK pathway and BDNF gene expression on beta-amyloidinduced neurotoxicity in rats. Toxicol. Lett., 2014; 224: 108–113
    Google Scholar
  • 67. Moosavi F., Hosseini R., Saso L., Firuzi O.: Modulation of neurotrophicsignaling pathways by polyphenols. Drug. Des. Devel.Ther., 2015; 10: 23–42
    Google Scholar
  • 68. Mowla S.J., Farhadi H.F., Pareek S., Atwal J.K., Morris S.J., SeidahN.G., Murphy R.A.: Biosynthesis and post-translational processingof the precursor to brain-derived neurotrophic factor. J. Biol.Chem., 2001; 276: 12660–12666
    Google Scholar
  • 69. Nagahara A.H., Merrill D.A., Coppola G., Tsukada S., SchroederB.E., Shaked G.M., Wang L., Blesch A., Kim A., Conner J.M., RockensteinE., Chao M.V., Koo E.H., Geschwind D., Masliah E., ChibaA.A., Tuszynski M.H.: Neuroprotective effects of brain-derivedneurotrophic factor in rodent and primate models of Alzheimer’sdisease. Nat. Med., 2009; 15: 331–337
    Google Scholar
  • 70. Nakazato M., Hashimoto K., Shimizu E., Niitsu T., Iyo M.: Possibleinvolvement of brain-derived neurotrophic factor in eatingdisorders. IUBMB Life, 2012; 64: 355–361
    Google Scholar
  • 71. Ng T.K., Ho C.S., Tam W.W., Kua E.H., Ho R.C.: Decreased serumbrain-derived neurotrophic factor (BDNF) levels in patients withAlzheimer’s disease (AD): A systematic review and meta-analysis.Int. J. Mol. Sci., 2019; 20: 257
    Google Scholar
  • 72. Nielsen M.S., Madsen P., Christensen E.I., Nykjaer A., GliemannJ., Kasper D., Pohlmann R., Petersen C.M.: The sortilin cytoplasmictail conveys Golgi-endosome transport and binds the VHS domainof the GGA2 sorting protein. EMBO J., 2001; 20: 2180–2190
    Google Scholar
  • 73. Nieto R., Kukuljan M., Silva H.: BDNF and schizophrenia: Fromneurodevelopment to neuronal plasticity, learning, and memory.Front. Psychiatry, 2013; 4: 45
    Google Scholar
  • 74. Nociti V., Santoro M., Quaranta D., Losavio F.A., De Fino C.,Giordano R., Palomba N.P., Rossini P.M., Guerini F.R., Clerici M.,Caputo D., Mirabella M.: BDNF rs6265 polymorphism methylationin multiple sclerosis: A possible marker of disease progression.PLoS One, 2018; 13: e0206140
    Google Scholar
  • 75. Notaras M., van den Buuse M.: Brain-derived neurotrophic factor(BDNF): Novel insights into regulation and genetic variation.Neuroscientist, 2019; 25: 434–454
    Google Scholar
  • 76. Ohira K., Hayashi M.: A new aspect of the TrkB signaling pathwayin neural plasticity. Curr. Neuropharmacol., 2009; 7: 276–285
    Google Scholar
  • 77. Pang P.T., Teng H.K., Zaitsev E., Woo N.T., Sakata K., Zhen S.,Teng K.K., Yung W.H., Hempstead B.L., Lu B.: Cleavage of proBDNFby tPA/plasmin is essential for long-term hippocampal plasticity.Science, 2004; 306: 487–491
    Google Scholar
  • 78. Park J.J., Cawley N.X., Loh Y.P.: A bi-directional carboxypeptidaseE-driven transport mechanism controls BDNF vesicle homeostasisin hippocampal neurons. Mol. Cell. Neurosci., 2008; 39: 63–73
    Google Scholar
  • 79. Pastrana E., Moreno-Flores M.T., Avila J., Wandosell F., MinichielloL., Diaz-Nido J.: BDNF production by olfactory ensheathingcells contributes to axonal regeneration of cultured adult CNSneurons. Neurochem. Int., 2007; 50: 491–498
    Google Scholar
  • 80. Pérez-Navarro E., Canudas A.M., Akerund P., Alberch J., ArenasE.: Brain-derived neurotrophic factor, neurotrophin-3, andneurotrophin-4/5 prevent the death of striatal projection neuronsin a rodent model of Huntington’s disease. J. Neurochem.,2000; 75: 2190–2199
    Google Scholar
  • 81. Petersen C.M., Nielsen M.S., Nykjær A., Jacobsen L., TommerupN., Rasmussen H.H., Røigaard H., Gliemann J., Madsen P., MoestrupS.K.: Molecular identification of a novel candidate sorting receptorpurified from human brain by receptor-associatedprotein affinitychromatography. J. Biol. Chem., 1997; 272: 3599–3605
    Google Scholar
  • 82. Pollock K., Dahlenburg H., Nelson H., Fink K.D., Cary W., HendrixK., Annett G., Torrest A., Deng P., Gutierrez J., Nacey C., PepperK., Kalomoiris S., Anderson J.D., McGee J. i wsp.: Human mesenchymalstem cells genetically engineered to overexpress brain-derivedneurotrophic factor improve outcomes in Huntington’s diseasemouse models. Mol. Ther., 2016; 24: 965–977
    Google Scholar
  • 83. Pradhan J., Noakes P.G., Bellingham M.C.: The role of alteredBDNF/TrkB signaling in amyotrophic lateral sclerosis. Front. CellNeurosci., 2019; 13: 368
    Google Scholar
  • 84. Prakash Y.S., Martin R.J.: Brain-derived neurotrophic factor inthe airways. Pharmacol. Therapeut., 2014; 143: 74–86
    Google Scholar
  • 85. Pruunsild P., Kazantseva A., Aid T., Palm K., Timmusk T.: Dissectingthe human BDNF locus: Bidirectional transcription, complexsplicing, and multiple promoters. Genomics, 2007; 90: 397–406
    Google Scholar
  • 86. Reichardt L.F.: Neurotrophin-regulated signalling pathways.Phil. Trans. R. Soc. Lond. B Biol. Sci., 2006; 361: 1545–1564
    Google Scholar
  • 87. Robinson R.C., Radziejewski C., Stuart D.I., Jones E.Y.: Structureof the brain-derived neurotrophic factor/neurotrophin 3 heterodimer.Biochemistry, 1995; 34: 4139–4146
    Google Scholar
  • 88. Rong J., Li S.H., Li X.J.: Regulation of intracellular HAP1 trafficking.J. Neurosci. Res., 2007; 85: 3025–3029
    Google Scholar
  • 89. Ross C.A.: Polyglutamine pathogenesis: Emergence of unifyingmechanisms for Huntington’s disease and related disorders.Neuron, 2002; 35: 819–822
    Google Scholar
  • 90. Rui Y.N., Xu Z., Patel B., Chen Z., Chen D., Tito A., David G.,Sun Y., Stimming E.F., Bellen H.J., Cuervo A.M., Zhang S.: Huntingtinfunctions as a scaffold for selective macroautophagy. Nat. CellBiol., 2015; 17: 262–275
    Google Scholar
  • 91. Ryu J.K., Kim J., Cho S.J., Hatori K., Nagai A., Choi H.B., LeeM.C., McLarnon J.G., Kim S.U.: Proactive transplantation of humanneural stem cells prevents degeneration of striatal neurons in arat model of Huntington disease. Neurobiol. Dis., 2004; 16: 68–77
    Google Scholar
  • 92. Sakane T., Pardridge W.M.: Carboxyl-directed pegylation ofbrain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity. Pharm. Res., 1997;14: 1085–1091
    Google Scholar
  • 93. Sangiovanni E., Brivio P., Dell’Agli M., Calabrese F.: Botanicalsas modulators of neuroplasticity: Focus on BDNF. Neural Plast.,2017; 2017: 5965371
    Google Scholar
  • 94. Sarkaki A., Farbood Y., Badavi M., Ghadiri A., Ghasemi DehcheshmehM., Mansouri E., Navabi S.P.: The protective effect ofbetulinic acid on microvascular responsivity and protein expressionin Alzheimer disease induced by cerebral micro-injectionof beta-amyloid and streptozotocin. Microcirculation, 2018; 25:e12503
    Google Scholar
  • 95. Saudou F., Humbert S.: The biology of Huntingtin. Neuron,2016; 89: 910–926
    Google Scholar
  • 96. Schäbitz W.R., Sommer C., Zoder W., Kiessling M., SchwaningerM., Schwab S.: Intravenous brain-derived neurotrophic factor reducesinfarct size and counterregulates Bax and Bcl-2 expressionafter temporary focal cerebral ischemia. Stroke, 2000; 31: 2212–2217
    Google Scholar
  • 97. Starkstein S.E., Jorge R., Mizrahi R., Robinson R.G.: The constructof minor and major depression in Alzheimer’s disease. Am.J. Psychiat., 2005; 162: 2086–2093
    Google Scholar
  • 98. Su M., Hong J., Zhao Y., Liu S., Xue X.: MeCP2 controls hippocampalbrain-derived neurotrophic factor expression via homeostaticinteractions with microRNA-132 in rats with depression.Mol. Med. Rep., 2015; 12: 5399–5406
    Google Scholar
  • 99. Sun Y., Lim Y., Li F., Liu S., Lu J.J., Haberberger R., Zhong J.H.,Zhou X.F.: ProBDNF collapses neurite outgrowth of primary neuronsby activating RhoA. PLoS One, 2012; 7: e35883
    Google Scholar
  • 100. Tejeda G.S., Díaz-Guerra M.: Integral characterization of defectiveBDNF/TrkB signalling in neurological and psychiatric disordersleads the way to new therapies. Int. J. Mol. Sci., 2017; 18: 268
    Google Scholar
  • 101. The BDNF Study Group: A controlled trial of recombinantmethionyl human BDNF in ALS: The BDNF Study Group (Phase III).Neurology, 1999; 52: 1427–1433
    Google Scholar
  • 102. The UniProt Consortium: UniProt: A worldwide hub of proteinknowledge. Nucleic Acids Res., 2019; 47: D506–D515
    Google Scholar
  • 103. Todd D., Gowers I., Dowler S.J., Wall M.D., McAllister G., FischerD.F., Dijkstra S., Fratantoni S.A., van de Bospoort R., Veenman-Koepke J., Flynn G., Arjomand J., Dominguez C., Munoz-Sanjuan I.,Wityak J., Bard J.A.: A monoclonal antibody TrkB receptor agonistas a potential therapeutic for Huntington’s disease. PLoS One,2014; 9: e87923
    Google Scholar
  • 104. Weishaupt N., Blesch A., Fouad K.: BDNF: The career of a multifacetedneurotrophin in spinal cord injury. Exp. Neurol., 2012;238: 254–264
    Google Scholar
  • 105. Woronowicz A., Koshimizu H., Chang S.Y., Cawley N.X., HillJ.M., Rodriguiz R.M., Abebe D., Dorfman C., Senatorov V., Zhou A.,Xiong Z.G., Wetsel W.C., Loh Y.P.: Absence of carboxypeptidase Eleads to adult hippocampal neuronal degeneration and memorydeficits. Hippocampus, 2008; 18: 1051–1063
    Google Scholar
  • 106. Wu L.L., Fan Y., Li S., Li X.J., Zhou X.F.: Huntingtin-associatedprotein-1 interacts with pro-brain-derived neurotrophic factorand mediates its transport and release. J. Biol. Chem., 2010; 285:5614–5623
    Google Scholar
  • 107. Xiao L., Chang S.Y., Xiong Z.G., Selveraj P., Loh Y.P.: Absenceof carboxypeptidase E/neurotrophic factor-Α1 in knock-out miceleads to dysfunction of BDNF-TRKB signaling in hippocampus. J.Mol. Neurosci., 2017; 62: 79–87
    Google Scholar
  • 108. Xu Y., Ku B., Tie L., Yao H., Jiang W., Ma X., Li X.: Curcuminreverses the effects of chronic stress on behavior, the HPA axis,BDNF expression and phosphorylation of CREB. Brain Res., 2006;1122: 56–64
    Google Scholar
  • 109. Yang M., Lim Y., Li X., Zhong J.H., Zhou X.F.: Precursor ofbrain-derived neurotrophic factor (proBDNF) forms a complex withHuntingtin-associated protein-1 (HAP1) and sortilin that modulatesproBDNF trafficking, degradation, and processing. J. Biol.Chem., 2011; 286: 16272–16284
    Google Scholar
  • 110. Yang Y., Liu Y., Wang G., Hei G., Wang X., Li R., Li L., Wu R.,Zhao J.: Brain-derived neurotrophic factor is associated with cognitiveimpairments in first-episode and chronic schizophrenia.Psychiatry Res. 2019; 273: 528–536
    Google Scholar
  • 111. Zala D., Benchoua A., Brouillet E., Perrin V., Gaillard M.C.,Zurn A.D., Aebischer P., Déglon N.: Progressive and selective striataldegeneration in primary neuronal cultures using lentiviralvector coding for a mutant huntingtin fragment. Neurobiol. Dis.,2005; 20: 785–798
    Google Scholar
  • 112. Zhang J., Luo W., Li Q., Xu R., Wang Q., Huang Q.: Peripheralbrain-derived neurotrophic factor in attention-deficit/hyperactivitydisorder: A comprehensive systematic review and metaanalysis.J. Affect. Disord., 2018; 227: 298–304
    Google Scholar
  • 113. Zhang Y., Pardridge W.M.: Conjugation of brain-derived neurotrophicfactor to a blood-brain barrier drug targeting system enablesneuroprotection in regional brain ischemia following intravenousinjection of the neurotrophin. Brain Res., 2001; 889: 49–56
    Google Scholar
  • 114. Zhao L., Wang J.L., Liu R., Li X.X., Li J.F., Zhang L.: Neuroprotective,anti-amyloidogenic and neurotrophic effects of apigenin in anAlzheimer’s disease mouse model. Molecules, 2013; 18: 9949–9965
    Google Scholar
  • 115. Zheng F., Zhou X., Moon C., Wang H.: Regulation of brainderivedneurotrophic factor expression in neurons. Int. J. Physiol.Pathophysiol. Pharmacol., 2012; 4: 188–200
    Google Scholar
  • 116. Zhu X., Wu K., Rife L., Cawley N.X., Brown B., Adams T., TeofiloK., Lillo C., Williams D.S., Loh Y.P., Craft C.M.: Carboxypeptidase Eis required for normal synaptic transmission from photoreceptorsto the inner retina. J. Neurochem., 2005; 95: 1351–1362
    Google Scholar
  • 117. Zuccato C., Cattaneo E.: Role of brain-derived neurotrophicfactor in Huntington’s disease. Prog. Neurobiol., 2007; 81: 294–330
    Google Scholar
  • 118. Zuccato C., Cattaneo, E.: Brain-derived neurotrophic factorin neurodegenerative diseases. Nat. Rev. Neurol., 2009; 5: 311–322
    Google Scholar
  • 119. Zuccato C., Ciammola A., Rigamonti D., Leavitt B.R., GoffredoD., Conti L., MacDonald M.E., Friedlander R.M., Silani V., HaydenM.R., Timmusk T., Sipione S., Cattaneo E.: Loss of huntingtin-mediatedBDNF gene transcription in Huntington’s disease. Science,2001; 293: 493–498
    Google Scholar
  • 120. Zuccato C., Liber D., Ramos C., Tarditi A., Rigamonti D., TartariM., Valenza M., Cattaneo E.: Progressive loss of BDNF in a mousemodel of Huntington’s disease and rescue by BDNF delivery. Pharmacol.Res., 2005; 52: 133–139
    Google Scholar

Pełna treść artykułu

Skip to content