Regulacja układu zależnego od tioredoksyny jako element farmakoterapii w chorobach z zaburzeniami równowagi redoks
Anna Jastrząb 1 , Elżbieta Skrzydlewska 1Abstrakt
Działanie wielu czynników egzogennych, a także zaburzone procesy metaboliczne komórek przyczyniają się do nasilonego wytwarzania oksydantów, a to zaburza równowagę redoks, wywołując zmiany metaboliczne, w tym śmierci lub transformacji nowotworowej komórek. Jednak każda komórka zawiera antyoksydanty, które mają zapobiegać tego typu sytuacjom. Jednym z układów antyoksydacyjnych, funkcjonujących w komórkach, jest układ zależny od tioredoksyny, w skład którego wchodzą: tioredoksyna (Trx), reduktaza tioredoksyny (TrxR) oraz peroksydaza tioredoksyny (TPx), które mogą redukować utlenione składniki komórek kosztem fosforanu dinukleotydu nikotynoamidoadeninowego (NADPH). Działanie takie wynika z budowy przestrzennej Trx oraz TrxR, która umożliwia wytworzenie wewnątrzcząsteczkowego mostka disulfidowego w obrębie cząsteczki tioredoksyny oraz dwóch międzycząsteczkowych mostków selenosulfidowych w obrębie dimeru reduktazy tioredoksyny. Inną, równie istotną funkcją układu zależnego od tioredoksyny jest regulowanie ekspresji wielu białek za pośrednictwem takich czynników jak czynnik transkrypcyjnego NF-κB oraz kinaza regulująca apoptozę (ASK-1), które uruchamiają kaskady przemian metabolicznych prowadzących ostatecznie do proliferacji lub apoptozy komórek. Wzrost ekspresji/aktywności składników systemu zależnego od Trx obserwuje się w rozwoju wielu nowotworów. Dlatego też poszukiwanie selektywnych inhibitorów tioredoksyny lub reduktazy tioredoksyny jest obecnie jednym z głównych kierunków badań w farmakoterapii nowotworów. Wykazano, że wiele naturalnie występujących związków polifenolowych pochodzenia naturalnego o działaniu antyoksydacyjnym (np. kwercetyna czy kurkumina) powoduje inaktywację układu Trx-TrxR. Jednocześnie wiele syntetycznych związków, w tym związki kompleksowe, które stosowane są w terapii przeciwnowotworowej (np. cisplatyna, auranofina, moteksafina gadolinu), również hamują działanie układu zależnego od Trx.
Przypisy
- 1. Ahsan M.K., Lekli I., Ray D., Yodoi J., Das D.K.: Redox regulationof cell survival by the thioredoxin superfamily: An implicationof redox gene therapy in the heart. Antioxid. Redox Signal.,2009; 11: 2741–2758
Google Scholar - 2. An N., Kang Y.: Thioredoxin and hematologic malignancies. W:Advances in Cancer Research, t. 122, red.: D.M. Townsend, K.D. Tew.Academic Press, London, 2014, 245–279
Google Scholar - 3. Arnér E.S.: Focus on mammalian thioredoxin reductases – importantselenoproteins with versatile functions. Biochim. Biophys.Acta, 2009; 1790: 495–526
Google Scholar - 4. Arnér E.S.: Selenocysteine insertion and reactivity: Mammalianthioredoxin reductases in relation to cellular redox signaling. W:Cellular Implications of Redox Signaling, red.: C. Gitler, A. Danon.Imperial College Press, London 2003, 27–45
Google Scholar - 5. Avval F.Z., Holmgren A.: Molecular mechanisms of thioredoxinand glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotidereductase. J. Biol. Chem., 2009; 284: 8233–8240
Google Scholar - 6. Baker A.F., Adab K.N., Raghunand N., Chow H., Stratton S.P.,Squire S.W., Boice M., Pestano L.A., Kirkpatrick D.L., Dragovich T.:A phase IB trial of 24-hour intravenous PX-12, a thioredoxin-1 inhibitor,in patients with advanced gastrointestinal cancers. Invest.New Drugs, 2013; 31: 631–641
Google Scholar - 7. Baker A.F., Dragovich T., Tate W.R., Ramanathan R.K., Roe D.,Hsu C.H., Kirkpatrick D.L., Powis G.: The antitumor thioredoxin-1inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreasesthioredoxin-1 and VEGF levels in cancer patient plasma. J. Lab.Clin. Med., 2006; 147: 83–90
Google Scholar - 8. Berdicevsky I., Kaufman G., Newman D.J., Horwitz B.A.: Preliminarystudy of activity of the thioredoxin inhibitor pleurotinagainst Trichophyton mentagrophytes: A novel anti-dermatophytepossibility. Mycoses, 2009; 52: 313–317
Google Scholar - 9. Berndt C., Lillig C.H., Holmgren A.: Thioredoxins and glutaredoxinsas facilitators of protein folding. Biochim. Biophys. Acta,2008; 1783: 641–650
Google Scholar - 10. Bignon E., Allega M.F., Lucchetta M., Tiberti M., Papaleo E.:Computational structural biology of S-nitrosylation of cancer targets.Front. Oncol., 2018; 8: 272
Google Scholar - 11. Bilska A., Kryczyk A., Włodek L.: Różne oblicza biologicznej roliglutationu. Postępy Hig. Med. Dośw., 2007; 61: 438–453
Google Scholar - 12. Brandstaedter C., Fritz-Wolf K., Weder S., Fischer M., HeckerB., Rahlfs S., Becker K.: Kinetic characterization of wild-type andmutant human thioredoxin glutathione reductase defines its reactionand regulatory mechanisms., FEBS J., 2018; 285; 542–558
Google Scholar - 13. Cai W., Zhang B., Duan D., Wu J., Fang J.: Curcumin targetingthe thioredoxin system elevates oxidative stress in HeLa cells.Toxicol. Appl. Pharmacol., 2012; 262: 341–348
Google Scholar - 14. Chen X., Tang W., Liu S., Yu L., Chen Z.: Thioredoxin-1 phosphorylatedat T100 is needed for its anti-apoptotic activity in HepG2cancer cells. Life Sci., 2010; 87, 254–260
Google Scholar - 15. Chondrogianni N., Petropoulos I., Grimm S., Georgila K., CatalgolB., Friguet B., Grune T., Gonos, E.S.: Protein damage, repairand proteolysis. Mol. Aspects Med., 2014; 35: 1–71
Google Scholar - 16. Circu M.L., Aw T.Y.: Reactive oxygen species, cellular redoxsystems, and apoptosis. Free Radic. Biol. Med., 2010; 48: 749–762
Google Scholar - 17. Citta A., Folda A., Scutari G., Cesaro L., Bindoli A., Rigobello,M.P.: Inhibition of thiore8doxin reductase by lanthanum chloride.J. Inorg. Biochem., 2012; 117: 18–24
Google Scholar - 18. Collet J.F., Messens J.: Structure, function, and mechanism ofthioredoxin proteins. Antioxid. Redox Signal., 2010; 13: 1205–1216
Google Scholar - 19. Cortes-Bratti X., Bassères E., Herrera-Rodriguez F., Botero-Kleiven S., Coppotelli G., Andersen J.B., Masucci M.G., HolmgrenA., Chaves-Olarte E., Frisan T., Avila-Carino J.: Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellularpathogens. PLoS One, 2011; 6: e16960
Google Scholar - 20. Cutillas N., Yellol G.S., de Haro C., Vicente C., Rodríguez V., RuizJ.: Anticancer cyclometalated complexes of platinum group metalsand gold. Coord. Chem. Rev., 2013; 257: 2784–2791
Google Scholar - 21. de Oliveira K.N., Andermark V., Onambele L.A., Dahl G., ProkopA., Ott, I.: Organotin complexes containing carboxylate ligandswith maleimide and naphthalimide derived partial structures: TrxRinhibition, cytotoxicity and activity in resistant cancer cells. Eur.J. Med. Chem., 2014; 87: 794–800
Google Scholar - 22. Dmitrenko O., Orlova T., Terenetskaya I.: Medium controlledphotochemistry of provitamin D: From solutions to liquid crystals.J. Mol. Liq., 2018; 267: 428–435
Google Scholar - 23. Dobrovolska O., Rychkov G., Shumilina E., Nerinovski K.,Schmidt A., Shabalin K., Yakimov A., Dikiy A.: Structural insightsinto interaction between mammalian methionine sulfoxide reductaseB1 and thioredoxin. J. Biomed. Biotechnol., 2012; 2012: 586539
Google Scholar - 24. Dóka É., Pader I., Bíró A., Johansson K., Cheng Q., Ballagó K.,Prigge J.R., Pastor-Flores D., Dick T.P., Schmidt E.E., Arnér E.S., NagyP.: A novel persulfide detection method reveals protein persulfideandpolysulfide-reducing functions of thioredoxin and glutathionesystems. Sci. Adv., 2016; 2: e1500968
Google Scholar - 25. Ellgaard L. Ruddock L.W.: The human protein disulphideisomerase family: Substrate interactions and functional properties.EMBO Rep., 2005; 6: 28–32
Google Scholar - 26. Fang J., Holmgren A.: Inhibition of thioredoxin and thioredoxinreductase by 4-hydroxy-2-nonenal in vitro and in vivo. J.Am. Chem. Soc., 2006; 128: 1879–1885
Google Scholar - 27. Fujiwara N., Fujii T., Fujii J., Taniguchi N.: Roles of N-terminalactive cysteines and C-terminal cysteine-selenocysteine in thecatalytic mechanism of mammalian thioredoxin reductase. J. Biochem.,2001; 129: 803–812
Google Scholar - 28. Galligan J.J., Petersen D.R.: The human protein disulfideisomerase gene family. Hum. Genomics, 2012; 6: 6
Google Scholar - 29. Gandin V., Fernandes A.P.: Metal-and semimetal-containing inhibitorsof thioredoxin reductase as anticancer agents. Molecules,2015; 20: 12732–12756
Google Scholar - 30. Gaschler M.M., Stockwell B.R.: Lipid peroxidation in cell death.Biochem. Biophys. Res. Commun., 2017; 482: 419–425
Google Scholar - 31. Ghezzi P.: Protein glutathionylation in health and disease.Biochim. Biophys. Acta, 2013; 1830: 3165–3172
Google Scholar - 32. Gil-Bea F., Akterin S., Persson T., Mateos L., Sandebring A.,Avila-Cariño J., Gutierrez-Rodriguez A., Sundström E., HolmgrenA., Winblad B., Cedazo-Minguez A.: Thioredoxin-80 is a product ofalpha-secretase cleavage that inhibits amyloid-beta aggregationand is decreased in Alzheimer’s disease brain. EMBO Mol. Med.,2012; 4: 1097–1111
Google Scholar - 33. Goroncy A.K., Koshiba S., Tochio N., Tomizawa T., Inoue M.,Tanaka A., Sugano S., Kigawa T., Yokoyama S.: Solution structureof the C-terminal DUF1000 domain of the human thioredoxin-like 1 protein. Proteins, 2010; 78: 2176–2180
Google Scholar - 34. Gromer S., Urig S., Becker K.: The thioredoxin system – fromscience to clinic. Med. Res. Rev., 2004; 24: 40–89
Google Scholar - 35. Hashemy S.I., Ungerstedt J.S., Avval F.Z., Holmgren A.: Motexafingadolinium, a tumor-selective drug targeting thioredoxinreductase and ribonucleotide reductase. J. Biol. Chem., 2006; 281:10691–10697
Google Scholar - 36. Hatahet F., Ruddock L.W.: Protein disulfide isomerase: A criticalevaluation of its function in disulfide bond formation. Antioxid.Redox Signal., 2009; 11: 2807–2850
Google Scholar - 37. Hickey J.L., Ruhayel R.A., Barnard P.J., Baker M.V., Berners-PriceS.J., Filipovska A.: Mitochondria-targeted chemotherapeutics: Therational design of gold (I) N-heterocyclic carbene complexes thatare selectively toxic to cancer cells and target protein selenolsin preference to thiols. J. Am. Chem. Soc., 2008; 130: 12570–12571
Google Scholar - 38. Holmgren A., Lu J.: Thioredoxin and thioredoxin reductase:Current research with special reference to human disease. Biochem.Biophys. Res. Commun., 2010; 396: 120–124
Google Scholar - 39. Hruza L.L., Pentland A.P.: Mechanisms of UV–induced inflammation.J. Invest. Dermatol., 1993; 100: S35–S41
Google Scholar - 40. Ishii T., Funato Y., Miki H.: Thioredoxin-related protein 32(TRP32) specifically reduces oxidized phosphatase of regeneratingliver (PRL). J. Biol. Chem., 2013; 288: 7263–7270
Google Scholar - 41. Jiménez A., Zu W., Rawe V.Y., Pelto-Huikko M., Flickinger C.J.,Sutovsky P., Gustafsson J.Å. Oko R., Miranda-Vizuete A.: Spermatocyte/spermatid-specific thioredoxin-3, a novel Golgi apparatusassociatedthioredoxin, is a specific marker of aberrant spermatogenesis.J. Biol. Chem., 2004; 279: 34971–34982
Google Scholar - 42. Jones D.A.: Rosacea, reactive oxygen species, and azelaic acid.J. Clin. Aesthet. Dermatol., 2009; 2: 26–30
Google Scholar - 43. Ju Y., Wu L., Yang G.: Thioredoxin 1 regulation of protein Sdesulfhydration.Biochem. Biophys. Rep., 2016; 5: 27–34
Google Scholar - 44. Kakkar P., Singh B.K.: Mitochondria: A hub of redox activitiesand cellular distress control. Mol. Cell. Biochem., 2007; 305: 235–253
Google Scholar - 45. Karlenius T.C., Tonissen, K.F.: Thioredoxin and cancer:A rolefor thioredoxin in all states of tumor oxygenation. Cancers, 2010;2: 209–232
Google Scholar - 46. Korkina L.: Metabolic and redox barriers in the skin exposedto drugs and xenobiotics. Expert Opin. Drug Metab. Toxicol., 2016;12: 377–388
Google Scholar - 47. Lee S., Kim S.M., Lee R.T.: Thioredoxin and thioredoxin targetproteins: From molecular mechanisms to functional significance.Antioxid. Redox Signal., 2013; 18: 1165–1207
Google Scholar - 48. Lehmann B., Meurer M.: Vitamin D metabolism. Dermatol.Ther., 2010; 23, 2–12
Google Scholar - 49. Li G.Z., Liang H.F., Liao B., Zhang L., Ni Y.A., Zhou H.H., ZhangE.L., Zhang B.X., Chen X.P.: PX-12 inhibits the growth of hepatocelluarcarcinoma by inducing S-phase arrest, ROS-dependent apoptosisand enhances 5-FU cytotoxicity. Am. J. Transl. Res., 2015;7: 1528–1540
Google Scholar - 50. Li H., Xu C., Li Q., Gao X., Sugano E., Tomita H., Yang L., Shi S.:Thioredoxin 2 offers protection against mitochondrial oxidativestress in H9c2 cells and against myocardial hypertrophy inducedby hyperglycemia. Int. J. Mol. Sci., 2017; 18: 1958
Google Scholar - 51. Liao J., Wang K., Yao W., Yi X., Yan H., Chen M., Lan X.: Cloning,expression and antioxidant activity of a thioredoxin peroxidasefrom Branchiostoma belcheri tsingtaunese. PLoS One, 2017;12: e0175162
Google Scholar - 52. Lillig C.H., Holmgren A.: Thioredoxin and related molecules –from biology to health and disease. Antioxid. Redox Signal., 2007;9: 25–47
Google Scholar - 53. Lu J., Papp L.V., Fang J., Rodriguez-Nieto S., Zhivotovsky B.,Holmgren A.: Inhibition of mammalian thioredoxin reductase bysome flavonoids: Implications for myricetin and quercetin anticanceractivity. Cancer Res., 2006; 66: 4410–4418
Google Scholar - 54. Lu Y., Wang X., Liu Z., Jin B., Chu D., Zhai H., Zhang F., Li K.,Ren G., Miranda-Vizuete A., Guo X., Fan D.: Identification and distributionof thioredoxin-like 2 as the antigen for the monoclonalantibody MC3 specific to colorectal cancer. Proteomics, 2008; 8:2220–2229
Google Scholar - 55. Maillet A., Pervaiz S.: Redox regulation of p53, redox effectorsregulated by p53: A subtle balance. Antioxid. Redox Signal.,2012; 16: 1285–1294
Google Scholar - 56. Maulik N., Das D.K.: Emerging potential of thioredoxin andthioredoxin interacting proteins in various disease conditions.Biochim. Biophys. Acta, 2008; 1780: 1368–1382
Google Scholar - 57. Mukherjee A., Martin S.G.: The thioredoxin system: A key targetin tumour and endothelial cells. Br. J. Radiol., 2008; 81: S57–S68
Google Scholar - 58. Mura P., Camalli M., Bindoli A., Sorrentino F., Casini A., GabbianiC., Corsini M., Zanello P., Rigobello M.P., Messori L.: Activity ofrat cytosolic thioredoxin reductase is strongly decreased by trans-[bis (2-amino-5-methylthiazole) tetrachlororuthenate (III)]: Firstreport of relevant thioredoxin reductase inhibition for a rutheniumcompound. J. Med. Chem., 2007; 50: 5871–5874
Google Scholar - 59. Ng H.L., Chen S., Chew E.H., Chui W.K.: Applying the designedmultiple ligands approach to inhibit dihydrofolate reductase andthioredoxin reductase for anti-proliferative activity. Eur. J. Med.Chem., 2016; 115: 63–74
Google Scholar - 60. Oehninger L., Küster L.N., Schmidt C., Muñoz-Castro A., ProkopA., Ott I.: A chemical-biological evaluation of rhodium (I) N-heterocycliccarbene complexes as prospective anticancer drugs. Chem.Eur. J., 2013; 19: 17871–17880
Google Scholar - 61. Oguro A., Imaoka S.: Thioredoxin-related transmembrane protein 2 (TMX2) regulates the Ran protein gradient and importin-β-dependent nuclear cargo transport. Sci. Rep., 2019; 9: 15296
Google Scholar - 62. Oka O.B., Bulleid N.J.: Forming disulfides in the endoplasmicreticulum. Biochim. Biophys. Acta, 2013; 1833: 2425–2429
Google Scholar - 63. Orlova T.N., Terenetskaya I.P.: Possible use of provitamin D3photoisomerization for spectral dosimetry of bioactive antirachiticUV radiation. J. Appl. Spectrosc., 2009; 76, 240–244
Google Scholar - 64. Ortego L., Cardoso F., Martins S., Fillat M.F., Laguna A., MeirelesM., Villacampa M.D., Gimeno M.C.: Strong inhibition of thioredoxinreductase by highly cytotoxic gold (I) complexes. DNA bindingstudies. J. Inorg. Biochem., 2014; 130: 32–37
Google Scholar - 65. Palanisamy R., Bhatt P., Kumaresan V., Chaurasia M.K., GnanamA.J., Pasupuleti M., Kasi M., Arockiaraj J.: A redox active site containing murrel cytosolic thioredoxin: Analysis of immunologicalproperties. Fish Shellfish Immunol., 2014; 36: 141–150
Google Scholar - 66. Poet G.J., Oka O.B., van Lith M., Cao Z., Robinson P.J., PringleM.A., Arnér E.S., Bulleid N.J.: Cytosolic thioredoxin reductase 1 isrequired for correct disulfide formation in the ER. EMBO J., 2017;36: 693–702
Google Scholar - 67. Powis G., Wipf P., Lynch S.M., Birmingham A., Kirkpatrick D.L.:Molecular pharmacology and antitumor activity of palmarumycin-based inhibitors of thioredoxin reductase. Mol. Cancer Ther.,2006; 5: 630–636
Google Scholar - 68. Prast-Nielsen S., Huang H.H., Williams, D.L.: Thioredoxin glutathionereductase: Its role in redox biology and potential as a targetfor drugs against neglected diseases. Biochim. Biophys. Acta,2011; 1810: 1262–1271
Google Scholar - 69. Ramanathan R.K., Stephenson J.J., Weiss G.J., Pestano L.A., LoweA., Hiscox A., Leos R.A., Martin J.C., Kirkpatrick L., Richards D.A.:A phase I trial of PX-12, a small-molecule inhibitor of thioredoxin-1, administered as a 72-hour infusion every 21 days in patientswith advanced cancers refractory to standard therapy. Invest. NewDrugs, 2012; 30: 1591–1596
Google Scholar - 70. Raninga P.V., Di Trapani G., Vuckovic S., Bhatia M., TonissenK.F.: Inhibition of thioredoxin 1 leads to apoptosis in drug-resistantmultiple myeloma. Oncotarget, 2015; 6: 15410–15424
Google Scholar - 71. Ren X., Zou L., Lu J., Holmgren A.: Selenocysteine in mammalianthioredoxin reductase and application of ebselen as a therapeutic.Free Radic. Biol. Med., 2018; 127: 238–247
Google Scholar - 72. Ren X., Zou L., Zhang X., Branco V., Wang J., Carvalho C., HolmgrenA., Lu J.: Redox signaling mediated by thioredoxin and glutathionesystems in the central nervous system. Antioxid. RedoxSignal., 2017; 27: 989–1010
Google Scholar - 73. Rendón J.L., Miranda-Leyva M., Guevara-Flores A., Martínez-González J.J., Del Arenal I.P., Flores-Herrera O., Pardo J.P.: Insightinto the mechanistic basis of the hysteretic-like kinetic behaviorof thioredoxin-glutathione reductase (TGR). Enzyme Res., 2018;2018: 3215462
Google Scholar - 74. Rhee S.G.: Overview on peroxiredoxin. Mol. Cells, 2016; 39: 1–5
Google Scholar - 75. Rhee S.G., Woo H.A., Kil I.S., Bae S.H.: Peroxiredoxin functionsas a peroxidase and a regulator and sensor of local peroxides. J.Biol. Chem., 2012; 287: 4403–4410
Google Scholar - 76. Rodriguez-Garcia A., Hevia D., Mayo J.C., Gonzalez-MenendezP., Coppo L., Lu J., Holmgren A., Sainz R.M.: Thioredoxin 1 modulatesapoptosis induced by bioactive compounds in prostate cancercells. Redox Biol., 2017; 12: 634–647
Google Scholar - 77. Roos G., Foloppe N., Van Laer K., Wyns L., Nilsson L., GeerlingsP., Messens J.: How thioredoxin dissociates its mixed disulfide. PLoSComput. Biol., 2009; 5: e1000461
Google Scholar - 78. Saccoccia, F., Angelucci F., Boumis G., Carotti D., Desiato G.,Miele A.E., Bellelli A.: Thioredoxin reductase and its inhibitors.Curr. Protein Pept. Sci., 2014; 15, 621–646
Google Scholar - 79. Sandargo B., Thongbai B., Praditya D., Steinmann E., StadlerM., Surup F.: Antiviral 4-hydroxypleurogrisein and antimicrobialpleurotin derivatives from cultures of the nematophagous basidiomyceteHohenbuehelia grisea. Molecules, 2018; 23: 2697
Google Scholar - 80. Sugiura Y., Araki K., Iemura S.I., Natsume T., Hoseki J., Nagata,K.: Novel thioredoxin-related transmembrane protein TMX4 hasreductase activity. J. Biol. Chem., 2010; 285: 7135–7142
Google Scholar - 81. Sweeney M., Coyle R., Kavanagh P., Berezin A.A., Re D.L., ZissimouG.A., Koutentis P.A., Carty M.P., Aldabbagh F.: Discovery ofanti-cancer activity for benzo [1,2,4] triazin-7-ones: Very strongcorrelation to pleurotin and thioredoxin reductase inhibition.Bioorg. Med. Chem., 2016; 24: 3565–3570
Google Scholar - 82. Tan S.X., Greetham D., Raeth S., Grant C.M., Dawes I.W., PerroneG.G.: The thioredoxin-thioredoxin reductase system can functionin vivo as an alternative system to reduce oxidized glutathionein Saccharomyces cerevisiae. J. Biol. Chem., 2010; 285: 6118–6126
Google Scholar - 83. Toledano M.B., Delaunay-Moisan A., Outten C.E., Igbaria A.:Functions and cellular compartmentation of the thioredoxin andglutathione pathways in yeast. Antioxid. Redox Signal., 2013; 18:1699–1711
Google Scholar - 84. Tonissen K.F., Di Trapani G.: Thioredoxin system inhibitors asmediators of apoptosis for cancer therapy. Mol. Nutr. Food Res.,2009; 53: 87–103
Google Scholar - 85. Ukuwela A.A., Bush A.I., Wedd A.G., Xiao Z.: Glutaredoxinsemploy parallel monothiol-dithiol mechanisms to catalyze thioldisulfideexchanges with protein disulfides. Chem. Sci., 2018; 9:1173–1183
Google Scholar - 86. Vandervore L.V., Schot R., Milanese C., Smits D.J., Kasteleijn E.,Fry A.E., Pilz D.T., Brock S., Börklü-Yücel E., Post M., Bahi-BuissonN., Sánchez-Soler M.J., van Slegtenhors M., Keren B., Afenjar A.i wsp.: TMX2 is a crucial regulator of cellular redox state, and itsdysfunction causes severe brain developmental abnormalities. Am.J. Hum. Genet, 2019; 105: 1126–1147
Google Scholar - 87. Watanabe R., Nakamura H., Masutani H., Yodoi J.: Anti-oxidative,anti-cancer and anti-inflammatory actions by thioredoxin 1 and thioredoxin-binding protein-2. Pharmacol. Ther., 2010; 127:261–270
Google Scholar - 88. Wu C., Parrott A.M., Fu C., Liu T., Marino S.M., Gladyshev V.N.,Jain M.R., Baykal A.T., Li Q., Oka S., Sadoshima J., Beuve A., SimmonsW.J., Li H.: Thioredoxin 1-mediated post-translational modifications:Reduction, transnitrosylation, denitrosylation, and relatedproteomics methodologies. Antioxid. Redox Signal., 2011;15: 2565–2604
Google Scholar - 89. Yoshioka J.: Thioredoxin superfamily and its effects on cardiacphysiology and pathology. Compr. Physiol., 2011; 5: 513–530
Google Scholar - 90. Zeng H.H., Wang L.H.: Targeting thioredoxin reductase: Anticanceragents and chemopreventive compounds. Med. Chem.,2010; 6: 286–297
Google Scholar - 91. Zhang J., Zhang B., Li X., Han X., Liu R., Fang J.: Small moleculeinhibitors of mammalian thioredoxin reductase as potential anticanceragents: An update. Med. Res. Rev., 2019; 39: 5–39
Google Scholar - 92. Zhang J.J., Muenzner J.K., Abu El Maaty M.A., Karge B., SchobertR., Wölfl S., Ott I.: A multi-target caffeine derived rhodium (I) Nheterocycliccarbene complex: Evaluation of the mechanism ofaction. Dalton Trans., 2016; 45: 13161–13168
Google Scholar - 93. Zhu H., Tao X., Zhou L., Sheng B., Zhu X., Zhu X.: Expressionof thioredoxin 1 and peroxiredoxins in squamous cervical carcinomaand its predictive role in NACT. BMC Cancer, 2019; 19: 865
Google Scholar