Boron-rich nanoparticles as potential carriers in boron-neutron capture therapy

ARTYKUŁ PRZEGLĄDOWY

Boron-rich nanoparticles as potential carriers in boron-neutron capture therapy

Anna Wróblewska 1 , Bożena Szermer-Olearnik 1 , Elżbieta Pajtasz-Piasecka 1

1. Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda Polskiej Akademii Nauk we Wrocławiu

Opublikowany: 2021-02-26
DOI: 10.5604/01.3001.0014.7760
GICID: 01.3001.0014.7760
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2021; 75 : 122-132

 

Abstrakt

The basis of boron neutron capture therapy (BNCT) is the selective delivery of boron to tumor cells and then irradiation of the affected area with a neutron beam. As a result, there is a fission of the nucleus of the boron isotope, which causes the release of energy to destroy cancer cells. Although BNCT related research has been going on since the 1950s, it remains an experimental therapy. It is related, inter alia, with the lack of carriers enabling quick and effective introduction of 10B into the tumor environment. Thus, a widely discussed issue and one of the main challenges for the development of BNCT is the search for selective compounds that provide the required amount of this element. An interesting aspect is research on nanometric structures such as liposomes containing boron-rich compounds or inorganic nanoparticles – boron carbide or boron nitride. Due to the high content of boron and the possibility of surface modification of these nanoparticles, they may prove to be an extremely attractive tool in targeted BNCT. An equally important problem of this therapy is the development of precise connections between the neutron source, the specificity of the beam and the type of carrier used. In this paper, we indicate the high potential of boron-rich compounds as carriers in targeted boron-neutron capture therapy.

Przypisy

  • 1. Al-Madhoun A.S., Johnsamuel J., Barth R.F., Tjarks W., Eriksson S.:Evaluation of human thymidine kinase 1 substrates as new candidatesfor boron neutron capture therapy. Cancer Res., 2004; 64: 6280–6286
    Google Scholar
  • 2. Archambeau J.O.: The effect of increasing exposures of the10B(n,α)7Li reaction on the skin of man. Radiology, 1970; 94: 178–187
    Google Scholar
  • 3. Barth R.F., Coderre J.A., Vicente M.G., Blue T.E.: Boron neutroncapture therapy of cancer: Current status and future prospects. Clin.Cancer. Res., 2005; 11: 3987–4002
    Google Scholar
  • 4. Barth R.F., Kabalka G.W., Yang W., Huo T., Nakkula R.J., Shaikh A.L.,Haider S.A., Chandra S.: Evaluation of unnatural cyclic amino acids asboron delivery agents for treatment of melanomas and gliomas. Appl.Radiat. Isot., 2014; 88: 38–42
    Google Scholar
  • 5. Barth R.F., Mi P., Yang W.: Boron delivery agents for neutron capturetherapy of cancer. Cancer Commun., 2018; 38: 35
    Google Scholar
  • 6. Barth R.F., Yang W., Nakkula R.J., Byun Y., Tjarks W., Wu L.C., BinnsP.J., Riley K.J.: Evaluation of TK1 targeting carboranyl thymidine analogsas potential delivery agents for neutron capture therapy of braintumors. Appl. Radiat. Isot., 2015; 106: 251–255
    Google Scholar
  • 7. Barth R.F., Yang W., Rotaru J.H., Moeschberger M.L., Joel D.D., NawrockyM.M., Goodman J.H., Soloway A.H..: Boron neutron capture therapyof brain tumors: Enhanced survival following intracarotid injectionof either sodium borocaptate or boronophenylalanine with or withoutblood–brain barrier disruption. Cancer Res., 1997; 57: 1129–1136
    Google Scholar
  • 8. Bertrand N., Wu J., Xu X., Kamaly N., Farokhzad O.C.: Cancer nanotechnology:The impact of passive and active targeting in the era ofmodern cancer biology. Adv. Drug Deliv. Rev. 2014; 66: 2–25
    Google Scholar
  • 9. Bhimanapati G.R., Glavin N.R. Robinson J.A.: 2D boron nitride:Synthesis and applications. Semicond. Semimet., 2016; 95: 101–147
    Google Scholar
  • 10. Bortolussi S., Bakeine J.G., Ballarini F., Bruschi P., Gadan M. A., ProttiN., Stella S., Clerici A., Ferrari C., Cansolino L., Zonta C., Zonta A., Nano R.,Altieri S.: Boron uptake measurements in a rat model for Boron NeutronCapture Therapy of lung tumours. Appl. Radiat. Isot., 2011; 69: 394–398
    Google Scholar
  • 11. Capuani S., Gili T., Bozzali M., Russo S., Porcari P., Cametti C., MuoloM., D’Amore E., Maraviglia B., Lazzarino G., Pastore F.S.: Boronophenylalanineuptake in C6 glioma model is dramatically increased byL-DOPA preloading. Appl. Radiat. Isot., 2009; 67: S34–S36
    Google Scholar
  • 12. Chen X., Wu P., Rousseas M., Okawa D., Gartner Z., Zettl A., BertozziC.R.: Boron nitride nanotubes are noncytotoxic and can be functionalizedfor interaction with proteins and cells. J. Am. Chem. Soc.,2009; 131: 890–891
    Google Scholar
  • 13. Ciofani G., Danti S., D’Alessandro D., Moscato S., Menciassi A.:Assessing cytotoxicity of boron nitride nanotubes: Interference withthe MTT assay. Biochem. Biophys. Res. Commun., 2010; 394: 405–411
    Google Scholar
  • 14. Ciofani G., Danti S., Genchi G.G., Mazzolai B., Mattoli V.: Boronnitride nanotubes: Biocompatibility and potential spill-over in nanomedicine.Small., 2013; 9: 1672–1685
    Google Scholar
  • 15. Ciofani G., Raffa V., Menciassi., Cuschieri A.: Cytocompatibility,interactions, and uptake of polyethyleneimine-coated boron nitridenanotubes by living cells: Confirmation of their potential for biomedicalapplications. Biotechnol. Bioeng., 2008; 101: 850–858
    Google Scholar
  • 16. Coderre J.A., Glass J.D., Fairchild R.G., Micca P.L., Fand I., JoelD.D.: Selective delivery of boron by the melanin precursor analogue p-boronophenylalanine to tumors other than melanoma. Cancer Res.,1990; 50: 138–141
    Google Scholar
  • 17. Cui D., Tian F., Ozkan C.S., Wang M., Gao H.: Effect of single wall carbonnanotubes on human HEK293 cells. Toxicol. Lett., 2005; 155: 73–85
    Google Scholar
  • 18. Dahlström M., Capala J., Lindström P., Wasteson Å., Lindström A.:Accumulation of boron in human malignant glioma cells in vitro iscell type dependent. J. Neuro-Oncol., 2004; 68: 199–205
    Google Scholar
  • 19. Dobrzyński L.: Spowalnianie neutronów w moderatorze. W: PodstawyFizyki Reaktorów Jądrowych, red.: L. Dobrzyński. Świerk 2013,60–61
    Google Scholar
  • 20. Duong N.M., Glushkov E., Chernev A., Navikas V., Comtet J., NguyenM.A., Toth M., Radenovic A., Tran T.T., Aharonovich I.: Facile productionof hexagonal boron nitride nanoparticles by cryogenic exfoliation.Nano. Lett., 2019: 19: 5417–5422
    Google Scholar
  • 21. Feng B., Tomizawa K., Michiue H., Miyatake S., Han X.J., FujimuraA., Seno M., Kirihata M., Matsui H.: Delivery of sodium borocaptate toglioma cells using immunoliposome conjugated with anti-EGFR antibodiesby ZZ-His. Biomaterials, 2009; 30: 1746–1755
    Google Scholar
  • 22. Ferreira T.H., Miranda M.C., Rocha Z., Leal A.S., Gomes D.A., SousaE.M.: An assessment of the potential use of BNNTs for Boron NeutronCapture Therapy. Nanomaterials, 2017; 7: 82
    Google Scholar
  • 23. Gao Z., Horiguchi Y., Nakai K., Matsumura A., Suzuki M., Ono K.,Nagasaki Y:. Use of boron cluster-containing redox nanoparticles withROS scavenging ability in boron neutron capture therapy to achievehigh therapeutic efficiency and low adverse effects. Biomaterials,2016; 104: 201–212
    Google Scholar
  • 24. Gonzalez-Ortiz D., Salameh C., Bechelany M., Miele P.: Nanostructuredboron nitride – based materials: Synthesis and applications.Mater. Today Adv., 2020; 8: 100107
    Google Scholar
  • 25. Goodman J.H., Yang W., Barth R.F., Gao Z., Boesel C.P., StaubusA.E., Gupta N., Gahbauer R.A., Adams D.M., Gibson C.R., Ferketich A.K.,Moeschberger M.L., Soloway A.H., Carpenter D.E., Albertson B.J. i wsp.:Boron neutron capture therapy of brain tumors: Biodistribution, pharmacokinetics,and radiation dosimetry sodium borocaptate in patientswith gliomas. Neurosurgery, 2000; 47: 608–621
    Google Scholar
  • 26. Hatanaka H., Nakagawa Y.: Clinical results of long-surviving braintumor patients who underwent boron neutron capture therapy. Int.J. Radiat. Oncol. Biol. Phys., 1994; 28: 1061–1066
    Google Scholar
  • 27. Hiratsuka J., Kamitani N., Tanaka R., Tokiya R., Yoden E., SakuraiY., Suzuki M.: Long-term outcome of cutaneous melanoma patientstreated with boron neutron capture therapy (BNCT). J. Radiat. Res.,2020; 61: 945–951
    Google Scholar
  • 28. Horváth L., Magrez A., Golberg D., Zhi C., Bando Y., Smajda R.,Horváth E., Forró L., Schwaller B.: In vitro investigation of the cellulartoxicity of boron nitride nanotubes. ACS Nano, 2011; 5: 3800–3810
    Google Scholar
  • 29. Ichikawa H., Taniguchi E., Fujimoto T., Fukumori Y.: Biodistributionof BPA and BSH after single, repeated and simultaneous administrationsfor neutron-capture therapy of cancer. Appl. Radiat. Isot.,2009; 67: S111–S114
    Google Scholar
  • 30. Ishikawa Y., Shimizu Y., Sasaki T., Koshizaki N.: Boron carbidespherical particles encapsulated in graphite prepared by pulsed laserirradiation of boron in liquid medium. Appl. Phys. Lett., 2007;91: 161110
    Google Scholar
  • 31. Itoh T., Tamura K., Ueda H., Tanaka T., Sato K., Kuroda R., Aoki S.:Design and synthesis of boron containing monosaccharides by thehydroboration of D-glucal for use in boron neutron capture therapy(BNCT). Bioorg. Med. Chem., 2018; 26: 5922–5933
    Google Scholar
  • 32. Iwagami T., IshikawaY., Koshizaki N., Yamamoto N., Tanaka H.,Masunaga S., Sakurai Y., Kato I., Iwai S., Suzuki M., Yura Y.: Boroncarbide particle as a boron compound for Boron Neutron CaptureTherapy. J. Nucl. Med. Radiat. Ther., 2014; 5: 2
    Google Scholar
  • 33. Kabalka G.W., Shaikh A.L., Barth R.F., Huo T., Yang W., GordnierP.M., Chandra S.: Boronated unnatural cyclic amino acids as potentialdelivery agents for neutron capture therapy. Appl. Radiat. Isot.,2011; 69: 1778–1781
    Google Scholar
  • 34. Kabalka G.W., Yao M.L., Marepally S.R., Chandra S.: Biologicalevaluation of boronated unnatural amino acids as new boron carriers.Appl. Radiat. Isot., 2009; 67: S374–S379
    Google Scholar
  • 35. Kageji T., Nagahiro S., Mizobuchi Y., Matsuzaki K., Nakagawa Y., KumadaH.: Boron neutron capture therapy (BNCT) for newly-diagnosedglioblastoma: Comparison of clinical results obtained with BNCT andconventional treatment. J. Med. Invest., 2014; 61: 254–263
    Google Scholar
  • 36. Kato I., Fujita Y., Maruhashi A., Kumada H., Ohmae M., KirihataM., Imahori Y., Suzuki M., Sakrai Y., Sumi T., Iwai S., Nakazawa M.,Murata I., Miyamaru H., Ono K.: Effectiveness of boron neutron capturetherapy for recurrent head and neck malignancies. Appl. Radiat.Isot., 2009; 67: S37–S42
    Google Scholar
  • 37. Kato T., Hirose K., Tanaka H., Mitsumoto T., Motoyanagi T.,Arai K., Harada T., Takeuchi A., Kato R., Yajima S., Takai Y.: Designand construction of an accelerator-based boron neutron capturetherapy (AB-BNCT) facility with multiple treatment rooms at theSouthern Tohoku BNCT Research Center. Appl. Radiat. Isot., 2020;156: 108961
    Google Scholar
  • 38. Kaur M., Singh P., Singh K., Gaharwar U.S., Meena R., Kumar M.,Nakagawa F., Wu S., Suzuki M., Nakamura H., Kumar A.: Boron nitride(10BN) a prospective material for treatment of cancer by boron neutroncapture therapy (BNCT). Mater. Lett., 2020; 259: 126832
    Google Scholar
  • 39. Kawabata S., Yang W., Barth R.F., Wu G., Huo T., Binns P.J., RileyK.J., Ongayi O., Gottumukkala V., Vicente M.G.: Convection enhanceddelivery of carboranylporphyrins for neutron capture therapy of braintumors. J. Neuro-Oncol., 2011; 103: 175–185
    Google Scholar
  • 40. Kimura Y., Ariyoshi Y., Shimahara M., Miyatake S., Kawabata S.,Ono K., Suzuki M., Maruhashi A.: Boron neutron capture therapy forrecurrent oral cancer and metastasis of cervical lymph node. Appl.Radiat. Isot., 2009; 67: S47–S49
    Google Scholar
  • 41. Kiyanagi Y., Sakurai Y., Kumada H., Tanaka H.: Status of accelerator-based BNCT projects worldwide. AIP Conf. Proc., 2019; 2160: 050012
    Google Scholar
  • 42. Kullberg E.B., Wei Q., Capala J., Giusti V., Malmström P.U., GeddaL.: EGF-receptor targeted liposomes with boronatedacridine: Growthinhibition of cultured glioma cells after neutron irradiation. Int. J.Radiat. Biol., 2005; 81: 621–629
    Google Scholar
  • 43. Kumada H., Naito F., Hasegawa K., Kobayashi H., Kurihara T., TakadaK., Onishi T., Sakurai H., Matsumura A., Sakae T.: Development ofLINAC-based neutron source for Boron Neutron Capture Therapy inUniversity of Tsukuba. Plasma Fusion Res., 2018; 13: 2406006
    Google Scholar
  • 44. Lai C.H., Lin Y.C., Chou F.I., Liang C.F., Lin E.W., Chuang Y.J., LinC.C.: Design of multivalent galactosyl carborane as a targeting specificagent for potential application to boron neutron capture therapy.Chem. Commun., 2012; 48: 612–614
    Google Scholar
  • 45. Lam C.W., James J.T., McCluskey R., Hunter R.L.: Pulmonary toxicityof single-wall carbon nanotubes in mice 7 and 90 days after intratrachealinstillation. Toxicol. Sci., 2004; 77: 126–134
    Google Scholar
  • 46. Lee C.H., Zhang D., Yap Y.K.: Functionalization, dispersion, andcutting of boron nitride nanotubes in water. J. Phys. Chem. C, 2012;116: 1798–1804
    Google Scholar
  • 47. Luderer M.J., de la Puente P., Azab A.K.: Advancements in tumortargeting strategies for Boron Neutron Capture Therapy. Pharm. Res.,2015; 32: 2824–2836
    Google Scholar
  • 48. Luderer M.J., Muz B., Alhallak K., Sun J., Wasden K., Guenthner N.,de la Puente P., Federico C., Azab A.K.: Thermal sensitive liposomesimprove delivery of boronated agents for Boron Neutron CaptureTherapy. Pharm. Res., 2019; 36: 144
    Google Scholar
  • 49. Masunaga S., Kasaoka S., Maruyama K., Nigg D., Sakurai Y., NagataK., Suzuki M., Kinashi Y., Maruhashi A., Ono K.: The potential of transferrin-pendant-type polyethyleneglycol liposomes encapsulatingdecahydrodecaborate-10B (GB-10) as 10B-carriers for boron neutroncapture therapy. Int. J. Radiat. Oncol. Biol. Phys., 2006; 66: 1515–1522
    Google Scholar
  • 50. Mattson M.P., Haddon R.C., Rao A.M.: Molecular functionalizationof carbon nanotubes and use as substrates for neuronal growth.J. Mol. Neurosci., 2000; 14: 175–182
    Google Scholar
  • 51. Mi P., Yanagie H., Dewi N., Yen H.C., Liu X., Suzuki M., Sakurai Y.,Ono K., Takahashi H., Cabral H., Kataoka K., Nishiyama N.: Block copolymerboron cluster conjugate for effective boron neutron capturetherapy of solid tumors. J. Control. Release, 2017; 254: 1–9
    Google Scholar
  • 52. Michiue H., Sakurai Y., Kondo N., Kitamatsu M., Bin F., Nakajima K.,Hirota Y., Kawabata S., Nishiki T., Ohmori I., Tomizawa K., Miyatake S.,Ono K., Matsui H.: The acceleration of boron neutron capture therapyusing multi-linked mercaptoundecahydrododecaborate (BSH) fusedcell-penetrating peptide. Biomaterials, 2014; 35: 3396–3405
    Google Scholar
  • 53. Mirzaei H.R., Sahebkar A., Salehi R., Nahand J.S., Karimi E., JaafariM.R., Mirzaei H.: Boron neutron capture therapy: Moving toward targetedcancer therapy. J. Cancer Res. Ther., 2016; 12: 520–525
    Google Scholar
  • 54. Mishima Y., Honda C., Ichihashi M., Obara H., Hiratsuka J., FukudaH., Karashima H., Kobayashi T., Kanda K., Yoshino K.: Treatment ofmalignant melanoma by single thermal neutron capture therapy withmelanoma-seeking 10B-compound. Lancet, 1989; 2: 388–389
    Google Scholar
  • 55. Miyatake S.I., Kawabata S., Hiramatsu R., Kuroiwa T., Suzuki M.,Ono K.: Boron Neutron Capture Therapy of malignant gliomas. Prog.Neurol. Surg., 2018; 32: 48–56
    Google Scholar
  • 56. Miyatake S.I., Kawabata S., Kajimoto Y., Aoki A., Yokoyama K.,Yamada M., Kuroiwa T., Tsuji M., Imahori Y., Kirihata M., Sakurai Y.,Masunaga S.I., Nagata K., Maruhashi A., Ono K.: Modified boron neutroncapture therapy for malignant gliomas performed using epithermalneutron and two boron compounds with different accumulationmechanisms: An efficacy study based on findings on neuroimages. J.Neurosurg., 2005; 103: 1000–1009
    Google Scholar
  • 57. Mortensen M.W., Sørensen P.G., Björkdahl O., Jensen M.R., GundersenH.J., Bjørnholm T.: Preparation and characterization of boroncarbide nanoparticles for use as a novel agent in T cell-guided boronneutron capture therapy. Appl. Radiat. Isot., 2006; 64: 315–324
    Google Scholar
  • 58. Moss R.L.: Critical review, with an optimistic outlook, on BoronNeutron Capture Therapy (BNCT). Appl. Radiat. Isot., 2014; 88: 2–11
    Google Scholar
  • 59. Naito F.: Introduction to accelerators for boron neutron capturetherapy. Ther. Radiol. Oncol., 2018; 2: 54
    Google Scholar
  • 60. Nakagawa Y., Pooh K., Kobayashi T., Kageji T., Uyama S., MatsumuraA., Kumada H.: Clinical review of the Japanese experiencewith boron neutron capture therapy and a proposed strategy usingepithermal neutron beams. J. Neuro-Oncol., 2003; 62: 87–99
    Google Scholar
  • 61. Nakamura H., Koganei H., Miyoshi T., Sakurai Y., Ono K., Suzuki M.:Antitumor effect of boron nitride nanotubes in combination with thermalneutron irradiation on BNCT. Bioorg. Med. Chem. Lett., 2015; 25: 172–174
    Google Scholar
  • 62. Nakamura S., Imamichi S., Masumoto K., Ito M., Wakita A., OkamotoH., Nishioka S., Iijima K., Kobayashi K., Abe Y., Igaki H., Kurita K., Nishio T., Masutani M., Itami J.: Evaluation of radioactivity in the bodiesof mice induced by neutron exposure from an epi-thermal neutronsource of an accelerator-based boron neutron capture therapy system.Proc. Jpn. Acad. Ser. B Phys. Biol. Sci., 2017; 93: 821–831
    Google Scholar
  • 63. Nedunchezhian K., Aswath N., Thiruppathy M., ThirugnanamurthyS.: Boron Neutron Capture Therapy – A literature review. J. Clin.Diagn. Res., 2016; 10: ZE01–ZE04
    Google Scholar
  • 64. Nemoto H., Cai J., Asao N., Iwamoto S., Yamamoto Y.: Synthesisand biological properties of water-soluble p-boronophenylalaninederivatives. Relationship between water solubility, cytotoxicity, andcellular uptake. J. Med. Chem., 1995; 38: 1673–1678
    Google Scholar
  • 65. Petersen M.S., Petersen C.C., Agger R., Sutmuller M., Jensen M.R.,Sørensen P.G., Mortensen M.W., Hansen T., Bjørnholm T., GundersenH.J., Huiskamp R., Hokland M.: Boron nanoparticles inhibit tumourgrowth by boron neutron capture therapy in the murine B16‐OVAmodel. Anticancer Res., 2008; 28: 571–576
    Google Scholar
  • 66. Radomski J., Rećko W.M., Ketling-Szemley M.: Własności azotkuboru i metody jego otrzymywania. Wydawnictwa PrzemysłuMaszynowego “WEMA”. Warszawa 1980
    Google Scholar
  • 67. Ryashentsev D.S., Belenkov E.A.: New BN polymorphs with two-dimensionalstructure. IOP Conf. Ser.: Mater. Sci. Eng., 2019; 537: 022060
    Google Scholar
  • 68. Seki R., Wakisaka Y., Morimoto N., Takashina M., Koizumi M., TokiH., Fukuda M.: Physics of epi-thermal boron neutron capture therapy(epi-thermal BNCT). Radiol. Phys. Technol., 2017; 10: 387–408
    Google Scholar
  • 69. Şen Ö., Emanet M., Çulha M.: One-step synthesis of hexagonalboron nitrides, their crystallinity and biodegradation. Front. Bioeng.Biotechnol., 2018; 6: 83
    Google Scholar
  • 70. Shvedova A.A., Castranova V., Kisin E.R., Schwegler-Berry D., MurrayA.R., Gandelsman V.Z., Maynard A., Baron P.: Exposure to carbonnanotube material: Assessment of nanotube cytotoxicity using humankeratinocyte cells. J. Toxicol. Environ. Health A, 2003; 66: 1909–1926
    Google Scholar
  • 71. Singh B., Kaur G., Singh P., Singh K. Kumar B., Vij A., Kumar M.,Bala R., Meena R., Singh A., Thakur A., Kumar A.: Nanostructured boronnitride with high water dispersibility for Boron Neutron CaptureTherapy. Sci. Rep., 2016; 6: 35535
    Google Scholar
  • 72. Slatkin D.N.: A history of boron neutron capture therapy of braintumours. Postulation of a brain radiation dose tolerance limit. Brain,1991; 114: 1609–1629
    Google Scholar
  • 73. Suzuki M.: Boron neutron capture therapy (BNCT): A unique rolein radiotherapy with a view to entering the accelerator-based BNCTera. Int. J. Clin. Oncol., 2020; 25: 43–50
    Google Scholar
  • 74. Suzuki M., Masunaga S.I., Kinashi Y., Takagaki M., Sakurai Y., KobayashiT., Ono K.: The effects of boron neutron capture therapy onliver tumors and normal hepatocytes in mice. Jpn. J. Cancer Res.,2000; 91: 1058–1064
    Google Scholar
  • 75. Tajes M., Ramos-Fernández E., Weng-Jiang X., Bosch-Morató M.,Guivernau B., Eraso-Pichot A., Salvador B., Fernàndez-Busquets X.,Roquer J., Muñoz F.J.: The blood-brain barrier: Structure, function andtherapeutic approaches to cross it. Mol. Membr. Biol., 2014; 31: 152–167
    Google Scholar
  • 76. Tsuji T., Yoshitomi H., Ishikawa Y., Koshizaki N., Suzuki M., UsukuraJ.: A method to selectively internalize submicrometer boron carbideparticles into cancer cells using surface transferrin conjugationfor developing a new boron neutron capture therapy agent. J. Exp.Nanosci., 2020; 15: 1–11
    Google Scholar
  • 77. Türkez H., Arslan M.E., Sönmez E., Geyikoğlu F., Açıkyıldız M., TatarA.: Microarray assisted toxicological investigations of boron carbidenanoparticles on human primary alveolar epithelial cells. Chem. Biol.Interact., 2019; 300: 131–137
    Google Scholar
  • 78. Vos M.J., Turowski B., Zanella F.E., Paquis P., Siefert A., HideghétyK., Haselsberger K., Grochulla F., Postma T.J., Wittig A., Heimans J.J.,Slotman B.J., Vandertop W.P., Sauerwein W.: Radiologic findings inpatients treated with boron neutron capture therapy for glioblastomamultiforme within EORTC trial 11961. Int. J. Radiat. Oncol. Biol.Phys., 2005; 61: 392–399
    Google Scholar
  • 79. Warheit D.B., Laurence B.R., Reed K.L., Roach D.H., Reynolds G.A.,Webb T.R.: Comparative pulmonary toxicity assessment of single-wallcarbon nanotubes in rats. Toxicol. Sci., 2004; 77: 117–125
    Google Scholar
  • 80. Weng Q., Wang B., Wang X., Hanagata N., Li X., Liu D., Wang X.,Jiang X., Bando Y., Golberg D.: Highly water-soluble, porous, and biocompatibleboron nitrides for anticancer drug delivery. ACS Nano,2014; 8: 6123–6130
    Google Scholar
  • 81. Wittig A., Sauerwein W.A., Coderre J.A.: Mechanisms of transportof p-borono-phenylalanine through the cell membrane in vitro. Radiat.Res., 2000; 153: 173–180
    Google Scholar
  • 82. Wittig A., Stecher-Rasmussen F., Hilger R.A., Rassow J., Mauri P.,Sauerwein W.: Sodium mercaptoundecahydro-closo-dodecaborate(BSH), a boron carrier that merits more attention. Appl. Radiat. Isot.,2011; 69: 1760–1764
    Google Scholar
  • 83. Wu G., Yang W., Barth R.F., Kawabata S., Swindall M., BandyopadhyayaA.K., Tjarks W., Khorsandi B., Blue T.E., Ferketich A.K., Yang M.,Christoforidis G.A., Sferra T.J., Binns P.J., Riley K.J. i wsp.: Moleculartargeting and treatment of an epidermal growth factor receptorpositiveglioma using boronated cetuximab. Clin. Cancer Res., 2007;13: 1260–1268
    Google Scholar
  • 84. Yanagië H., Tomita T., Kobayashi H., Fujii Y., Takahashi T., HasumiK., Nariuchi H., Sekiguchi M.: Application of boronated anti-CEA im munoliposome to tumour cell growth inhibition in in vitro boronneutron capture therapy model. Br. J. Cancer, 1991; 63: 522–526
    Google Scholar
  • 85. Yang W., Barth R.F., Wu G., Tjarks W., Binns P., Riley K.: Boronneutron capture therapy of EGFR or EGFRvIII positive gliomas usingeither boronated monoclonal antibodies or epidermal growthfactor as molecular targeting agents. Appl. Radiat. Isot., 2009; 67:S328–S331
    Google Scholar
  • 86. Yang W., Wu G., Barth R.F., Swindall M.R., Bandyopadhyaya A.K.,Tjarks W., Tordoff K., Moeschberger M., Sferra T.J., Binns P.J., RileyK.J., Ciesielski M.J., Fenstermaker R.A., Wikstrand C.J.: Moleculartargeting and treatment of composite EGFR and EGFRvIII-positivegliomas using boronated monoclonal antibodies. Clin. Cancer Res.,2008; 14: 883–891
    Google Scholar
  • 87. Yinghuai Z., Peng A.T., Carpenter K., Maguire J.A., Hosmane N.S.,Takagaki M.: Substituted carborane-appended water-soluble singlewallcarbon nanotubes: New approach to Boron Neutron CaptureTherapy drug delivery. J. Am. Chem. Soc., 2005; 127: 9875–9880
    Google Scholar
  • 88. Yokoyama K., Miyatake S., Kajimoto Y., Kawabata S., Doi A., YoshidaT., Asano T., Kirihata M., Ono K., Kuroiwa T.: Pharmacokinetic studyof BSH and BPA in simultaneous use for BNCT. J. Neuro-Oncol., 2006;78: 227–232
    Google Scholar
  • 89. Zhuo J.C., Cai J., Soloway A.H., Barth R.F., Adams D.M., Ji W., TjarksW.: Synthesis and biological evaluation of boron-containing polyaminesas potential agents for neutron capture therapy of brain tumors.J. Med. Chem., 1999; 42: 1282–1292
    Google Scholar

Pełna treść artykułu

Przejdź do treści