Sirtuiny – enzymy o wielokierunkowej aktywności katalitycznej
Ewa Maria Kratz 1 , Katarzyna Sołkiewicz 1 , Agnieszka Kaczmarek 1 , Agnieszka Piwowar 2Abstrakt
Sirtuiny (SIRT) są deacetylazami histonów zależnymi od NAD+, które odgrywają istotną rolę w funkcjonowaniu organizmu ludzkiego. Przypisuje się im udział w licznych procesach zachodzących w komórkach m.in. w potranslacyjnej modyfikacji białek, wyciszaniu transkrypcji genów, indukowaniu procesów naprawczych, a także w regulacji procesów metabolicznych. Wykazano również, że sirtuiny odgrywają istotną rolę w obniżaniu poziomu reaktywnych form tlenu, jak również w stymulacji wzrostu komórek, ich starzeniu się i śmierci. Tak szeroki zakres procesów, na które mają wpływ sirtuiny powoduje, że w sirtuiny stały się obiektem wielu badań mających na celu szczegółowe poznanie mechanizmów ich działania i roli jaką odgrywają. Celem opracowania było zebranie i usystematyzowanie informacji dotyczących sirtuin, głównie z ostatnich 10 lat, zarówno tych dotyczących organizmu ludzkiego, jak i opartych na wynikach badań na modelach zwierzęcych, czy liniach komórkowych. W artykule omówiono budowę, funkcję i rolę biologiczną jaką sirtuiny odgrywają w procesach komórkowych.
Przypisy
- 1. Bannister A.J., Kouzarides T.: Regulation of chromatin by histonemodifications. Cell Res., 2011; 21: 381–395
Google Scholar - 2. Barber M.F., Michishita-Kioi E., Xi Y., Tasselli L., Kioi M., MoqtaderiZ., Tennen R.I., Paredes S., Young N.L., Chen K., Struhl K.,Garcia B.A., Gozani O., Li W., Chua K.F.: SIRT7 links H3K18 deacetylationto maintenance of oncogenic transformation. Nature,2012; 487: 114–118
Google Scholar - 3. Bordone L., Motta M.C., Picard F., Robinson A., Jhala U.S., ApfeldJ., McDonagh T., Lemieux M., McBurney M., Szilvasi A., Easlon E.J.,Lin S.J., Guarente L.: Sirt1 regulates insulin secretion by repressingUCP2 in pancreatic β cells. PLoS Biol., 2006; 4: e31
Google Scholar - 4. Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y.,Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., Hu L.S., Cheng H.L.,Jedrychowski M.P., Gygi S.P., Sinclair D.A. i wsp.: Stress-dependentregulation of FOXO transcription factors by the SIRT1 deacetylase.Science, 2004; 303: 2011–2015
Google Scholar - 5. Chen S., Seiler J., Santiago-Reichelt M., Felbel K., Grummt I.,Voit R.: Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7.Mol. Cell, 2013; 52: 303–313
Google Scholar - 6. Cheng Y., Ren X., Gowda A.S., Shan Y., Zhang L., Yuan Y.S., PatelR., Wu H., Huber-Keener K., Yang J.W., Liu D., Spratt T.E., Yang J.M.:Interaction of Sirt3 with OGG1 contributes to repair of mitochondrialDNA and protects from apoptotic cell death under oxidativestress. Cell Death Dis., 2013; 4: e731
Google Scholar - 7. Christovam A.C., Theodoro V., Mendonça F.A., Esquisatto M.A.,dos Santos G.M., do Amaral M.E.: Activators of SIRT1 in wound repair:An animal model study. Arch Dermatol Res., 2019; 311: 193–201
Google Scholar - 8. Cimen H., Han M.J., Yang Y., Tong Q., Koc H., Koc E.C.: Regulationof succinate dehydrogenase activity by SIRT3 in mammalianmitochondria. Biochemistry., 2010; 49: 304–311
Google Scholar - 9. Dominy J.E. Jr, Lee Y., Jedrychowski M.P., Chim H., Jurczak M.J.,Camporez J.P., Ruan H.B., Feldman J., Pierce K., Mostoslavsky R.,Denu J.M., Clish C.B., Yang X., Shulman G.I., Gygi S.P. i wsp.: The deacetylaseSirt6 activates the acetyltransferase GCN5 and suppresseshepatic gluconeogenesis. Mol. Cell, 2012; 48: 900–913
Google Scholar - 10. Dryden S.C., Nahhas F.A., Nowak J.E., Goustin A.S., TainskyM.A.: Role for human SIRT2 NAD-dependent deacetylase activityin control of mitotic exit in the cell cycle. Mol. Cell. Biol., 2003;23: 3173–3185
Google Scholar - 11. Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J.,Kim, J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., AuwerxJ. i wsp.: Sirt5 is a NAD-dependent protein lysine demalonylase anddesuccinylase. Science, 2011; 334: 806–809
Google Scholar - 12. Eckschlager T., Plch J., Stiborova M., Hrabeta J.: Histone deacetylaseinhibitors as anticancer drugs. Int. J. Mol. Sci., 2017; 18: 1414
Google Scholar - 13. Espenshade P.J.: SREBPs: Sterol-regulated transcription factors.J. Cell Sci., 2006; 119: 973–976
Google Scholar - 14. Fataftah N., Mohr C., Hajirezaei M.R., von Wirén N., HumbeckK.: Changes in nitrogen availability lead to a reprogramming ofpyruvate metabolism. BMC Plant Biol., 2018; 18: 77
Google Scholar - 15. Feldman J.L., Dittenhafer-Reed K.E., Denu J.M.: Sirtuin catalysisand regulation. J. Biol. Chem., 2012; 287: 42419–42427
Google Scholar - 16. Finley L.W., Haas W., Desquiret-Dumas V., Wallace D.C., ProcaccioV., Gygi S.P., Haigis M.C.: Succinate dehydrogenase is a directtarget of sirtuin 3 deacetylase activity. PLoS One, 2011; 6: e23295
Google Scholar - 17. Flick F., Lüscher B.: Regulation of sirtuin function by posttranslationalmodifications. Front. Pharmacol., 2012; 3: 29
Google Scholar - 18. Frye R.A.: Phylogenetic classification of prokaryotic and eukaryoticSir2-like proteins. Biochem. Biophys. Res. Commun., 2000;273: 793–798
Google Scholar - 19. Gao D., Wang H., Xu Y., Zheng D., Zhang Q., Li W.: Protectiveeffect of astaxanthin against contrast-induced acute kidney injuryvia SIRT1-p53 pathway in rats. Int. Urol. Nephrol., 2019; 51: 351–358
Google Scholar - 20. GeneCards.: https://www.genecards.org (15.06.2020)
Google Scholar - 21. Greiss S., Gartner A.: Sirtuin/Sir2 phylogeny, evolutionaryconsiderations and structural conservation. Mol. Cells, 2009; 28:407–415
Google Scholar - 22. Haigis M.C., Mostoslavsky R., Haigis K.M., Fahie K., ChristodoulouD.C., Murphy A.J., Valenzuela D.M., Yancopoulos G.D., KarowM., Blander G., Wolberger C., Prolla T.A., Weindruch R., Alt F.W.,Guarente L.: SIRT4 inhibits glutamate dehydrogenase and opposesthe effects of calorie restriction in pancreatic β cells. Cell., 2006;126: 941–954
Google Scholar - 23. Hallows W.C., Yu W., Denu J.M.: Regulation of glycolytic enzymephosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation.J. Biol. Chem., 2012; 287: 3850–3858
Google Scholar - 24. Hikosaka K., Yaku K., Okabe K., Nakagawa T.: Implicationsof NAD metabolism in pathophysiology and therapeuticsfor neurodegenerative diseases. Nutr. Neurosci., 2019; DOI:10.1080/1028415X.2019.1637504
Google Scholar - 25. Horton J.D., Goldstein J.L., Brown M.S.: SREBPs: Activators ofthe complete program of cholesterol and fatty acid synthesis inthe liver. J. Clin. Invest., 2002; 109: 1125–1131
Google Scholar - 26. Houtkooper R.H., Pirinen E., Auwerx J:. Sirtuins as regulatorsof metabolism and healthspan. Nat. Rev. Mol. Cell Biol., 2012; 13:225–238
Google Scholar - 27. Hubbi M.E., Hu H., Kshitiz, Gilkes D.M., Semenza G.L.: Sirtuin-7inhibits the activity of hypoxia-inducible factors. J. Biol. Chem.,2013; 288: 20768–20775
Google Scholar - 28. Jacobs K.M., Pennington J.D., Bisht K.S., Aykin-Burns N., KimH.S., Mishra M., Sun L., Nguyen P., Ahn B.H., Leclerc J., Deng C.X.,Spitz D.R., Gius D.: SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent geneexpression. Int. J. Biol. Sci., 2008; 4: 291–299
Google Scholar - 29. Jeong J., Juhn K., Lee H., Kim S.H., Min B.H., Lee K.M., Cho M.H.,Park G.H., Lee K.H.: SIRT1 promotes DNA repair activity and deacetylationof Ku70. Exp. Mol. Med., 2007; 39: 8–13
Google Scholar - 30. Jęśko H., Strosznajder R.P.: Sirtuins and their interactions withtranscription factors and poly(ADP-ribose) polymerases. Folia Neuropathol.,2016; 54: 212–233
Google Scholar - 31. Jiang W., Wang S., Xiao M., Lin Y., Zhou L., Lei Q., Xiong Y., GuanK.L., Zhao S.: Acetylation regulates gluconeogenesis by promotingPEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. MolCell., 2011; 43: 33–44
Google Scholar - 32. Jing E., Gesta S., Kahn C.R.: SIRT2 regulates adipocyte differentiationthrough FoxO1 acetylation/deacetylation. Cell Metab.,2007; 6: 105–114
Google Scholar - 33. Jing H., Lin H.: Sirtuins in epigenetic regulation. Chem Rev.,2015; 115: 2350–2375
Google Scholar - 34. Johnson C.A.: Chromatin modification and disease. J. Med.Genet., 2000; 37: 905–915
Google Scholar - 35. Kahl G.: The dictionary of genomics, transcriptomics and proteomics.Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 2015; Volume 1 A-D: 2156
Google Scholar - 36. Kaidi A., Weinert B.T., Choudhary C., Jackson S.P.: Human SIRT6promotes DNA end resection through CtIP deacetylation. Science,2010; 329: 1348–1353
Google Scholar - 37. Karim M.F., Yoshizawa T., Sobuz S.U., Sato Y., Yamagata K.:Sirtuin 7-dependent deacetylation of DDB1 regulates the expressionof nuclear receptor TR4. Biochem. Biophys. Res. Commun.,2017; 490: 423–428
Google Scholar - 38. Kouzarides T.: Chromatin modifications and their function.Cell., 2007; 128: 693–705
Google Scholar - 39. Kozako T., Suzuki T., Yoshimitsu M., Arima N., Honda S., SoedaS.: Anticancer agents targeted to sirtuins. Molecules, 2014; 19:20295–20313
Google Scholar - 40. Kupis W., Pałyga J., Tomal E., Niewiadomska E.: The role of sirtuinsin cellular homeostasis. J. Physiol. Biochem., 2016; 72: 371–380
Google Scholar - 41. Kyrylenko S., Kyrylenko O., Suuronen T., Salminen A.: Differentialregulation of the Sir2 histone deacetylase gene familyby inhibitors of class I and II histone deacetylases. Cell. Mol. LifeSci., 2003; 60: 1990–1997
Google Scholar - 42. Landry J., Sutton A., Tafrov S.T., Heller R.C., Stebbins J., PillusL., Sternglanz R.: The silencing protein SIR2 and its homologs areNAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA,2000; 97: 5807–5811
Google Scholar - 43. Langley E., Pearson M., Faretta M., Bauer U.M., Frye RA., MinucciS., Pelicci P.G., Kouzarides T.: Human SIR2 deacetylates p53and antagonizes PML/p53-induced cellular senescence. EMBO J.,2002; 21: 2383–2396
Google Scholar - 44. Laurent G., de Boer V.C., Finley L.W., Sweeney M., Lu H., SchugT.T., Cen Y., Jeong S.M., Li X., Sauve A.A., Haigis M.C.: SIRT4 repressesperoxisome proliferator-activated receptor α activity tosuppress hepatic fat oxidation. Mol. Cell. Biol., 2013; 33: 4552–4561
Google Scholar - 45. Laurent G., German N.J., Saha A.K., de Boer V.C., Davies M.,Koves T.R., Dephoure N., Fischer F., Boanca G., Vaitheesvaran B.,Lovitch S.B., Sharpe A.H., Kurland I.J., Steegborn C., Gygi S.P. iwsp: SIRT4 coordinates the balance between lipid synthesis andcatabolism by repressing malonyl-CoA decarboxylase. Mol. Cell.,2013; 50: 686–698
Google Scholar - 46. Li L., Shi L., Yang S., Yan R., Zhang D., Yang J., He L., Li W., Yi X.,Sun L., Liang J., Cheng Z., Shi L., Shang Y., Yu W.: SIRT7 is a histonedesuccinylase that functionally links to chromatin compaction andgenome stability. Nat. Commun., 2016; 7: 12235
Google Scholar - 47. Li W., Zhang B., Tang J., Cao Q., Wu Y., Wu C., Guo J., Ling E.A.,Liang F.: Sirtuin 2, a mammalian homolog of yeast silent informationregulator-2 longevity regulator, is an oligodendroglial proteinthat decelerates cell differentiation through deacetylatingα-tubulin. J. Neurosci., 2007; 27: 2606–2616
Google Scholar - 48. Lipska K., Filip A.A., Gumieniczek A.: Postępy w badaniachnad inhibitorami deacetylaz histonów jako lekami przeciwnowotworowymi.Postępy Hig. Med. Dośw., 2018; 72: 1018–1031
Google Scholar - 49. Liszt G., Ford E., Kurtev M., Guarente L.: Mouse Sir2 homologSIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem., 2005;280: 21313–21320
Google Scholar - 50. Lombard D.B., Alt F.W., Cheng H.L., Bunkenborg J., Streeper R.S.,Mostoslavsky R., Kim J., Yancopoulos G., Valenzuela D., MurphyA., Yang Y., Chen Y., Hirschey M.D., Bronson R.T., Haigis M. i wsp.:Mammalian Sir2 homolog SIRT3 regulates global mitochondriallysine acetylation. Mol. Cell. Biol., 2007; 27: 8807–8814
Google Scholar - 51. Luo J., Nikolaev A.Y., Imai S., Chen D., Su F., Shiloh A., GuarenteL., Gu W.: Negative control of p53 by Sir2α promotes cell survivalunder stress. Cell., 2001; 107: 137–148
Google Scholar - 52. Luo K., Huang W., Tang S.: Sirt3 enhances glioma cell viabilityby stabilizing Ku70-BAX interaction. Onco Targets Ther., 2018;11: 7559–7567
Google Scholar - 53. Mao Z., Hine C., Tian X., Van Meter M., Au M., Vaidya A., SeluanovA., Gorbunova V.: SIRT6 promotes DNA repair under stressby activating PARP1. Science, 2011; 332: 1443–1446
Google Scholar - 54. Mathias R.A., Greco T.M., Cristea I.M.: Identification of sirtuin4(SIRT4) protein interactions: Uncovering candidate acyl-modifiedmitochondrial substrates and enzymatic regulators. Methods Mol.Biol., 2016; 1436: 213–239
Google Scholar - 55. Mathias R.A., Greco T.M., Oberstein A., Budayeva H.G., ChakrabartiR., Rowland E.A., Kang Y., Shenk T., Cristea I.M.: Sirtuin 4 is alipoamidase regulating pyruvate dehydrogenase complex activity.Cell., 2014; 159: 1615–1625
Google Scholar - 56. Matsushita N., Yonashiro R., Ogata Y., Sugiura A., NagashimaS., Fukuda T., Inatome R., Yanagi S.: Distinct regulation of mitochondriallocalization and stability of two human Sirt5 isoforms.Genes Cells, 2011; 16: 190–202
Google Scholar - 57. Maxwell P.H., Pugh C.W., Ratcliffe P.J.: The pVHL-hIF-1 system.A key mediator of oxygen homeostasis. Adv. Exp. Med. Biol.,2001; 502: 365–376
Google Scholar - 58. McCord R.A., Michishita E., Hong T., Berber E., Boxer L.D., KusumotoR., Guan S., Shi X., Gozani O., Burlingame A.L., Bohr V.A.,Chua K.F.: SIRT6 stabilizes DNA-dependent protein kinase at chromatinfor DNA double-strand break repair. Aging, 2009; 1: 109–121
Google Scholar - 59. Mei Z., Zhang X., Yi J., Huang J., He J., Tao Y.: Sirtuins in metabolism,DNA repair and cancer. J. Exp. Clin. Cancer Res., 2016; 35: 182
Google Scholar - 60. Meijer A.J., Lamers W.H., Chamuleau R.A.: Nitrogen metabolismand ornithine cycle function. Physiol Rev., 1990; 70: 701–748
Google Scholar - 61. Michan S., Sinclair D.: Sirtuins in mammals: Insights into theirbiological function. Biochem. J., 2007; 404: 1–13
Google Scholar - 62. Michishita E., McCord R.A., Berber E., Kioi M., Padilla-Nash H.,Damian M., Cheung P., Kusumoto R., Kawahara T.L., Barrett J.C.,Chang H.Y., Bohr V.A., Ried T., Gozani O., Chua K.F.: SIRT6 is a histoneH3 lysine 9 deacetylase that modulates telomeric chromatin.Nature, 2008; 452: 492–496
Google Scholar - 63. Muth V., Nadaud S., Grummt I., Voit R.: Acetylation of TAFI68,a subunit of TIF-IB/SL1, activates RNA polymerase I transcription.EMBO J., 2001; 20: 1353–1362
Google Scholar - 64. Nakae J., Oki M., Cao Y.: The FoxO transcription factors andmetabolic regulation. FEBS Lett., 2008; 582: 54–67
Google Scholar - 65. Nakagawa T., Lomb D.J., Haigis M.C., Guarente L.: SIRT5 deacetylatescarbamoyl phosphate synthetase 1 and regulates the ureacycle. Cell, 2009; 137: 560–570
Google Scholar - 66. Nakamura Y., Ogura M., Ogura K., Tanaka D., Inagaki N.: SIRT5deacetylates and activates urate oxidase in liver mitochondria ofmice. FEBS Lett., 2012; 586: 4076–4081
Google Scholar - 67. Nishida Y., Rardin M.J., Carrico C., He W., Sahu A.K., Gut P., NajjarR., Fitch M., Hellerstein M., Gibson B.W., Verdin E.: SIRT5 regulatesboth cytosolic and mitochondrial protein malonylation withglycolysis as a major target. Mol. Cell., 2015; 59: 321–332
Google Scholar - 68. North B.J., Marshall B.L., Borra M.T., Denu J.M., Verdin E.: Thehuman Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase.Mol. Cell, 2003; 11: 437–444
Google Scholar - 69. Obsil T., Obsilova V.: Structure/function relationships underlyingregulation of FOXO transcription factors. Oncogene, 2008;27: 2263–2275
Google Scholar - 70. Osborne T.F., Espenshade P.J.: Evolutionary conservation andadaptation in the mechanism that regulates SREBP action: What along, strange tRIP it’s been. Genes Dev., 2009; 23: 2578–2591
Google Scholar - 71. Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z.,Zhang Y., Zwaans B.M., Skinner M.E., Lombard D.B., Zhao Y.: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways.Mol. Cell, 2013; 50: 919–930
Google Scholar - 72. Peng C., Lu Z., Xie Z., Cheng Z., Chen Y., Tan M., Luo H., ZhangY., He W., Yang K., Zwaans B.M., Tishkoff D., Ho L., Lombard D.,He T.C. i wsp.: The first identification of lysine malonylation substratesand its regulatory enzyme. Mol. Cell Proteomics, 2011; 10:M111.012658
Google Scholar - 73. Picard F., Kurtev M., Chung N., Topark-Ngarm A., SenawongT., Machado de Oliviera R., Leid M., McBurney M.W., Guarente L.:Sirt1 promotes fat mobilization in white adipocytes by repressingPPAR-γ. Nature, 2004; 429: 771–776
Google Scholar - 74. Polletta L., Vernucci E., Carnevale I., Arcangeli T., Rotili D.,Palmerio S., Steegborn C., Nowak T., Schutkowski M., PellegriniL., Sansone L., Villanova L., Runci A., Pucci B., Morgante E. i wsp.:SIRT5 regulation of ammonia-induced autophagy and mitophagy.Autophagy, 2015; 11: 253–270
Google Scholar - 75. Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., WuS.Y., Chiang C.M., Veenstra T.D., Kemper J.K.: SIRT1 deacetylatesand inhibits SREBP-1C activity in regulation of hepatic lipid metabolism.J. Biol. Chem., 2010; 285: 33959–33970
Google Scholar - 76. Ramsey K.M., Mills K.F., Satoh A., Imai S.I.: Age-associated lossof Sirt1-mediated enhancement of glucose-stimulated insulin secretionin beta cell-specific Sirt1-overexpressing (BESTO) mice.Aging Cell, 2008; 7: 78–88
Google Scholar - 77. Rangarajan P., Karthikeyan A., Lu J., Ling E.A., Dheen S.T.: Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia.Neuroscience, 2015; 311: 398–414
Google Scholar - 78. Rardin M.J., He W., Nishida Y., Newman J.C., Carrico C., DanielsonS.R., Guo A., Gut P., Sahu A.K,. Li B., Uppala R., Fitch M.,Riiff T., Zhu L., Zhou J. i wsp.: SIRT5 regulates the mitochondriallysine succinylome and metabolic networks. Cell Metab., 2013;18: 920–933
Google Scholar - 79. Rodgers J.T., Lerin C., Gerhart-Hines Z., Puigserver P.: Metabolicadaptations through the PGC-1α and SIRT1 pathways. FEBSLett., 2008; 582: 46–53
Google Scholar - 80. Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M.,Puigserver P.: Nutrient control of glucose homeostasis through acomplex of PGC-1α and SIRT1. Nature, 2005; 434: 113–118
Google Scholar - 81. Rodgers J.T., Puigserver P.: Fasting-dependent glucose and lipidmetabolic response through hepatic sirtuin 1. Proc. Natl. Acad.Sci. USA, 2007; 104: 12861–12866
Google Scholar - 82. Rorbach-Dolata A., Kubis A., Piwowar A.: Modyfikacje epigenetyczne– ważny mechanizm w zaburzeniach cukrzycy. PostępyHig. Med. Dośw., 2017; 71: 960–974
Google Scholar - 83. Ryu D., Jo Y.S., Lo Sasso G., Stein S., Zhang H., Perino A., LeeJ.U., Zeviani M., Romand R., Hottiger M.O., Schoonjans K., AuwerxJ.: A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrialfunction. Cell. Metab., 2014; 20: 856–869
Google Scholar - 84. Sanders B.D., Jackson B., Marmorstein R.: Structural basis forsirtuin function: What we know and what we don’t. Biochim. Biophys.Acta, 2010; 1804: 1604–1616
Google Scholar - 85. Scher M.B., Vaquero A., Reinberg D.: SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondriaupon cellular stress. Genes Dev., 2007; 21: 920–928
Google Scholar - 86. Schiedel M., Robaa D., Rumpf T., Sippl W., Jung M.: The currentstate of NAD+-dependent histone deacetylases (sirtuins) as noveltherapeutic targets. Med. Res. Rev., 2017; 37: 147–200
Google Scholar - 87. Schwer B., North B.J., Frye R.A., Ott M., Verdin E.: The humansilent information regulator (Sir)2 homologue hSIRT3 is a mitochondrialnicotinamide adenine dinucleotide-dependent deacetylase.J. Cell. Biol., 2002; 158: 647–657
Google Scholar - 88. Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., WatsonD.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B., Gottlieb E.:Succinate links TCA cycle dysfunction to oncogenesis by inhibitingHIF-α prolyl hydroxylase. Cancer Cell, 2005; 7: 77–85
Google Scholar - 89. Semenza G.L.: Regulation of oxygen homeostasis by hypoxiainduciblefactor 1. Physiology, 2009; 24: 97–106
Google Scholar - 90. Shin J., He M., Liu Y., Paredes S., Villanova L., Brown K., QiuX., Nabavi N., Mohrin M., Wojnoonski K. Li P., Cheng H.L., MurphyA.J., Valenzuela D.M., Luo H. i wsp.: SIRT7 represses Myc activityto suppress ER stress and prevent fatty liver disease. Cell Rep.,2013; 5: 654–665
Google Scholar - 91. Siedlecka K., Bogusławski W.: Sirtuiny – enzymydługowieczności? Gerontol. Pol., 2005; 13: 147–152
Google Scholar - 92. Snyder C.A., Goodson M.L., Schroeder A.C., Privalsky M.L.:Regulation of corepressor alternative mRNA splicing by hormonaland metabolic signaling. Mol. Cell. Endocrinol., 2015; 413: 228–235
Google Scholar - 93. Sundaresan N.R., Samant S.A., Pillai V.B., Rajamohan S.B., GuptaM.P.: SIRT3 is a stress responsive deacetylase in cardiomyocytesthat protects cells from stress-mediated cell death by deacetylationof Ku70. Mol. Cell. Biol., 2008; 28: 6384–6401
Google Scholar - 94. Tan M., Peng C., Anderson K.A., Chhoy P., Xie Z., Dai L., ParkJ., Chen Y., Huang H., Zhang Y., Ro J., Wagner G.R., Green M.F.,Madsen A.S., Schmiesing J. i wsp.: Lysine glutarylation is a proteinposttranslational modification regulated by SIRT5. Cell. Metab.,2014; 19: 605–617
Google Scholar - 95. Tavares C.D., Sharabi K., Dominy J.E., Lee Y., Isasa M., OrozcoJ.M., Jedrychowski M.P., Kamenecka T.M., Griffin P.R., Gygi S.P.,Puigserver P.: The methionine transamination pathway controlshepatic glucose metabolism through regulation of the GCN5 acetyltransferaseand the PGC-1α transcriptional coactivator. J. Biol.Chem., 2016; 291: 10635–10645
Google Scholar - 96. Tennen R.I., Bua D.J., Wright W.E., Chua K.F.: SIRT6 is requiredfor maintenance of telomere position effect in human cells. Nat.Commun., 2011; 2: 433
Google Scholar - 97. Tsai Y.C., Greco T.M., Cristea I.M.: Sirtuin7 plays a role in ribosomebiogenesis and protein synthesis. Mol. Cell. Proteomics,2014; 13: 73–83
Google Scholar - 98. van der Horst A., Tertoolen L.G., de Vries-Smits L.M., Frye R.A.,Medema R.H., Burgering B.M.: FOXO4 is acetylated upon peroxidestress and deacetylated by the longevity protein hSir2(SIRT1). J.Biol. Chem., 2004; 279: 28873–28879
Google Scholar - 99. Vaquero A., Scher M., Lee D., Erdjument-Bromage H., TempstP., Reinberg D.: Human SirT1 interacts with histone H1 and promotesformation of facultative heterochromatin. Mol. Cell., 2004;16: 93–105
Google Scholar - 100. Vaquero A., Scher M.B., Lee D.H., Sutton A., Cheng H.L., AltF.W., Serrano L., Sternglanz R., Reinberg D.: SirT2 is a histone deacetylasewith preference for histone H4 Lys 16 during mitosis.Genes Dev., 2006; 20: 1256–1261
Google Scholar - 101. Vaziri H., Dessain S.K., Ng Eaton E., Imai S.I., Frye R.A., PanditaT.K., Guarente L., Weinberg R.A.: hSIR2 (SIRT1) functions as anNAD-dependent p53 deacetylase. Cell, 2001; 107: 149–159
Google Scholar - 102. Walker A.K., Yang F., Jiang K., Ji J.Y., Watts J.L., PurushothamA,. Boss O., Hirsch M.L., Ribich S., Smith J.J., Israelian K., WestphalC.H., Rodgers J.T., Shioda T., Elson S.L. i wsp.: Conserved role ofSIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterolregulator SREBP. Genes Dev., 2010; 24: 1403–1417
Google Scholar - 103. Wang F., Chan C.H., Chen K., Guan X., Lin H.K., Tong Q.: Deacetylationof FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3ubiquitination and degradation. Oncogene, 2012; 31: 1546–1557
Google Scholar - 104. Wang F., Nguyen M., Qin F.X., Tong Q.: SIRT2 deacetylatesFOXO3a in response to oxidative stress and caloric restriction.Aging Cell, 2007; 6: 505–514
Google Scholar - 105. Wang F., Tong Q.: SIRT2 suppresses adipocyte differentiationby deacetylating FOXO1 and enhancing FOXO1’s repressive interactionwith PPARγ. Mol. Biol. Cell, 2009; 20: 801–808
Google Scholar - 106. Webb A.E., Brunet A.: FOXO transcription factors: Key regulatorsof cellular quality control. Trends Biochem. Sci., 2014; 39:159–169
Google Scholar - 107. Wiercińska M., Rosołowska-Huszcz D.: Naturalne i syntetycznemodulatory aktywności sirtuin. Kosmos, 2017; 66: 365–377
Google Scholar - 108. Yamamoto H., Schoonjans K., Auwerx J.: Sirtuin functions inhealth and disease. Mol. Endocrinol., 2007; 21: 1745–1755
Google Scholar - 109. Yang B., Zwaans B.M., Eckersdorff M., Lombard D.B.: Thesirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomicstability. Cell Cycle, 2009; 8: 2662–2663
Google Scholar - 110. Yang S.R., Wright J., Bauter M., Seweryniak K., Kode A., RahmanI.: Sirtuin regulates cigarette smoke-induced proinflammatorymediator release via RelA/p65 NF-κB in macrophages in vitro andin rat lungs in vivo: Implications for chronic inflammation and aging.Am. J. Physiol. Lung Cell Mol. Physiol., 2007; 292: L567–L576
Google Scholar - 111. Yeung F., Hoberg J.E., Ramsey C.S., Keller M.D., Jones D.R.,Frye R.A., Mayo M.W.: Modulation of NF-κB-dependent transcriptionand cell survival by the SIRT1 deacetylase. EMBO J., 2004; 23:2369–2380
Google Scholar - 112. Zhang M., Pan Y., Dorfman R.G., Yin Y., Zhou Q., Huang S., LiuJ., Zhao S.: Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesisby inhibiting deacetylase SIRT2. Sci Rep., 2017; 7: 7
Google Scholar - 113. Zhang P.Y., Li G., Deng Z.J., Liu L.Y., Chen L., Tang J.Z., WangY.Q., Cao S.T., Fang Y.X., Wen F., Xu Y., Chen X., Shi K.Q., Li W.F., XieC. i wsp.: Dicer interacts with SIRT7 and regulates H3K18 deacetylationin response to DNA damaging agents. Nucleic Acids Res.,2016; 44: 3629–3642
Google Scholar - 114. Zhao S., Xu W., Jiang W., Yu W., Lin Y., Zhang T., Yao J., ZhouL., Zeng Y., Li H., Li Y., Shi J., An W., Hancock S.M., He F. i wsp.:Regulation of cellular metabolism by protein lysine acetylation.Science, 2010; 327: 1000–1004
Google Scholar - 115. Zhao T., Alam H.B., Liu B., Bronson R.T., Nikolian V.C., Wu E.,Chong W., Li Y.: Selective inhibition of SIRT2 improves outcomes ina lethal septic model. Curr. Mol. Med., 2015; 15: 634–641
Google Scholar - 116. Zhong L., Mostoslavsky R.: SIRT6: A master epigenetic gatekeeperof glucose metabolism. Transcription, 2010; 1: 17–21
Google Scholar - 117. Zhong L., D’Urso A., Toiber D., Sebastian C., Henry R.E., VadysirisackD.D., Guimaraes A., Marinelli B., Wikstrom J.D., Nir T., ClishC.B., Vaitheesvaran B., Iliopoulos O., Kurland I., Dor Y. i wsp.: Thehistone deacetylase Sirt6 regulates glucose homeostasis via Hif1α.Cell, 2010; 140: 280–293
Google Scholar