Dysregulacja poziomu metylotransferaz argininy w patogenezie chorób nowotworowych
Joanna Janisiak 1 , Patrycja Kopytko 1 , Maciej Tarnowski 1Abstrakt
Metylacja argininy uznawana jest za jedną z najtrwalszych i najczęściej występujących modyfikacji potranslacyjnych. Reakcja przeniesienia grupy metylowej z S-adenyzolometioniny na aminową resztę argininy katalizowana jest przez metylotransferazy argininy (PRMT). W organizmie człowieka znanych jest dziewięć enzymów z rodziny PRMT, nazwanych zgodnie z kolejnością odkrycia PRMT1-PRMT9. Ze względu na produkt katalizowanej reakcji metylotransferazy argininy podzielono na trzy klasy: I, II, III. Produktami ich aktywności są odpowiednio: asymetryczna dimetyloarginina (ADMA), symetryczna dimetyloarginina (SDMA) oraz monometyloarginina (MMA). Powstałe modyfikacje w istotny sposób wpływają na strukturę chromatyny, dzięki czemu mogą pełnić funkcję koaktywatorów i supresorów transkrypcji. Metylacja argininy pełni wiele krytycznych funkcji, niezbędnych do prawidłowego funkcjonowania organizmu. Uczestniczy m.in. w kontroli transdukcji sygnału, splicingu mRNA oraz reguluje podstawowe procesy komórkowe, takie jak: proliferacja, różnicowanie, migracja i apoptoza. Coraz więcej dowodów wskazuje, że dysregulacja poziomu PRMT może powadzić do transformacji nowotworowej. Związek między podwyższonym poziomem PRMT a chorobą nowotworową udowodniono m.in. w raku: piersi, jajnika, płuc i jelita grubego. Aktywność metylotransferaz argininy może być regulowana za pomocą małocząsteczkowych inhibitorów PRMT. Obecnie trzy substancje hamujące aktywność PRMT znajdują się w fazie badań klinicznych i wykazują działanie przeciwnowotworowe wobec nowotworów hematologicznych. Przypuszcza się, że zastosowanie swoistych inhibitorów PRMT może się okazać nowym, skutecznym i bezpiecznym sposobem zwalczania chorób onkologicznych.
Przypisy
- 1. Alam H., Gu B., Lee M.G.: Histone methylation modifiersin cellular signaling pathways. Cell. Mol. Life Sci., 2015;72: 4577–4592
Google Scholar - 2. Amano Y., Matsubara D., Yoshimoto T., Tamura T.,Nishino H., Mori Y., Niki T.: Expression of protein argininemethyltransferase-5 in oral squamous cell carcinoma andits significance in epithelial-to-mesenchymal transition.Pathol. Int., 2018; 68: 359–366
Google Scholar - 3. Baldwin R.M., Bejide M., Trinkle-Mulcahy L., Côté J.:Identification of the PRMT1v1 and PRMT1v2 specificinteractomes by quantitative mass spectrometry in breastcancer cells. Proteomics, 2015; 15: 2187–2197
Google Scholar - 4. Baldwin R.M., Haghandish N., Daneshmand M., AminS., Paris G., Falls T.J., Bell J.C., Islam S., Côté J.: Proteinarginine methyltransferase 7 promotes breast cancercell invasion through the induction of MMP9 expression.Oncotarget, 2015; 6: 3013–3032
Google Scholar - 5. Banasavadi-Siddegowda Y.K., Welker A.M., An M., YangX., Zhou W., Shi G., Imitola J., Li C., Hsu S., Wang J., PhelpsM., Zhang J., Beattie C.E., Baiocchi R., Kaur B.: PRMT5 asa druggable target for glioblastoma therapy. Neuro Oncol.,2018; 20: 753–763
Google Scholar - 6. Bedford M.T.: The family of protein arginine methyltransferases.The Enzymes, 2006; 24: 31–50
Google Scholar - 7. Behera A.K., Kumar M., Shanmugam M.K., BhattacharyaA., Rao V.J., Bhat A., Vasudevan M., Gopinath K.S.,Mohiyuddin A., Chatteriee A., Sethi G., Kundu T.K.: Functionalinterplay between YY1 and CARM1 promotes oralcarcinogenesis. Oncotarget, 2019; 10: 3709–3724
Google Scholar - 8. Brehmer D., Wu T., Mannens G., Beke L., Vinken P.,Gaffney D., Sun W., Pande V., Thuring J.W., Millar H., PoggesiI., Somers I., Boeckx A., Parade M., van Heerde E. iwsp.: Abstract DDT02-04: A novel PRMT5 inhibitor withpotent in vitro and in vivo activity in preclinical lung cancermodels. Cancer Res., 2017; 77: DDT02–04
Google Scholar - 9. Carlson S.M., Gozani O.: Emerging technologies tomap the protein methylome. J. Mol. Biol. 2014; 426:3350–3362
Google Scholar - 10. Carr S.M., Roworth A.P., Chan C., La Thangue N.B.:Post-translational control of transcription factors: Methylationranks highly. FEBS J., 2015; 282: 4450–4465
Google Scholar - 11. Castellano S., Milite C., Ragno R., Simeoni S., MaiA., Limongeli V., Novellino E., Bauer I., Brosh G., SpannhoffA., Cheng D., Bedford M.T., Sbardella G.: Design,synthesis and biological evaluation of carboxy analoguesof argininę methyltransferase inhibitor 1 (AMI-1). ChemMedChem., 2010; 5: 398–414
Google Scholar - 12. Cheng D., Yadav N., King R.W., Swanson M.S., WeinsteinE.J., Bedford M.T.: Small molecule regulators ofprotein arginine methyltransferases. J. Biol. Chem., 2004;279: 23892–23899
Google Scholar - 13. Eram M.S., Shen Y., Szewczyk M., Wu H., SenisterraG., Li F., Butler K.V., Kaniskan H.Ü., Speed B.A., Dela SeñaC., Dong A., Zeng H., Schapira M., Brown P.J., ArrowsmithC.H. i wsp.: A potent, selective, and cell-active inhibitorof human type I protein arginine methyltransferases.ACS Chem. Biol., 2016; 11: 772–781
Google Scholar - 14. Feng Y., Xie N., Wu J., Yang C., Zheng Y.G.: Inhibitorystudy of protein arginine methyltransferase 1 usinga fluorescent approach. Biochem. Biophys. Res. Commun.,2009; 379: 567–572
Google Scholar - 15. Fulton M.D., Brown T., Zheng Y.G.: Mechanisms andinhibitors of histone arginine methylation. Chem. Rec.,2018; 18: 1792–1807
Google Scholar - 16. Geng P., Zhang Y., Liu X., Zhang N., Liu Y., Liu X., LinC., Yan X., Li Z., Wang G., Li Y., Tan J., Liu D.X., Huang B., LuJ.: Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. FASEB J.,2017; 31: 2287–2300
Google Scholar - 17. Hadjikyriacou A., Yang Y., Espejo A., Bedford M.T.,Clarke S.G.: Unique features of human protein argininemethyltransferase 9 (PRMT9) and its substrate RNAsplicing factor SF3B2. J. Biol. Chem., 2015; 290: 16723–16743
Google Scholar - 18. Haghandish N., Baldwin R.M., Morettin A., Dawit H.T.,Adhikary H., Masson J.Y., Mazroui R., Trinkle-Mulcahy L.,Côté J.: PRMT7 methylates eukaryotic translation initiationfactor 2α and regulates its role in stress granule formation.Mol. Biol. Cell, 2019; 30: 778–793
Google Scholar - 19. Han H.S., Choi D., Choi S., Koo S.H.: Roles of proteinarginine methyltransferases in the control of glucosemetabolism. Endocrinol. Metab., 2014; 29: 435–440
Google Scholar - 20. Hernandez S., Dominko T.: Novel protein argininemethyltransferase 8 isoform is essential for cell proliferation.J. Cell Biochem., 2016; 117: 2056–2066
Google Scholar - 21. Hernandez S.J., Dolivo D.M., Dominko T.: PRMT8 demonstratesvariant-specific expression in cancer cells and correlates with patient survival in breast, ovarian andgastric cancer. Oncol. Lett., 2017; 13: 1938–1989
Google Scholar - 22. Hsu M.C., Pan M.R., Chu P.Y., Tsai Y.L., Tsai C.H., ShanY.S., Chen L.T., Hung W.C.: Protein arginine methyltransferase 3 enhances chemoresistance in pancreatic cancerby methylating hnRNPA1 to increase ABCG2 expression.Cancers, 2018; 11: 8
Google Scholar - 23. Hu G., Wang X., Han Y., Wang P.: Protein argininemethyltransferase 5 promotes bladder cancer growththrough inhibiting NF-kB dependent apoptosis. EXCLI J.,2018; 17: 1157–1166
Google Scholar - 24. Hu H., Qian K., Ho M.C., Zheng Y.G.: Small moleculeinhibitors of protein arginine methyltransferases. ExpertOpin. Investig. Drugs, 2016; 25: 335–358
Google Scholar - 25. Iderzorig T., Kellen J., Osude C., Singh S., WoodmanJ.A., Garcia C., Puri N.: Comparison of EMT mediatedtyrosine kinase inhibitor resistance in NSCLC. Biochem.Biophys. Res. Commun., 2018; 496: 770–777
Google Scholar - 26. Jahan S., Davie J.R.: Protein arginine methyltransferases(PRMTs): Role in chromatin organization. Adv.Biol. Regul., 2015; 57: 173–184
Google Scholar - 27. Kaniskan H.Ü., Eram M.S., Liu J., Smil D., Martini M.L.,Shen Y., Santhakumar V., Brown P.J., Arrowsmith C.H.,Vedadi M., Jin J.: Design and synthesis of selective, smallmolecule inhibitors od coactivator-associated argininemethyltransferase 1 (CARM1). Med. Chem. Commun.,2016; 7: 1793–1796
Google Scholar - 28. Karkhanis V., Hu Y.J., Baiocchi R.A., Imbalzano A.N., SifS.: Versatility of PRMT5-induced methylation in growthcontrol and development. Trends. Biochem. Sci., 2011; 36:633–641
Google Scholar - 29. Kleinschmidt M.A., de Graaf P., van Teeffeln H.A., TimmersH.T.: Cell cycle regulation by the PRMT6 argininemethyltransferase through repression of cyclin-dependentkinase inhibitors. PLoS One, 2012; 7: e41446
Google Scholar - 30. Lattouf H., Poulard C., Le Romancer M.: PRMT5 prognosticvalue in cancer. Oncotarget, 2019; 10: 3151–3153
Google Scholar - 31. Leipold A., Heß J., Zaoui K.: Das Epigenoom. Zielstrukturfür innovative Therapiekonzepte beim Kopf- und Halskarzinom.HNO, 2015; 63: 786–791
Google Scholar - 32. Li M., An W., Xu L., Lin Y., Su L., Liu X.: The argininemethyl transferase PRMT5 and PRMT1 distinctly regulatethe degradation of anti-apoptotic protein CFLARL in humanlung cancer cells. J. Exp. Clin. Cancer Res., 2019; 38: 64
Google Scholar - 33. Li S., Cheng D., Zhu B., Yang Q.: The overexpressionof CARM1 promotes human osteosarcoma cell proliferationthrough the pGSK3β/β-catenin/cyclinD1 signalingpathway. Int. J. Biol. Sci., 2017; 13: 976–984
Google Scholar - 34. Li X., Wang C., Jiang H., Luo C.: A patent review ofarginine methyltransferase inhibitors (2010–2018). ExpertOpin. Ther. Pat., 2019; 29: 97–114
Google Scholar - 35. Li Y., Zhu R., Wang W., Fu D., Hou J., Ji S., Chen B., HuZ., Shao X., Yu X., Zhao Q., Zhang B., Du C., Bu Q., Hu C. iwsp.: Arginine methyltransferase 1 in the nucleus accumbensregulates behavioral effects of cocaine. J. Neurosci.,2015; 35: 12890–12902
Google Scholar - 36. Lin H., Wang B., Yu J., Wang J., Li Q., Cao B.: Proteinarginine methyl transferase 8 gene enhances the coloncancer stem cell (CSC) function by upregulating the pluripotencytranscription factor. J. Cancer, 2018; 9: 1394–1402
Google Scholar - 37. Litt M., Qiu Y., Huang S.: Histone arginine methylations:Their roles in chromatin dynamics and transcriptionalregulation. Biosci. Rep., 2009; 29: 131–141
Google Scholar - 38. Mann M., Zou Y., Chen Y., Brann D., Vadlamudi R.:PELP1 oncogenic functions involve alternative splicingvia PRMT6. Mol. Oncol., 2014; 8: 389–400
Google Scholar - 39. Michalak E.M., Visvader J.E.: Dysregulation of histonemethyltransferases in breast cancer – opportunities fornew targeted therapies? Mol. Oncol., 2016; 10: 1497–1515
Google Scholar - 40. Nakai K., Xia W., Liao H.W., Saito M., Hung M.C., YamaguchiH.: The role of PRMT1 in EGFR methylation andsignaling in MDA-MB-468 triple-negative breast cancercells. Breast Cancer, 2018; 25: 74–80
Google Scholar - 41. Nakakido M., Deng Z., Suzuki T., Dohmae N., NakamuraY., Hamamoto R.: PRMT6 increases cytoplasmiclocalization of p21CDKN1A in cancer cells through argininemethylation and makes more resistant to cytotoxicagents. Oncotarget, 2015; 6: 30957–30967
Google Scholar - 42. Nakayama K., Szewczyk M.M., Dela Sena C., Wu H.,Dong A., Zeng H., Li F., de Freitas R.F., Eram M.S., SchapiraM., Baba Y., Kunitomo M., Cary D.R., Tawada M., OhashiA. i wsp.: TP-064, a potent and selective small moleculeinhibitor of PRMT4 for multiple myeloma. Oncotarget,2018; 9: 18480–18493
Google Scholar - 43. Obianyo O., Causey C.P., Jones J.E., Thompson P.R.:Activity-based protein profiling of protein arginine methyltransferase 1 ACS Chem. Biol., 2011; 6: 1127–1135
Google Scholar - 44. Pawlicka K., Perrigue P., Barciszewski J.: Epigenetycznakontrola procesów komórkowych. Nauka, 2018; 2:115–128
Google Scholar - 45. Peng C., Wong C.C.: The story of protein argininemethylation: Characterization, regulation, and function.Expert Rev. Proteomics, 2017; 14: 157–170
Google Scholar - 46. Poulard C., Corbo L., Le Romancer M.: Protein argininemethylation/demethylation and cancer. Oncotarget,2016; 7: 67532–67550
Google Scholar - 47. Prabhu L., Chen L., Wei H., Demir Ö., Safa A., Zeng L.,Amaro R.E., O’Neil B.H., Zhang Z.Y., Lu T.: Developmentof an AlphaLISA high throughput technique to screenfor small molecule inhibitors targeting protein argininemethyltransferases. Mol. Biosyst., 2017; 13: 2509–2520
Google Scholar - 48. Ran T., Li W., Peng B., Xie B., Lu T., Lu S., Liu W.: Virtualscreening with a structure-based pharmacophore modelto identify small-molecule inhibitors of CARM1. J. Chem.Inf. Model., 2019; 59: 522–534
Google Scholar - 49. Ryu J.W., Kim S.K., Son M.Y., Jeon S.J., Oh J.H., LimJ.H., Cho S., Jung C.R., Hamamoto R., Kim D.S., Cho H.S.:Novel prognostic marker PRMT1 regulates cell growth viadownregulation of CDKN1A in HCC. Oncotarget, 2017; 8:115444–115455
Google Scholar - 50. Shailesh H., Zakaria Z.Z., Baiocchi R., Sif S.: Proteinarginine methyltransferase 5 (PRMT5) dysregulation incancer. Oncotarget, 2018; 9: 36705–36718
Google Scholar - 51. Shen Y., Zhong J., Liu J., Liu K., Zhao J., Xu T., ZengT., Li Z., Chen Y., Ding W., Wen G., Zu X., Cao R.: Proteinarginine N-methyltransferase 2 reverses tamoxifen resistancein breast cancer cells through suppression of ER-α36.Oncol. Rep., 2018; 39: 2604–2612
Google Scholar - 52. Smith E., Zhou W., Shindiapina P., Sif S., Li C., BaiocchiR.A.: Recent advances in targeting protein arginine methyltransferaseenzymes in cancer therapy. Expert Opin.Ther. Targets, 2018; 22: 527–545
Google Scholar - 53. Stopa N., Krebs J.E., Shechter D.: The PRMT5 argininemethyl transferase: Many roles in development, cancerand beyond. Cell Mol. Life. Sci., 2015; 72: 2041–2059
Google Scholar - 54. Tewary S.K., Zheng Y.G., Ho M.C.: Protein argininemethyltransferases: Insights into the enzyme structureand mechanism at the atomic level. Cell. Mol. Life Sci.,2019; 76: 2917–2932
Google Scholar - 55. Vhuiyan M., Thomas D., Hossen F., Frankel A.: Targetingprotein arginine N-methyltransferases with peptidebasedinhibitors: Opportunities and challenges. FutureMed. Chem., 2013; 5: 2199–2206
Google Scholar - 56. Wang S.M., Dowhan D.H., Muscat G.E.: Epigeneticarginine methylation in breast cancer: Emerging therapeuticstrategies. J. Mol. Endocrinol., 2019; 62: R223–R237
Google Scholar - 57. Wang W.J., Hsu J.M., Wang Y.N., Lee H.H., YamaguchiH., Liao H.W., Hung M.C.: An essential role of PRMT1-mediatedEGFR methylation in EGFR activation by ribonuclease 5 Am. J. Cancer Res., 2019; 9: 180–185
Google Scholar - 58. Wang Y.P., Zhou W., Wang J., Hung X., Zuo Y., WangT.S., Gao X., Xu Y.Y., Zou S.W., Liu Y.B., Cheng J.K., Lei Q.Y.:Arginine methylation of MDH1 by CARM1 inhibits glutaminemetabolism and suppresses pancreatic cancer.Mol. Cell, 2016; 64: 673–687
Google Scholar - 59. Webb L.M., Amici S.A., Jablonski K.A., Savardekar H.,Panfil A.R., Li L., Zhou W., Peine K., Karkhanis V., BachelderE.M., Ainslie K.M., Green P.L., Li C., Baiocchi R.A., Guerau-de-Arellano M.: PRMT5-selective inhibitors suppress inflammatoryT cell responses and experimental autoimmuneencephalomyelitis. J. Immunol., 2017; 198:1439–1451
Google Scholar - 60. Ye F., Zhang W., Ye F., Zhang W., Ye X., Jin J., Lv Z.,Luo C.: Identification of selective, cell active inhibitors ofprotein arginine methyltransferase 5 through structurebasedvirtual screening and biological assays. J. Chem. Inf.Model., 2018; 58: 1066–1073
Google Scholar - 61. Ye Y., Zhang B., Mao R., Zhang C., Wang Y., Xing J.,Liu Y.C., Luo X., Ding H., Yang Y., Zhou B., Jiang H., ChenK., Luo C., Zheng M.: Discovery and optimization of selectiveinhibitors of protein arginine methyltransferase 5 by docking-based virtual screening. Org. Biomol. Chem.,2017; 15: 3648–3661
Google Scholar - 62. Yost J.M., Korboukh I., Liu F., Gao C., Jin J.: Targets inepigenetics: Inhibiting the methyl writers of the histonecode. Curr. Chem. Genomics, 2011; 5: 72–84
Google Scholar - 63. Zhang B., Chen X., Ge S., Peng C., Zhang S., Chen X.,Liu T., Zhang W.: Arginine methyltransferase inhibitor-1inhibits sarcoma viability in vitro and in vivo. Oncol. Lett.,2018; 16: 2161– 2166
Google Scholar - 64. Zhang B., Zhang S., Zhu L., Chen X., Zhao Y., Chao L., ZhouJ., Wang X., Zhang X., Ma N.: Arginine methyltransferase inhibitor 1 inhibits gastric cancer by downregulating eIF4E and targetingPRMT5. Toxicol. Appl. Pharmacol., 2017; 336: 1–7
Google Scholar - 65. Zhao X., Zhou D., Liu Y., Li C., Zhao X., Li Y., Li W.: Ganodermalucidum polysaccharide inhibits prostate cancercell migration via the protein arginine methyltransferase 6 signaling pathway. Mol. Med. Rep., 2018; 17: 147–157
Google Scholar - 66. Zhao Y., Lu Q., Li C., Wang X., Jiang L., Huang L., WangC., Chen H.: PRMT1 regulates the tumour-initiating propertiesof esophageal squamous cell carcinoma throughhistone H4 arginine methylation coupled with transcriptionalactivation. Cell Death. Dis., 2019; 10: 359
Google Scholar - 67. Zhong J., Cao R.X., Hong T., Yang J., Zu X.Y., Xiao X.H.,Liu J.H., Wen G.B.: Identification and expression analysisof a novel transcript of the human PRMT2 gene resultedfrom alternative polyadenylation in breast cancer. Gene,2011; 487: 1–9
Google Scholar - 68. Zhong J., Cao R.X., Liu J.H., Liu Y.B., Wang J., Liu L.P.,Chen Y.J., Yang J., Zhang Q.H., Wu Y., Ding W.J., Hong T.,Xiao X.H., Zu X.Y., Wen G.B.: Nuclear loss of protein arginineN-methyltransferase 2 in breast carcinoma is associatedwith tumor grade and overexpression of cyclin D1protein. Oncogene, 2014; 33: 5546–5558
Google Scholar - 69. Zhong J., Chen Y.J., Chen L., Shen Y.Y., Zhang Q.H.,Yang J., Cao R.X., Zu X.Y., Wen G.B.: PRMT2β, a C-terminalsplice variant of PRMT2β, inhibits the growth of breastcancer cells. Oncol. Rep., 2017, 38: 1303–1311
Google Scholar - 70. Zhong X.Y., Yuan X.M., Xu Y.Y., Yin M., Yan W.W., ZouS.W., Wei L.M., Lu H.J., Wang Y.P., Lei Q.Y.: CARM1 methylatesGAPDH to regulate glucose metabolism and is suppressedin liver cancer. Cell. Rep., 2018; 24: 3207–3223
Google Scholar - 71. Zhu K., Jiang C., Tao H., Liu J., Zhang H., Luo C.: Identificationof a novel selective small-molecule inhibitor ofprotein arginine methyltransferase 5 (PRMT5) by virtualscreening, resynthesis and biological evaluations. Bioorg.Med. Chem. Lett., 2018; 28: 1476–1483
Google Scholar