Skutki hamowania funkcji PCSK9 w obrębie wybranych tkanek

ARTYKUŁ PRZEGLĄDOWY

Skutki hamowania funkcji PCSK9 w obrębie wybranych tkanek

Mateusz Maligłówka 1 , Łukasz Bułdak 1 , Bogusław Okopień 1 , Aleksandra Bołdys 1

1. Katedra Farmakologii, Klinika Chorób Wewnętrznych i Farmakologii Klinicznej, Wydział Nauk Medycznych Śląskiego Uniwersytetu Medycznego w Katowicach

Opublikowany: 2021-06-02
DOI: 10.5604/01.3001.0014.9127
GICID: 01.3001.0014.9127
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2021; 75 : 385-397

 

Abstrakt

Konwertazy probiałkowe (PCs, proprotein convertases) to rodzina 9 proteaz serynowych (PC1/3, PC2, furyna, PC4, PC5/6, PACE4, PC7, SKI-1), której przedstawicielem jest również konwertaza probiałkowa typu 9 o aktywności subtylizyny/keksyny (PCSK9). Poszczególni członkowie tej rodziny, są głównym elementem w potranslacyjnej obróbce białek prekursorowych, prowadzącej do powstania biologicznie czynnych cząsteczek, takich jak hormony, enzymy, czynniki transkrypcyjne oraz czynniki wzrostu. W związku ze zdolnością aktywacji dużej liczby substratów, PCs odgrywają znaczącą rolę w przebiegu procesów fizjologicznych, takich jak embriogeneza, aktywność ośrodkowego układu nerwowego, metabolizm lipidów, a także w stanach patofizjologicznych m.in. infekcjach wirusowych i bakteryjnych, osteoporozie, hiperglikemii, chorobach sercowo-naczyniowych, neurodegeneracyjnych oraz nowotworowych. Zahamowanie funkcji konwertazy proproteiny typu 9 o aktywności subtylizyny/ keksyny (PCSK9, proprotein convertase subtilisin/kexin 9) przez przeciwciała, takie jak alirokumab czy ewolokumab zmniejsza tempo degradacji receptora LDL (lipoproteina o małej gęstości). Wiąże się to z redukcją stężenia cholesterolu LDL w osoczu, którego normalizacja jest jednym z głównych celów służących ograniczeniu ryzyka sercowo-naczyniowego. Inhibitory PCSK9 (alirokumab, ewolokumab, bococizumab) zostały stworzone m.in. z myślą o pacjentach, u których mimo stosowania optymalnych dawek dostępnych leków hipolipemizujących (statyn, ezetymibu) nie udało się uzyskać pożądanych wartości stężeń cholesterolu LDL we krwi. Wydaje się, że ze względu na dużą skuteczność, przyszłe zastosowanie inhibitorów PCSK9 (PCSK9i) w codziennej praktyce klinicznej będzie bardziej powszechne. Uwzględniając działania plejotropowe substancji dotychczas stosowanych w hiperlipidemii, takich jak statyny, omówiono piśmiennictwo pod kątem innych, poza hipolipemizującymi, możliwych skutków działania inhibitorów PCSK9 oraz oceniono ich potencjalne zalety lub wady.

Przypisy

  • 1. Abifadel M., Varret M., Rabès J.P., Allard D., Ouguerram K., DevillersM., Cruaud C., Benjannet S., Wickham L., Erlich D., Derré A.,Villéger L., Farnier M., Beucler I., Bruckert E. i wsp.: Mutations inPCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet.,2003; 34: 154–156
    Google Scholar
  • 2. Adorni M.P., Cipollari E., Favari E., Zanotti I., Zimetti F., CorsiniA., Ricci C., Bernini F., Ferri N.: Inhibitory effect of PCSK9 on Abca1protein expression and cholesterol efflux in macrophages. Atherosclerosis,2017; 256: 1–6
    Google Scholar
  • 3. An D., Wei X., Li H., Gu H., Huang T., Zhao G., Liu B., Wang W., ChenL., Ma W., Zhang H., Cao S., Yuan Z.: Identification of PCSK9 as a novelserum biomarker for the prenatal diagnosis of neural tube defects usingiTRAQ quantitative proteomics. Sci. Rep., 2015; 5: 17559
    Google Scholar
  • 4. Arama C., Diarra I., Kouriba B., Sirois F., Fedoryak O., Thera M.A.,Coulibaly D., Lyke K.E., Plowe C.V., Chrétien M., Doumbo O.K., MbikayM.: Malaria severity: Possible influence of the E670G PCSK9 polymorphism:A preliminary case-control study in Malian children. PLoSOne, 2018; 13: e0192850
    Google Scholar
  • 5. Bai X.Q., Peng J., Wang M.M., Xiao J., Xiang Q., Ren Z., Wen H.Y.,Jiang Z.S., Tang Z.H., Liu L.S.: PCSK9: A potential regulator of apoE/apoER2 against inflammation in atherosclerosis? Clin. Chim. Acta,2018; 483: 192–196
    Google Scholar
  • 6. Banach M., Rizzo M., Nikolic D., Howard G., Howard V.J., MikhailidisD.P.: Intensive LDL-cholesterol lowering therapy and neurocognitivefunction. Pharmacol. Ther., 2017; 170: 181–191
    Google Scholar
  • 7. Barale C., Bonomo K., Frascaroli C., Morotti A., Guerrasio A., CavalotF., Russo I.: Platelet function and activation markers in primaryhypercholesterolemia treated with anti-PCSK9 monoclonal antibody:A 12-month follow-up. Nutr. Metab. Cardiovasc. Dis., 2020; 30: 282–291
    Google Scholar
  • 8. Berger J.M., Vaillant N., Le May C., Calderon C., Brégeon J., PrieurX., Hadchouel J., Loirand G., Cariou B.: PCSK9-deficiency does not alterblood pressure and sodium balance in mouse models of hypertension.Atherosclerosis, 2015; 239: 252–259 9 Besseling J., Kastelein J.J., Defesche J.C., Hutten B.A., Hovingh G.K.:Association between familial hypercholesterolemia and prevalence oftype 2 diabetes mellitus. JAMA, 2015; 313: 1029–1036
    Google Scholar
  • 9. (PCSK9) secreted by cultured smooth muscle cells reduces macrophagesLDLR levels. Atherosclerosis, 2012; 220: 381–386
    Google Scholar
  • 10. Blom D.J., Djedjos C.S., Monsalvo M.L., Bridges I., WassermanS.M., Scott R., Roth E.: Effects of evolocumab on vitamin E and steroidhormone levels: Results from the 52-week, phase 3, double-blind,randomized, placebo-controlled DESCARTES study. Circ. Res., 2015;117: 731–741
    Google Scholar
  • 11. Blom D.J., Hala T., Bolognese M., Lillestol M.J., Toth P.D., BurgessL., Ceska R., Roth E., Koren M.J., Ballantyne C.M., Monsalvo M.L., TsirtsonisK., Kim J.B., Scott R., Wasserman S.M.: A 52‐week placebo‐controlledtrial of evolocumab in hyperlipidemia. N. Engl. J. Med., 2014;370: 1809–1819
    Google Scholar
  • 12. Boyd J.H., Fjell C.D., Russell J.A., Sirounis D., Cirstea M.S., WalleyK.R.: Increased plasma PCSK9 levels are associated with reduced endotoxinclearance and the development of acute organ failures duringsepsis. J. Innate Immun., 2016; 8: 211–220
    Google Scholar
  • 13. Bułdak Ł., Marek B., Kajdaniuk D., Urbanek A., Janyga S., BołdysA., Basiak M., Maligłówka M., Okopień B.: Endocrine diseases as causesof secondary hyperlipidemia. Endokrynol. Pol., 2019; 70: 511–519
    Google Scholar
  • 14. Campbell J.H., Popadynec L., Nestel P.J., Campbell G.R.: Lipid accumulationin arterial smooth muscle cells. Influence of phenotype.Atherosclerosis, 1983; 47: 279–295
    Google Scholar
  • 15. Cariou B., Benoit I., Le May C.: Preserved adrenal function in fullyPCSK9-deficient subject. Int. J. Cardiol., 2014; 176: 499–500
    Google Scholar
  • 16. Cederberg H., Stančáková A., Yaluri N., Modi S., Kuusisto J., LaaksoM.: Increased risk of diabetes with statin treatment is associated withimpaired insulin sensitivity and insulin secretion: A 6-year follow-upstudy of the METSIM cohort. Diabetologia, 2015; 58: 1109–1117
    Google Scholar
  • 17. Chang T.J., Chiu Y.F., Sheu W.H., Shih K.C., Hwu C.M., QuertermousT., Jou Y.S., Kuo S.S., Chang Y.C., Chuang L.M.: Genetic polymorphismsof PCSK2 are associated with glucose homeostasis and progressionto type 2 diabetes in a Chinese population. Sci. Rep., 2015; 5: 14380
    Google Scholar
  • 18. Chen S., Cao P., Dong N., Peng J., Zhang C., Wang H., Zhou T., YangJ., Zhang Y., Martelli E.E., Naga Prasad S.V., Miller R.E., Malfait A.M.,Zhou Y., Wu Q.: PCSK6-mediated corin activation is essential for normalblood pressure. Nat. Med., 2015; 21: 1048–1053
    Google Scholar
  • 19. Cheng J.M., Oemrawsingh R.M., Garcia-Garcia H.M., Boersma E.,van Geuns R.J., Serruys P.W., Kardys I., Akkerhuis K.M.: PCSK9 in relationto coronary plaque inflammation: Results of the ATHEROREMOIVUSstudy. Atherosclerosis, 2016; 248: 117–122
    Google Scholar
  • 20. Cohen J.C., Boerwinkle E., Mosley T.H. Jr, Hobbs H.H.: Sequencevariations in PCSK9, low LDL, and protection against coronary heartdisease. N. Engl. J. Med., 2006; 354: 1264–1272
    Google Scholar
  • 21. D’Ardes D., Santilli F., Guagnano M.T., Bucci M., Cipollone F.: Fromendothelium to lipids, through microRNAs and PCSK9: A fascinatingtravel across atherosclerosis. High Blood Press. Cardiovasc. Prev.,2020; 27: 1–8
    Google Scholar
  • 22. de Carvahlo L.S., Campos A.M., Sposito A.C.: Proprotein convertasesubtilisin/kexin type 9 (PCSK9) inhibitors and incident type 2 diabetes:A systematic review and meta-analysis with over 96,000 patient-years.Diabetes Care, 2018; 41: 364–367
    Google Scholar
  • 23. Denis M., Marcinkiewicz J., Zaid A., Gauthier D., Poirier S., LazureC., Seidah N.G., Prat A.: Gene inactivation of proprotein convertasesubtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation,2012; 125: 894–901
    Google Scholar
  • 24. Diedrich G.: How does hepatitis C virus enter cells? FEBS J., 2006;273: 3871–3885
    Google Scholar
  • 25. Ding Z., Liu S., Wang X., Deng X., Fan Y., Shahanawaz J., ShmooklerReis R.J., Varughese K.I., Sawamura T., Mehta J.L.: Cross-talk betweenLOX-1 and PCSK9 in vascular tissues. Cardiovasc. Res., 2015;107: 556–567
    Google Scholar
  • 26. Ding Z., Liu S., Wang X., Theus S., Deng X., Fan Y., Zhou S., MehtaJ.L.: PCSK9 regulates expression of scavenger receptors and ox-LDLuptake in macrophages. Cardiovasc. Res., 2018; 114: 1145–1153
    Google Scholar
  • 27. Dyrbuś K., Gąsior M., Penson P., Ray K.K., Banach M.: Inclisiran– New hope in the management of lipid disorders? J. Clin. Lipidol.,2020; 14: 16–27
    Google Scholar
  • 28. Feingold K.R., Moser A.H., Shigenaga J.K., Patzek S.M., Grunfeld C.:Inflammation stimulates the expression of PCSK9. Biochem. Biophys.Res. Commun., 2008; 374: 341–344
    Google Scholar
  • 29. Ferri N., Tibolla G., Pirillo A., Cipollone F., Mezzetti A., Pacia S.,Corsini A., Catapano A.L.: Proprotein convertase subtilisin kexin type
    Google Scholar
  • 30. Gencer B., Kronenberg F., Stroes E.S., Mach F.: Lipoprotein(a): Therevenant. Eur. Heart J., 2017; 38: 1553–1560
    Google Scholar
  • 31. Gencer B., Mach F., Guo J., Im K., Ruzza A., Wang H., Kurtz C.E.,Pedersen T.R., Keech A.C., Ott B.R., Sabatine M.S., Giugliano R.P., FOURIERInvestigators: Cognition after lowering LDL-cholesterol withevolocumab. J. Am. Coll. Cardiol., 2020; 75: 2283–2293
    Google Scholar
  • 32. Geovanini G.R., Libby P.: Atherosclerosis and inflammation: Overviewand updates. Clin. Sci., 2018; 132: 1243–1252
    Google Scholar
  • 33. German C.A., Shapiro M.D.: Small interfering RNA therapeuticinclisiran: A new approach to targeting PCSK9. BioDrugs, 2020; 34: 1–9
    Google Scholar
  • 34. Giugliano R.P., Desai N.R., Kohli P., Rogers W.J., Somaratne R.,Huang F., Liu T., Mohanavelu S., Hoffman E.B., McDonald S.T., AbrahamsenT.E., Wasserman S.M., Scott R., Sabatine M.S., LAPLACE-TIMI 57 Investigators: Efficacy, safety, and tolerability of a monoclonal antibodyto proprotein convertase subtilisin/kexin type 9 in combinationwith a statin in patients with hypercholesterolaemia (LAPLACE‐TIMI57): A randomised, placebo‐controlled, dose‐ranging, phase 2 study.Lancet, 2012; 380: 2007–2017
    Google Scholar
  • 35. Giugliano R.P., Pedersen T.R., Saver J.L., Sever P.S., Keech A.C.,Bohula E.A., Murphy S.A., Wasserman S.M., Honarpour N., Wang H.,Pineda A.L., Sabatine M.S., FOURIER Investigators: Stroke preventionwith the PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitorevolocumab added to statin in high-risk patients with stableatherosclerosis. Stroke, 2020; 51: 1546–1554
    Google Scholar
  • 36. Guillemot J., Essalmani R., Hamelin J., Seidah N.G.: Is there a linkbetween proprotein convertase PC7 activity and human lipid homeostasis?FEBS Open Bio, 2014; 4: 741–745
    Google Scholar
  • 37. Haas M.E., Levenson A.E., Sun X., Liao W.H., Rutkowski J.M., de FerrantiS.D., Schumacher V.A., Scherer P.E., Salant D.J., Biddinger S.B.: Therole of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation, 2016; 134: 61–72
    Google Scholar
  • 38. Hoac B., Susan-Resiga D., Essalmani R., Marcinkiweicz E., SeidahN.G., McKee M.D.: Osteopontin as a novel substrate for the proproteinconvertase 5/6 (PCSK5) in bone. Bone, 2018; 107: 45–55
    Google Scholar
  • 39. Hu J., Zhang Z., Shen W.J., Azhar S.: Cellular cholesterol delivery,intracellular processing and utilization for biosynthesis of steroidhormones. Nutr. Metab., 2010; 7: 47
    Google Scholar
  • 40. Izaguirre G.: The proteolytic regulation of virus cell entry by furinand other proprotein convertases. Viruses, 2019; 11: 837
    Google Scholar
  • 41. Karagiannis A.D., Liu M., Toth P.P., Zhao S., Agrawal D.K., LibbyP., Chatzizisis Y.S.: Pleiotropic anti-atherosclerotic effects of PCSK9inhibitors from molecular biology to clinical translation. Curr. Atheroscler.Rep., 2018; 20: 20
    Google Scholar
  • 42. Khademi F., Momtazi-Borojeni A.A., Reiner Ž., Banach M., Al-Rasadi K.A., Sahebkar A.: PCSK9 and infection: A potentially useful ordangerous association? J. Cell. Pysiol., 2018; 233: 2920–2927
    Google Scholar
  • 43. Kockx M., Kritharides L.: Pancreatic PCSK9 and its involvementin diabetes. J. Thorac. Dis., 2019; 11: S2018–S2022
    Google Scholar
  • 44. Koren M.J., Scott R., Kim J.B., Knusel B., Liu T., Lei L., BologneseM., Wasserman S.M.: Efficacy, safety, and tolerability of a monoclonalantibody to proprotein convertase subtilisin/kexin type 9 as monotherapyin patients with hypercholesterolaemia (MENDEL): A randomised,double‐blind, placebo‐controlled, phase 2 study. Lancet,2012; 380: 1995–2006
    Google Scholar
  • 45. Koskinas K.C., Windecker S., Buhayer A., Gencer B., Pedrazzini G.,Mueller C., Cook S., Muller O., Matter C.M., Räber L., Heg D., Mach F.:Design of the randomized, placebo‐controlled evolocumab for earlyreduction of LDL‐cholesterol levels in patients with acute coronarysyndromes (EVOPACS) trial. Clin. Cardiol., 2018; 41: 1513–1520
    Google Scholar
  • 46. Kruit J.K., Groen A.K., van Berkel T.J., Kuipers F.: Emerging rolesof the intestine in control of cholesterol metabolism. World J. Gastroenterol.,2006; 12: 6429–6439
    Google Scholar
  • 47. Kühnast S., Van Der Hoorn J.W., Pieterman E.J., van den HoekA.M., Sasiela W.J., Gusarova V., Peyman A., Schäfer H.L., Schwahn U.,Jukema J.W., Princen H.M.: Alirocumab inhibits atherosclerosis, improvesthe plaque morphology, and enhances the effects of a statin.J. Lipid Res., 2014; 55: 2103–2112
    Google Scholar
  • 48. Labonté P., Begley S., Guévin C., Asselin M.C., Nassoury N., MayerG., Prat A., Seidah N.G.: PCSK9 impedes hepatitis C virus infection invitro and modulates liver CD81 expression. Hepatology, 2009; 50: 17–24
    Google Scholar
  • 49. Leak T.S., Keene K.L., Langefeld C.D., Gallagher C.J., MychaleckyjJ.C., Freedman B.I., Bowden D.W., Rich S.S., Sale M.M.: Association ofthe proprotein convertase subtilisin/kexin-type 2 (PCSK2) gene withtype 2 diabetes in an African American population. Mol. Genet. Metab.,2007; 92: 145–150
    Google Scholar
  • 50. Leiva E., Wehinger S.R., Guzmán L., Orrego R.: Role of oxidizedLDL in atherosclerosis. W: Hypercholesterolemia, red.: S.A. Kumar.IntechOpen Limited, London 2015, 55–77
    Google Scholar
  • 51. Leritz E.C., McGlinchey R.E., Salat D.H., Milberg W.P.: Elevatedlevels of serum cholesterol are associated with better performanceon tasks of episodic memory. Metab. Brain Dis., 2016; 31: 465–473
    Google Scholar
  • 52. Levels J.H.M., Marquart J.A., Abraham P.R., van den Ende A.E.,Molhuizen H.O.F., van Deventer S.J.H., Meijers J.C.M.: Lipopolysaccharideis transferred from high-density to low-density lipoproteinsby lipopolysaccharide-binding protein and phospholipid transferprotein. Infect. Immun., 2005; 73: 2321–2326
    Google Scholar
  • 53. Li T., Jiang S., Ni B., Cui Q., Liu Q., Zhao H.: Discontinued drugsfor the treatment of cardiovascular disease from 2016 to 2018. Int. J.Mol. Sci., 2019; 20: 4513
    Google Scholar
  • 54. Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., BadimonL., Chapman M.J., De Backer G.G., Delgado V., Ference B.A., GrahamI.M., Halliday A., Landmesser U., Mihaylova B., Pedersen T.R.: 2019ESC/EAS guidelines for the management of dyslipidaemias: Lipid modificationto reduce cardiovascular risk. Eur. Heart J., 2020; 41: 111–188
    Google Scholar
  • 55. Małuch I., Walewska A., Sikorska E., Prahl A.: Konwertazyprobiałkowe – rodzina proteaz serynowych o szerokim spektrumfunkcji fizjologicznych. Post. Bioch., 2016; 62: 472–481
    Google Scholar
  • 56. Mannarino M.R., Sahebkar A., Bianconi V., Serban M.C., BanachM., Pirro M.: PCSK9 and neurocognitive function: Should it be still anissue after FOURIER and EBBINGHAUS results? J. Clin. Lipidol., 2018;12: 1123–1132
    Google Scholar
  • 57. Mbikay M., Mayne J., Seidah N.G., Chrétien M.: Of PCSK9, cholesterolhomeostasis and parasitic infections: Possible survival benefitsof loss-of-function PCSK9 genetic polymorphisms. Med. Hypotheses,2007; 69: 1010–1017
    Google Scholar
  • 58. Monami M., Sesti G., Mannucci E.: PCSK9 inhibitor therapy: Asystematic review and meta-analysis of metabolic and cardiovascularoutcomes in patients with diabetes. Diabetes Obes. Metab., 2019;21: 903–908
    Google Scholar
  • 59. Muldoon M.F., Barger S.D., Ryan C.M., Flory J.D., Lehoczky J.P.,Matthews K.A., Manuck S.B.: Effects of lovastatin on cognitive functionand psychological well-being. Am. J. Med., 2000; 108: 538–546
    Google Scholar
  • 60. Naureckiene S., Ma L., Sreekumar K., Purandare U., Lo C.F., HuangY., Chiang L.W., Grenier J.M., Ozenberger B.A., Jacobsen J.S., KennedyJ.D., DiStefano P.S., Wood A., Bingham B.: Functional characterizationof Narc 1, a novel proteinase related to proteinase K. Arch. Biochem.Biophys., 2003; 420: 55–67
    Google Scholar
  • 61. Nishikido T., Ray K.K.: Inclisiran for the treatment of dyslipidemia.Expert Opin. Investig. Drugs, 2018; 27: 287–294
    Google Scholar
  • 62. Norata G.D., Tavori H., Pirillo A., Fazio S., Catapano A.L.: Biologyof proprotein convertase subtilisin kexin 9: Beyond low-density lipoproteincholesterol lowering. Cardiovasc. Res., 2016; 112: 429–442
    Google Scholar
  • 63. Okopień B., Bułdak Ł., Bołdys A.: Current and future trends in thelipid lowering therapy. Pharmacol. Rep., 2016; 68: 737–747
    Google Scholar
  • 64. Pasta A., Cremonini A.L., Pisciotta L., Buscaglia A., Porto I., BarraF., Ferrero S., Brunelli C., Rosa G.M.: PCSK9 inhibitors for treating hypercholesterolemia.Expert Opin. Pharmacother., 2020; 21: 353–363
    Google Scholar
  • 65. Pavlakou P., Liberopoulos E., Dounousi E., Elisaf M.: PCSK9 inchronic kidney disease. Int. Urol. Nephrol., 2017; 49: 1015–1024
    Google Scholar
  • 66. Perego C., Da Dalt L., Pirillo A., Galli A., Catapano A.L., Norata G.D.:Cholesterol metabolism, pancreatic β-cell function and diabetes. Biochim.Biophys. Acta Mol. Basis Dis., 2019; 1865: 2149–2156
    Google Scholar
  • 67. Poirier S., Mayer G., Benjannet S., Bergeron E., Marcinkiewicz J.,Nassoury N., Mayer H., Nimpf J., Prat A., Seidah N.G.: The proproteinconvertase PCSK9 induces the degradation of low density lipoproteinreceptor (LDLR) and its closest family members VLDLR and ApoER2.J. Biol. Chem., 2008; 283: 2363–2372
    Google Scholar
  • 68. Postmus I., Trompet S., de Craen A.J., Buckley B.M., Ford I., StottD.J., Sattar N., Slagboom P.E., Westendorp R.G., Jukema J.W.: PCSK9 SNPrs11591147 is associated with low cholesterol levels but not with cognitiveperformance or noncardiovascular clinical events in an elderlypopulation. J. Lipid Res., 2013; 54: 561–566
    Google Scholar
  • 69. Preiss D., Seshasai S.R., Welsh P., Murphy S.A., Ho J.E., Waters D.D.,DeMicco D.A., Barter P., Cannon C.P., Sabatine M.S., Braunwald E.,Kastelein J.J., de Lemos J.A., Blazing M.A., Pedersen T.R. i wsp.: Risk ofincident diabetes with intensive-dose compared with moderate-dosestatin therapy: A meta-analysis. JAMA, 2011; 305: 2556–2564
    Google Scholar
  • 70. Ramanathan A., Gusarova V., Stahl N., Gurnett-Bander A., KyratsousC.A.: Alirocumab, a therapeutic human antibody to PCSK9, doesnot affect CD81 levels or hepatitis C virus entry and replication intohepatocytes. PLoS One, 2016; 11: e0154498
    Google Scholar
  • 71. Ramin-Mangata S., Blanchard V., Lambert G.: Key aspects of PCSK9inhibition beyond LDL lowering. Curr. Opin. Lipidol., 2018; 29: 453–458
    Google Scholar
  • 72. Ramos-Molina B., Martin M.G., Lindberg I.: PCSK1 variants andhuman obesity. Prog. Mol. Biol. Transl. Sci., 2016; 140: 47–74
    Google Scholar
  • 73. Ray K.K., Corral P., Morales E., Nicholls S.J.: Pharmacological lipidmodificationtherapies for prevention of ischaemic heart disease: Currentand future options. Lancet, 2019; 394: 697–708
    Google Scholar
  • 74. Ricci C., Ruscica M., Camera M., Rossetti L., Macchi C., ColciagoA., Zanotti I., Lupo M.G., Adorni M.P., Cicero A.F., Fogacci F., Corsini A.,Ferri N.: PCSK9 induces a pro-inflammatory response in macrophages.Sci. Rep., 2018; 8: 2267
    Google Scholar
  • 75. Ridker P.M., Danielson E., Fonseca F.A., Genest J., Gotto A.M. Jr,Kastelein J.J., Koenig W., Libby P., Lorenzatti A.J., MacFadyen J.G., NordestgaardB.G., Shepherd J., Willerson J.T., Glynn R.J., JUPITER StudyGroup: Rosuvastatin to prevent vascular events in men and womenwith elevated C-reactive protein. N. Eng. J. Med., 2008; 359: 2195–2207
    Google Scholar
  • 76. Ridker P.M., Tardif J.C., Amarenco P., Duggan W., Glynn R.J., JukemaJ.W., Kastelein J.J., Kim A.M., Koenig W., Nissen S., Revkin J., RoseL.M., Santos R.D., Schwartz P.F. i wsp.: Lipid-reduction variability andantidrug-antibody formation with bococizumab. N. Eng. J. Med., 2017;376: 1517–1526
    Google Scholar
  • 77. Roth E.M., Goldberg A.C., Catapano A.L., Torri A., Yancopoulos G.D.,Stahl N., Brunet A., Lecorps G., Colhoun H.M.: Antidrug antibodies inpatients treated with alirocumab. N. Eng. J. Med., 2017; 376: 1589–1590
    Google Scholar
  • 78. Rouillé Y., Martin S., Steiner D.F.: Differential processing of proglucagonby the subtilisin-like prohormone convertases PC2 and PC3to generate either glucagon or glucagon-like peptide. J. Biol. Chem.,1995; 270: 26488–26496
    Google Scholar
  • 79. Ruscica M., Ricci C., Macchi C., Magni P., Cristofani R., Liu J., CorsiniA., Ferri N.: Suppressor of cytokine signaling-3 (SOCS-3) inducesproprotein convertase subtilisin kexin type 9 (PCSK9) expression inhepatic HepG2 cell line. J. Biol. Chem, 2016; 291: 3508–3519
    Google Scholar
  • 80. Sabatine M.S.: PCSK9 inhibitors: Clinical evidence and implementation.Nat. Rev. Cardiol., 2019; 16: 155–165
    Google Scholar
  • 81. Sabatine M.S., Giugliano R.P., Keech A.C., Honarpour N., WiviottS.D., Murphy S.A., Kuder J.F., Wang H., Liu T., Wasserman S.M., SeverP.S., Pedersen T.R., FOURIER Steering Committee and Investigators:Evolocumab and clinical outcomes in patients with cardiovasculardisease. N. Eng. J. Med., 2017; 376: 1713–1722
    Google Scholar
  • 82. Sattar N., Preiss D., Murray H.M., Welsh P., Buckley B.M., de CraenA.J., Seshasai S.R., McMurray J.J., Freeman D.J., Jukema J.W., MacfarlaneP.W., Packard C.J., Stott D.J., Westendorp R.G., Shepherd J.: Statins andrisk of incident diabetes: A collaborative meta-analysis of randomisedstatin trials. Lancet, 2010; 375: 735–742
    Google Scholar
  • 83. Scamuffa N., Calvo F., Chrétien M., Seidah N.G., Khatib A.M.:Proprotein convertases: Lessons from knockouts. FASEB J., 2006; 20:1954–1963
    Google Scholar
  • 84. Schmidt A.F., Swerdlow D.I., Holmes M.V., Patel R.S., Fairhurst-Hunter Z., Lyall D.M., Hartwig F.P., Horta B.L., Hyppönen E., PowerC., Moldovan M., van Iperen E., Hovingh G.K., Demuth I., NormanK.: PCSK9 genetic variants and risk of type 2 diabetes: A mendelianrandomisation study. Lancet Diabetes Endocrinol., 2017; 5: 97–105
    Google Scholar
  • 85. Schmidt R.J., Beyer T.P., Bensch W.R., Qian Y.W., Lin A., KowalaM., Alborn W.E., Konrad R.J., Cao G.: Secreted proprotein convertasesubtilisin/kexin type 9 reduces both hepatic and extrahepatic lowdensitylipoprotein receptors in vivo. Biochem. Biophys. Res. Commun.,2008; 370: 634–640
    Google Scholar
  • 86. Schwartz G.G., Steg P.G., Szarek M., Bhatt D.L., Bittner V.A., DiazR., Edelberg J.M., Goodman S.G., Hanotin C., Harrington R.A., JukemaJ.W., Lecorps G., Mahaffey K.W., Moryusef A., Pordy R., Quintero K., RoeM.T.: Alirocumab and cardiovascular outcomes after acute coronarysyndrome. N. Eng. J. Med., 2018; 379: 2097–2107
    Google Scholar
  • 87. Seidah N.G.: PCSK9 as a therapeutic target of dyslipidemia. ExpertOpin. Ther. Targets, 2009; 13: 19–28
    Google Scholar
  • 88. Seidah N.G.: The proprotein convertases, 20 years later. MethodsMol. Biol., 2011; 768: 23–57
    Google Scholar
  • 89. Seidah N.G., Benjannet S., Wickham L., Marcinkiewicz J., JasminS.B., Stifani S., Basak A., Prat A., Chretien M.: The secretory proproteinconvertase neural apoptosis-regulated convertase 1 (NARC-1): Liverregeneration and neuronal differentiation. Proc. Natl. Acad. Sci. U. S.A., 2003; 100: 928–933
    Google Scholar
  • 90. Seidah N.G., Hamelin J., Mamarbachi M., Dong W., Tardos H., MbikayM., Chretien M., Day R.: cDNA structure, tissue distribution, andchromosomal localization of rat PC7, a novel mammalian proproteinconvertase closest to yeast kexin-like proteinases. Proc. Natl. Acad.Sci. U. S. A., 1996; 93: 3388–3393
    Google Scholar
  • 91. Seidah N.G., Prat A.: The biology and therapeutic targeting ofthe proprotein convertases. Nat. Rev. Drug Discov., 2012; 11: 367–383
    Google Scholar
  • 92. Sharotri V., Collier D.M., Olson D.R., Zhou R., Snyder P.M.: Regulationof epithelial sodium channel trafficking by proprotein convertasesubtilisin/kexin type 9 (PCSK9). J. Biol. Chem., 2012; 287: 19266–19274
    Google Scholar
  • 93. Shrestha P., van de Sluis B., Dullaart R.P.F., van den Born J.: Novelaspects of PCSK9 and lipoprotein receptors in renal disease-relateddyslipidemia. Cell. Signal., 2019; 55: 53–64
    Google Scholar
  • 94. Steffens D., Bramlage P., Scheeff C., Kasner M., Hassanein A., FriebelJ., Rauch-Kröhnert U.: PCSK9 inhibitors and cardiovascular outcomes.Expert Opin. Biol. Ther., 2020; 20: 35–47
    Google Scholar
  • 95. Stoekenbroek R.M., Lambert G., Cariou B., Hovingh G.K.: InhibitingPCSK9 – biology beyond LDL control. Nat. Rev. Endocrinol., 2018;15: 52–62
    Google Scholar
  • 96. Suchy D., Łabuzek K., Stadnicki A., Okopień B.: Ezetimibe – a newapproach in hypercholesterolemia management. Pharmacol. Rep.,2011; 63: 1335–1348
    Google Scholar
  • 97. Syed G.H., Tang H., Khan M., Hassanein T., Liu J., Siddiqui A.: HepatitisC virus stimulates low-density lipoprotein receptor expression tofacilitate viral propagation. J. Virol., 2014; 88: 2519–2529
    Google Scholar
  • 98. Tadros H., Chrétien M., Mbikay M.: The testicular germ-cell proteasePC4 is also expressed in macrophage-like cells of the ovary. J.Reprod. Immunol., 2001; 49: 133–152
    Google Scholar
  • 99. Tang Z.H., Peng J., Ren Z., Yang J., Li T.T., Li T.H., Wang Z., WeiD.H., Liu L.S., Zheng X.L., Jiang Z.S.: New role of PCSK9 in atheroscleroticinflammation promotion involving the TLR4/NF-κB pathway.Atherosclerosis, 2017; 262: 113–122
    Google Scholar
  • 100. Taskinen M.R., Björnson E., Andersson L., Kahri J., Porthan K.,Matikainen N., Söderlund S., Pietiläinen K., Hakkarainen A., LundbomN., Nilsson R., Ståhlman M., Adiels M., Parini P., Packard C.: Impactof proprotein convertase subtilisin/kexin type 9 inhibition withevolocumab on the postprandial responses of triglyceride-rich lipoproteinsin type II diabetic subjects. J. Clin. Lipidol., 2020; 14: 77–87
    Google Scholar
  • 101. Tavori H., Giunzioni I., Predazzi I.M., Plubell D., Shivinsky A.,Miles J., Devay R.M., Liang H., Rashid S., Linton M.F., Fazio S.: HumanPCSK9 promotes hepatic lipogenesis and atherosclerosis developmentvia apoE- and LDLR-mediated mechanisms. Cardiovasc. Res.,2016, 110: 268–278
    Google Scholar
  • 102. Thomas G.: Furin at the cutting edge: From protein traffic toembryogenesis and disease. Nat. Rev. Mol. Cell Biol., 2002; 3: 753–766
    Google Scholar
  • 103. Van Bruggen F.H., Nijhuis G.B.J., Zuidema S.U., Luijendijk H.:Serious adverse events and deaths in PCSK9 inhibitor trials reportedon ClinicalTrials.gov: A systematic review. Expert Rev. Clin. Pharmacol.,2020; 13: 787–796
    Google Scholar
  • 104. Walley K.R., Thain K.R., Russell J.A., Reilly M.P., Meyer N.J., FergusonJ.F., Christie J.D., Nakada T.A., Fjell C.D., Thair S.A., Cirstea M.S.,Boyd J.H.: PCSK9 is a critical regulator of the innate immune responseand septic shock outcome. Sci. Transl. Med., 2014; 6: 258ra143
    Google Scholar
  • 105. Williams D.M., Finan C., Schmidt A.F., Burgess S., Hingorani A.D.:Lipid lowering and Alzheimer disease risk: A Mendelian randomizationstudy. Ann. Neurol., 2020, 87: 30–39
    Google Scholar
  • 106. Wu C.Y., Tang Z.H., Jiang L., Li X.F., Jiang Z.S., Liu L.S.: PCSK9 siRNAinhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol. Cell. Biochem., 2012, 359: 347–358
    Google Scholar
  • 107. Yano H., Horinaka S., Ishimitsu T.: Effect of evolocumab therapyon coronary fibrous cap thickness assessed by optical coherencetomography in patients with acute coronary syndrome. J. Cardiol.,2020; 75: 289–295
    Google Scholar
  • 108. Yurtseven E., Ural D., Baysal K., Tokgözoğlu L.: An update onthe role of PCSK9 in atherosclerosis. J. Atheroscler. Thromb., 2020;27: 909–918
    Google Scholar
  • 109. Zheng-Lin B., Ortiz A.: Lipid management in chronic kidney disease:Systematic review of PCSK9 targeting. Drugs, 2018; 78: 215–229
    Google Scholar
  • 110. Zimetti F., Caffarra P., Ronda N., Favari E., Adorni M.P., ZanottiI., Bernini F., Barocco F., Spallazzi M., Galimberti D., Ricci C., RuscicaM., Corsini A., Ferri N.: Increased PCSK9 cerebrospinal fluid concentrationsin Alzheimer’s disease. J. Alzheimers Dis., 2017; 55: 315–320
    Google Scholar

Pełna treść artykułu

Przejdź do treści