Autofagia – nowe spojrzenie na etiopatogenezę i możliwości leczenia zwyrodnienia plamki związanego z wiekiem*
Agnieszka Kubicka-Trząska 1 , Izabella Karska-Basta 1 , Katarzyna Żuber-Łaskawiec 1Abstrakt
Zwyrodnienie plamki związane z wiekiem (AMD – age-related macular degeneration) to obecnie istotny problem zdrowotny, bowiem w krajach rozwiniętych jest jedną z najczęstszych przyczyn utraty widzenia centralnego u osób powyżej 50. roku życia. Patogeneza AMD jest wieloczynnikowa i niedokładnie poznana. Wśród czynników odpowiedzialnych za rozwój choroby wymienia się, poza naturalnym procesem starzenia się siatkówki, nasilony stres oksydacyjny, nadmierną aktywację dopełniacza, tlące się przewlekłe zapalenie w przestrzeni podsiatkówkowej, uwarunkowania genetyczne i środowiskowe. W ostatnim czasie zwrócono uwagę na zaburzenia procesów autofagii jako wiodącej przyczyny rozwoju AMD. Autofagia jest mechanizmem komórkowym, polegającym na eliminowaniu zużytych lub uszkodzonych fragmentów i składników komórki, pozwalającym osiągnąć komórce dynamiczną równowagę między syntezą a rozkładem jej komponentów, umożliwia zatem przeżycie komórki w warunkach stresowych. Zaburzenia tych mechanizmów w postaci ich nadmiernej aktywacji lub inhibicji prowadzą do rozwoju wielu patologii. Autofagia pełni zatem podwójną rolę, jest odpowiedzialna zarówno za ochronę, jak i za śmierć komórki. W pracy przybliżono mechanizmy autofagii oraz jej znaczenie w fizjologicznym procesie starzenia się komórek siatkówki oraz omówiono istotny wpływ jej zaburzeń na rozwój zmian zwyrodnieniowych w plamce jakim jest AMD. Przedstawiono także potencjalny wpływ leczenia doszklistkowymi iniekcjami czynników anty-VEGF na zjawiska autofagii w siatkówce oraz możliwe nowe terapie AMD oparte na modulowaniu zjawiska autofagii.
Przypisy
- 1. Abu-Amero K.K., Kondkar A.A., Chalam K.V.: Resveratrol andophthalmic diseases. Nutrients, 2016; 8: 200 2 Agarwal A., Rhoades W.R., Hanout M., Soliman M.K., Sarwar S.,Sadiq M.A., Sepah Y.J., Do D.V., Nguyen Q.D.: Management of neovascularage-related macular degeneration: Current state-of-the-artcare for optimizing visual outcomes and therapies in development.Clin. Ophthalmol., 2015; 9: 1001–1015
Google Scholar - 2. study: Micronutrients in the treatment of macular degeneration.Adv. Nutr., 2017; 8: 40–53
Google Scholar - 3. Ardeljan D., Tuo J., Chan C.C.: Carboxyethylpyrrole plasma biomarkersin age-related macular degeneration. Drugs Future, 2011;36: 712–718
Google Scholar - 4. Bellezza I.: Oxidative stress in age-related macular degeneration:Nrf2 as therapeutic target. Front. Pharmacol., 2018; 9: 1280
Google Scholar - 5. Bergmann M., Schütt F., Holz F.G., Kopitz J.: Inhibition of theATP-driven proton pump in RPE lysosomes by the major lipofuscinfluorophore A2-E may contribute to the pathogenesis of age-relatedmacular degeneration. FASEB J., 2004; 18: 562–564
Google Scholar - 6. Blasiak J., Pawlowska E., Szczepanska J., Kaarniranta K.: Interplaybetween autophagy and the ubiquitin-proteasome system and itsrole in the pathogenesis of age-related macular degeneration. Int.J. Mol. Sci., 2019; 20: 210
Google Scholar - 7. Blasiak J., Petrovski G., Veréb Z., Facskó A., Kaarniranta K.: Oxidativestress, hypoxia, and autophagy in the neovascular processes of age–related macular degeneration. Biomed. Res. Int., 2014; 2014: 768026
Google Scholar - 8. Blasiak J., Piechota M., Pawlowska E., Szatkowska M., Sikora E.,Kaarniranta K.: Cellular senescence in age-related macular degeneration:Can autophagy and DNA damage response play a role? Oxid.Med. Cell. Longev., 2017; 2017: 5293258
Google Scholar - 9. Bowes Rickman C., Farsiu S., Toth C.A., Klingeborn M.: Dry age–related macular degeneration: Mechanisms, therapeutic targets,and imaging. Invest. Ophthalmol. Vis. Sci., 2013; 54: ORSF68–ORSF80
Google Scholar - 10. Boya P., Esteban-Martínez L., Serrano-Puebla A., Gómez-SintesR., Villarejo-Zori B.: Autophagy in the eye: Development, degeneration,and aging. Prog. Retin. Eye Res., 2016; 55: 206–245
Google Scholar - 11. Cai J., Zhang H., Zhang Y.F., Zhou Z., Wu S.: MicroRNA-29 enhancesautophagy and cleanses exogenous mutant αB-crystallin inretinal pigment epithelial cells. Exp. Cell Res., 2019; 374: 231–248
Google Scholar - 12. Cerri S., Blandini F.: Role of autophagy in Parkinson’s disease.Curr. Med. Chem., 2019; 26: 3702–3718
Google Scholar - 13. Chai P., Ni H., Zhang H., Fan X.: The evolving functions of autophagyin ocular health: A double-edged sword. Int. J. Biol. Sci.,2016; 12: 1332–1340
Google Scholar - 14. Chen Y., Perusek L., Maeda A.: Autophagy in light-induced retinaldamage. Exp. Eye Res., 2016; 144: 64–72
Google Scholar - 15. Cheng Y.S., Linetsky M., Gu X., Ayyash N., Gardella A., SalomonR.G.: Light-induced generation and toxicity of docosahexaenoate–derived oxidation products in retinal pigmented epithelial cells.Exp. Eye Res., 2019; 181: 325–345
Google Scholar - 16. Cherra S.J. 3rd, Kulich S.M., Uechi G., Balasubramani M., MountzourisJ., Day B.W., Chu C.T.: Regulation of the autophagy protein LC3by phosphorylation. J. Cell Biol., 2010; 190: 533–539
Google Scholar - 17. Cheung C.M., Tai E.S., Kawasaki R., Tay W.T., Lee J.L., HamzahH., Wong T.Y.: Prevalence of and risk factors for age-related maculardegeneration in a multiethnic Asian cohort. Arch. Ophthalmol.2012; 130: 480–486
Google Scholar - 18. Cheung C.M., Wong T.Y.: Is age-related macular degenerationa manifestation of systemic disease? New prospects for early interventionand treatment. J. Intern. Med., 2014; 276: 140–153
Google Scholar - 19. Codogno P., Meijer A.J.: Autophagy and signaling: their role incell survival and cell death. Cell Death Differ., 2005; 12: 1509–1518
Google Scholar - 20. Cuervo A.M.: Chaperone-mediated autophagy: Selectivity paysoff. Trends Endocrinol. Metab., 2010; 21: 142–150
Google Scholar - 21. Dalal M., Jacobs-El N., Nicholson B., Tuo J., Chew E., Chan C.C.,Nussenblatt R., Ferris F., Meyerle C.: Subconjunctival Palomid 529in the treatment of neovascular age-related macular degeneration.Graefes Arch. Clin. Exp. Ophthalmol., 2013; 251: 2705–2709
Google Scholar - 22. DeAngelis M.M., Owen L.A., Morrison M.A., Morgan D.J., Li M.,Shakoor A., Vitale A., Iyengar S., Stambolian D., Kim I.K., Farrer L.A.:Genetics of age-related macular degeneration (AMD). Hum. Mol.Genet., 2017; 26: R45–R50
Google Scholar - 23. De Cillà S., Farruggio S., Vujosevic S., Raina G., Filippini D., GattiV., Clemente N., Mary D., Vezzola D., Casini G., Rossetti L., GrossiniE.: Anti-vascular endothelial growth factors protect retinal pigmentepithelium cells against oxidation by modulating nitric oxide releaseand autophagy. Cell Physiol. Biochem., 2017; 42: 1725–1738
Google Scholar - 24. De Duve S., Wattiaux R.: Functions of lysosomes. Annu. Rev.Physiol., 1966; 28: 435–492
Google Scholar - 25. Dokladny K., Myers O.B., Moseley P.L.: Heat shock response andautophagy – cooperation and control. Autophagy, 2015; 11: 200–213
Google Scholar - 26. Dokladny K., Zuhl M.N., Mandell M., Bhattacharya D., SchneiderS., Deretic V., Moseley P.L.: Regulatory coordination between twomajor intracellular homeostatic systems: Heat shock response andautophagy. J. Biol. Chem., 2013; 288: 14959–14972
Google Scholar - 27. Franceschi C., Bonafè M., Valensin S., Olivieri F., De Luca M., OttavianiE., De Benedictis G.: Inflamm-aging. An evolutionary perspectiveon immunosenescence. Ann. N.Y. Acad. Sci., 2000; 908: 244–254
Google Scholar - 28. Frost L.S., Mitchell C.H., Boesze-Battaglia K.: Autophagy in the eye:Implications for ocular cell health. Exp. Eye Res., 2014; 124: 56–66
Google Scholar - 29. Geerlings M.J., de Jong E.K., den Hollander A.I.: The complementsystem in age-related macular degeneration: A review of rare geneticvariants and implications for personalized treatment. Mol. Immunol.,2017; 84: 65–76
Google Scholar - 30. Glick D., Barth S., Macleod K.F.: Autophagy: Cellular and molecularmechanisms. J. Pathol., 2010; 221: 3–12
Google Scholar - 31. Golestaneh N., Chu Y., Xiao Y.Y., Stoleru G.L., Theos A.C.: Dysfunctionalautophagy in RPE, a contributing factor in age-related maculardegeneration. Cell Death Dis. 2017; 8: e2537
Google Scholar - 32. Gorusupudi A., Nelson K., Bernstein P.S.: The age-related eye disease
Google Scholar - 33. Gozuacik D., Kimchi A.: Autophagy and cell death. Curr. Topics Dev.Biol., 2007; 78: 217–245
Google Scholar - 34. Hyttinen J.M., Błasiak J., Niittykoski M., Kinnunen K., Kauppinen A.,Salminen A., Kaarniranta K.: DNA damage response and autophagy inthe degeneration of retinal pigment epithelial cells-implications for age–related macular degeneration (AMD). Ageing Res. Rev., 2017; 36: 64–77
Google Scholar - 35. Iwasaki M., Inomata H.: Lipofuscin granules in human photoreceptorcells. Invest. Ophthalmol. Vis. Sci., 1988; 29: 671–679
Google Scholar - 36. Jankowska-Lech I., Grabska-Liberek I., Krzyżewska-Niedziałek A., PietruszyńskaM.: Zwyrodnienie plamki związane z wiekiem (AMD) – chorobastarzejących się społeczeństw. Post. Nauk Med., 2013; 26: 868–873
Google Scholar - 37. Jarrett S.G., Boulton M.E.: Consequences of oxidative stress in agerelatedmacular degeneration. Mol. Aspects Med., 2012; 33: 399–417
Google Scholar - 38. Jarrett S.G., Lewin A.S., Boulton M.E.: The importance of mitochondriain age-related and inherited eye disorders. Ophthalmic Res.,2010; 44: 179–190
Google Scholar - 39. Jaul E., Barron J.: Age-related diseases and clinical and public healthimplications for the 85 years old and over population. Front. PublicHealth, 2017; 5: 335
Google Scholar - 40. Jiang P., Mizushima N.: Autophagy and human diseases. Cell Res.,2014: 24: 69–79
Google Scholar - 41. Jonas J.B., Cheung C.M., Panda-Jonas S.: Updates on the epidemiologyof age-related macular degeneration. Asia Pac. J. Ophthalmol.,2017; 6: 493–497
Google Scholar - 42. Kaarniranta A.: Autophagy a hot topic in AMD. Acta Ophthalmol.,2010; 88: 387–388
Google Scholar - 43. Kaarniranta K., Petrovski G., Kauppinen A.: The Nobel Prized cellulartarget autophagy in eye diseases. Acta Ophthalmol., 2017; 95: 335–336
Google Scholar - 44. Kaarniranta K., Sinha D., Blasiak J., Kauppinen A., Veréb Z., SalminenA., Boulton M.E., Petrovski G.: Autophagy and heterophagy dysregulationleads to retinal pigment epithelium dysfunction and developmentof age-related macular degeneration. Autophagy, 2013: 9: 973–984
Google Scholar - 45. Karlsson M., Frennesson C., Gustafsson T., Brunk U.T., Nilsson S.E.,Kurz T.: Autophagy of iron-binding proteins may contribute to the oxidativestress resistance of ARPE-19 cells. Exp. Eye Res., 2013: 116: 359–365
Google Scholar - 46. Kauppinen A., Paterno J.J., Blasiak J., Salminen A., Kaarniranta K.:Inflammation and its role in age-related macular degeneration. CellMol. Life Sci., 2016; 73: 1765–1786
Google Scholar - 47. Khan M., Agarwal K., Loutfi M., Kamal A.: Present and possibletherapies for age-related macular degeneration. ISRN Ophthalmol.,2014; 2014: 608390
Google Scholar - 48. Kivinen N.: The role of autophagy in age-related macular degeneration.Acta Ophthalmol., 2018; 96 (Suppl. A110): 1–50
Google Scholar - 49. Klettner A.K.: VEGF-A and its inhibitors in age-related macular degeneration– pharmacokinetic differences and their retinal and systemicimplications. J. Biochem. Pharmacol. Res., 2014; 2: 8–20
Google Scholar - 50. Klettner A., Möhle F., Roider J.: Intracellular bevacizumab reducesphagocytotic uptake in RPE cell. Graefes Arch. Clin. Exp. Ophthalmol.,2010; 248: 819–824
Google Scholar - 51. Klionsky D.J.: The molecular machinery of autophagy: Unansweredquestions. J. Cell Sci., 2005; 118: 7–18
Google Scholar - 52. Krohne T.U., Kaemmerer E., Holz F.G., Kopitz J.: Lipid peroxidationproducts reduce lysosomal protease activities in human retinal pigmentepithelial cells via two different mechanisms of action. Exp. EyeRes., 2010; 90: 261–266
Google Scholar - 53. Kunchithapautham K., Rohrer B.: Apoptosis and autophagy in photoreceptorsexposed to oxidative stress. Autophagy, 2007; 3: 433–441
Google Scholar - 54. Lei L., Tzekov R., Li H., McDowell J.H., Gao G., Smith W.C., Tang S.,Kaushal S.: Inhibition or stimulation of autophagy affects early formationof lipofuscin-like autofluorescence in the retinal pigment epitheliumcell. Int. J. Mol. Sci., 2017; 18: 728
Google Scholar - 55. Levine B., Klionsky D.J.: Autophagy wins the 2016 Nobel Prize inPhysiology or Medicine: Breakthroughs in baker’s yeast fuel advancesin biomedical research. Proc. Natl. Acad. Sci. USA, 2016; 114: 201–205
Google Scholar - 56. Levine B., Kroemer G.: Autophagy in the pathogenesis of disease.Cell, 2008; 132: 27–42
Google Scholar - 57. Li R., Wang L.Z., Du J.H., Zhao L., Yao Y.: Autophagy activation andthe mechanism of retinal microvascular endothelial cells in hypoxia.Int. J. Ophthalmol., 2018; 11: 567–574
Google Scholar - 58. Lin W., Xu G.: Autophagy: A role in the apoptosis, survival, inflammation,and development of the retina. Ophthalmic Res., 2019; 61: 65–72
Google Scholar - 59. Liu J., Copland D.A., Theodoropoulou S., Chiu H.A., Barba M.D., MakK.W., Mack M., Nicholson L.B., Dick A.D.: Impairing autophagy in retinalpigment epithelium leads to inflammasome activation and enhancedmacrophage-mediated angiogenesis. Sci. Rep., 2016; 6: 20639
Google Scholar - 60. Luthert P.J.: Pathogenesis of age-related macular degeneration.Diagn. Histopathol., 2011; 17: 10–16
Google Scholar - 61. Luthra S., Sharma A., Dong J., Neekhra A., Gramajo A.L., Seigel G.M.,Kenney M.C., Kuppermann B.D.: Effect of bevacizumab (AvastinTM) onmitochondrial function of in vitro retinal pigment epithelial, neurosensoryretinal and microvascular endothelial cells. Indian J. Ophthalmol.,2013; 61: 705–710
Google Scholar - 62. Mathenge W.: Age-related macular degeneration. Community EyeHealth. 2014; 27: 49–50
Google Scholar - 63. Mehrpour M., Esclatine A., Beau I., Codogno P.: Overview of macroautophagyregulation in mammalian cells. Cell Res., 2010; 20: 748–762
Google Scholar - 64. Miguel N.C. Matsuda M., Portes A.L., Allodi S., Mendez-Otero R.,Puntar T., Sholl-Franco A., Krempel P.G., Monteiro M.L.: In vitro effectsof bevacizumab treatment on newborn rat retinal cell proliferation, death,and differentiation. Invest. Ophthalmol. Vis. Sci. 2012; 53: 7904–7911
Google Scholar - 65. Mijaljica D., Prescott M., Devenish R.J.: Microautophagy in mammaliancells: Revisiting a 40-year-old conundrum. Autophagy, 2011;7: 673–682
Google Scholar - 66. Mitter S.K., Rao H.V., Qi X., Cai J., Sugrue A., Dunn W.A. Jr, Grant M.B.,Boulton M.E.: Autophagy in the retina: A potential role in age-relatedmacular degeneration. Adv. Exp. Med. Biol., 2012; 723: 83–90
Google Scholar - 67. Mizushima N.: The role of the Atg1/ULK1 complex in autophagyregulation. Curr. Opin. Cell Biol., 2010; 22: 132–139
Google Scholar - 68. Mizushima N., Komatsu M.: Autophagy: Renovation of cells andtissues. Cell, 2011; 147: 728–741
Google Scholar - 69. Moschos M.M, Nitoda E., Chatziralli I.P., Demopoulos C.A.: Age–related macular degeneration: Pathogenesis, genetic background,and the role of nutritional supplements. J. Chemistry., 2014; 2014:317536
Google Scholar - 70. Nita M., Grzybowski A., Ascaso F.J., Huerva V.: Age-related maculardegeneration in the aspect of chronic low-grade inflammation(pathophysiological parainflammation). Mediators Inflamm.,2014; 2014: 930671
Google Scholar - 71. Paimela T., Hyttinen J.M., Viiri J., Ryhänen T., Karjalainen R.O.,Salminend A., Kaarnirantaa K.: Celastrol regulates innate immunityresponse via NF-κB and Hsp70 in human retinal pigment epithelialcells. Pharmacol. Res., 2011; 64: 501–508
Google Scholar - 72. Park D., Jeong H., Lee M.N., Koh A., Kwon O., Yang Y.R., Noh J.,Suh P.G., Park H., Ryu S.H.: Resveratrol induces autophagy by directlyinhibiting mTOR through ATP competition. Sci. Rep., 2016; 6: 21772
Google Scholar - 73. Parzych K.R., Klionsky D.J.: An overview of autophagy: Morphology,mechanism, and regulation. Antioxid. Redox Signal., 2014;20: 460–473
Google Scholar - 74. Pennington K.L., DeAngelis M.M.: Epidemiology of age-relatedmacular degeneration (AMD): Associations with cardiovascular diseasephenotypes and lipid factors. Eye Vis., 2016; 3: 34
Google Scholar - 75. Perl A.: mTOR activation is a biomarker and a central pathwayto autoimmune disorders, cancer, obesity, and aging. Ann. N.Y. Acad.Sci., 2015; 1346: 33–44
Google Scholar - 76. Perusek L., Sahu B., Parmar T., Maeno H., Arai E., Le Y.Z., SubausteC.S., Chen Y., Palczewski K., Maeda A.: Di-retinoid-pyridiniumethanolamine(A2E) accumulation and the maintenance of the visualcycle are independent of Atg7-mediated autophagy in the retinalpigmented epithelium. J. Biol. Chem., 2015; 290: 29035–29044
Google Scholar - 77. Polewska J.: Autofagia – mechanizm molekularny, apoptozai nowotwory. Postępy Hig. Med. Dośw., 2012; 66: 921–936
Google Scholar - 78. Ravikumar B., Sarkar S., Davies J.E., Futter M., Garcia-ArencibiaM., Green-Thompson Z.W., Jimenez-Sanchez M., Korolchuk V.I.,Lichtenberg M., Luo S., Massey D.C., Menzies F.M., Moreau K., NarayananU., Renna M. i wsp.: Regulation of mammalian autophagyin physiology and pathophysiology. Physiol. Rev. 2010; 90:1383–1435
Google Scholar - 79. Remé C.E.: Autophagy in visual cells and pigment epithelium.Invest. Ophthalmol. Vis. Sci., 1977; 16: 807–814
Google Scholar - 80. Rinninella E., Mele M.C., Merendino N., Cintoni M., Anselmi G.,Caporossi A., Gasbarrini A., Minnella A.M.: The role of diet, micronutrientsand the gut microbiota in age-related macular degeneration:New perspectives from the gut-retina axis. Nutrients, 2018; 10: 1677
Google Scholar - 81. Ryhänen T., Hyttinen J.M., Kopitz J., Rilla K., Kuusisto E., MannermaaE., Viiri J., Holmberg C.I., Immonen I., Meri S., Parkkinen J.,Eskelinen E.L., Uusitalo H., Salminen A., Kaarniranta K.: Crosstalkbetween Hsp70 molecular chaperone, lysosomes and proteasomesin autophagy-mediated proteolysis in human retinal pigment epithelialcells. J. Cell Mol. Med., 2009; 13: 3616–3631
Google Scholar - 82. Schnichels S., Hagemann U., Januschowski K., Hofmann J., Bartz-Schmidt K.U., Szurman P., Spitzer M.S., Aisenbrey S.: Comparativetoxicity and proliferation testing of aflibercept, bevacizumab andranibizumab on different ocular cells. Br. J. Ophthalmol., 2013; 97:917–923
Google Scholar - 83. Sharifi M.N., Mowers E.E., Drake L.E., Macleod K.F.: Measuringautophagy in stressed cells. Methods Mol. Biol., 2015;1292:129–150
Google Scholar - 84. Szatmári-Tóth M., Kristóf E., Veréb Z., Akhtar S., Facskó A., FésüsL., Kauppinen A., Kaarniranta K., Petrovski G.: Clearance of autophagy-associated dying retinal pigment epithelial cells – a possiblesource for inflammation in age-related macular degeneration. CellDeath Dis., 2016; 7: e2367
Google Scholar - 85. Tanida I., Ueno T., Kominami E.: LC3 and autophagy. MethodsMol. Biol., 2008; 445: 77–88
Google Scholar - 86. Thapa R., Bajimaya S., Paudyal G., Khanal S., Tan S., Thapa S.S.,van Rens G.: Prevalence of and risk factors for age-related maculardegeneration in Nepal: The Bhaktapur Retina Study. Clin. Ophthalmol.,2017; 11: 963–972
Google Scholar - 87. Tomasiak M., Cichacz B., Pedrycz A.: Autofagia – adaptacyjnemechanizmy molekularne w warunkach głodu. Pol. Hyp. Res.,2015; 52: 71–75
Google Scholar - 88. Uddin M.S., Stachowiak A., Mamun A.A., Tzvetkov N.T., TakedaS., Atanasov A.G., Bergantin L.B., Abdel-Daim M.M., Stankiewicz A.M.:Autophagy and Alzheimer’s disease: From molecular mechanismsto therapeutic implications. Front. Aging Neurosci., 2018; 10: 04
Google Scholar - 89. van Deursen J.M.: The role of senescent cells in aging. Nature,2014; 509: 439–446
Google Scholar - 90. Velilla S., García-Medina J.J., García-Layana A., Dolz-Marco R.,Pons-Vázquez S., Pinazo-Durán M.D., Gómez-Ulla F., Arévalo J.F.,Díaz-Llopis M., Gallego-Pinazo R.: Smoking and age-related maculardegeneration: Review and update. J. Ophthalmol., 2013; 2013: 895147
Google Scholar - 91. Wang A.L., Lukas T.J., Yuan M., Du N., Tso M.O., Neufeld A.H.:Autophagy, exosomes and drusen formation in age-related maculardegeneration. Autophagy, 2009; 5: 563–564
Google Scholar - 92. Wang S., Wang X., Cheng Y., Ouyang W., Sang X., Liu J., Su Y.,Liu Y., Li C., Yang L., Jin L., Wang Z.: Autophagy dysfunction, cellularsenescence, and abnormal immune-inflammatory responses inAMD: From mechanisms to therapeutic potential. Oxid. Med. CellLongev., 2019; 2019: 3632169
Google Scholar - 93. Wang Z.V., Rothermel B.A., Hill J.A.: Autophagy in hypertensiveheart disease. J. Biol. Chem., 2010; 285: 8509–8514
Google Scholar - 94. Wirawan E., Vanden Berghe T., Lippens S., Agostinis P., VandenabeeleP.: Autophagy: For better or for worse. Cell Res., 2012; 22: 43–61
Google Scholar - 95. Wong W.L., Su X., Li X., Cheung C.M., Klein R., Cheng C.Y., WongT.Y.: Global prevalence of age-related macular degeneration and diseaseburden projection for 2020 and 2040: A systematic review andmeta-analysis. Lancet Glob. Health, 2014; 2: e106–e116
Google Scholar - 96. Xie W., Zhou J.: Aberrant regulation of autophagy in mammaliandiseases. Biol. Lett., 2018; 14: 20170540
Google Scholar - 97. Yagasaki R., Nakahara T., Ushikubo H., Mori A., Sakamoto K.,Ishii K.: Anti-angiogenic effects of mammalian target of rapamycininhibitors in a mouse model of oxygen-induced retinopathy. Biol.Pharm. Bull., 2014; 37: 1838–1842
Google Scholar - 98. Yang J.S., Lu C.C., Kuo S.C., Hsu Y.M., Tsai S.C., Chen S.Y., ChenY.T., Lin Y.J., Huang Y.C., Chen C.J., Lin W.D., Liao W.L., Lin W.Y., LiuY.H., Sheu J.C., Tsai F.J.: Autophagy and its link to type II diabetesmellitus. Biomedicine, 2017; 7: 8
Google Scholar - 99. Yang Y.P., Liang Z.Q., Gu Z.L., Qin Z.H.: Molecular mechanism andregulation of autophagy. Acta Pharmacol. Sin., 2005; 26: 1421–1434
Google Scholar - 100. Zarbin M.A.: Current concepts in the pathogenesis of age-relatedmacular degeneration. Arch. Ophthalmol., 2004; 122: 598–614
Google Scholar - 101. Zhang J., Bai Y., Huang L., Qi Y., Zhang Q., Li S., Wu Y., Li X.:Protective effect of autophagy on human retinal pigment epithelialcells against lipofuscin fluorophore A2E: Implications for age-relatedmacular degeneration. Cell Death Dis., 2015; 6: e1972
Google Scholar - 102. Zhang K., Zhang L., Weinreb R.N.: Ophthalmic drug discovery:Novel targets and mechanisms for retinal diseases and glaucoma.Nat. Rev. Drug Discov., 2012; 11: 541–559
Google Scholar - 103. Zhou H., Zhang H., Yu A., Xie J.: Association between sunlightexposure and risk of age-related macular degeneration: A meta–analysis. BMC Ophthalmol., 2018; 18: 331
Google Scholar - 104. Zhou Z., Doggett T.A., Sene A., Apte R.S., Ferguson T.A.: Autophagysupports survival and phototransduction protein levels in rodphotoreceptors. Cell Death Differ., 2015; 22: 488–498
Google Scholar