Czynniki patogenności Pseudomonas aeruginosa – rola biofilmu w chorobotwórczości i jako cel terapii fagowej

GLOSA LUB KOMENTARZ PRAWNICZY

Czynniki patogenności Pseudomonas aeruginosa – rola biofilmu w chorobotwórczości i jako cel terapii fagowej

Fairoz Al-Wrafy 1 , Ewa Brzozowska 2 , Sabina Górska 2 , Andrzej Gamian 2

1. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland; Department of Applied Microbiology, Faculty of Sciences, Taiz University, Taiz, Yemen
2. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland

Opublikowany: 2017-02-14
DOI: 10.5604/01.3001.0010.3792
GICID: 01.3001.0010.3792
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2017; 71 : 78-91

 

Abstrakt

Przypisy

  • 1. Abedon S.T., Kuhl S.J., Blasdel B.G., Kutter E.M.: Phage treatment of human infections. Bacteriophage. 2011; 1: 66-85
    Google Scholar
  • 2. Abraham T., Schooling S.R., Beveridge T.J., Katsaras J.: Monolayer film behavior of lipopolysaccharide from Pseudomonas aeruginosa at the air-water interface. Biomacromolecules, 2008; 9: 2799-2804
    Google Scholar
  • 3. Adhya S., Merril C.R., Biswas B.: Therapeutic and prophylactic applications of bacteriophage components in modern medicine. Cold Spring Harb. Perspect. Med., 2014; 4: a012518
    Google Scholar
  • 4. Allesen-Holm M., Barken K.B., Yang, L., Klausen M., Webb J.S., Kjelleberg S., Molin S., Givskov M., Tolker-Nielsen T.: A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol., 2006; 59: 1114-1128
    Google Scholar
  • 5. Alves D.R., Perez-Esteban P., Kot W., Bean J.E., Arnot T., Hansen L.H., Enright M.C., Jenkins A.T.: A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb. Biotechnol., 2016; 9: 61-74
    Google Scholar
  • 6. ] Amari D.T., Marques C.N., Davies D.G.: The putative enoyl-coenzyme A hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid. J. Bacteriol., 2013; 195: 4600-4610
    Google Scholar
  • 7. Bagge N., Hentzer M., Andersen J.B., Ciofu O., Givskov M., Hoiby N.: Dynamics and spatial distribution of β-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2004; 48: 1168-1174
    Google Scholar
  • 8. Banin E., Vasil, M.L., Greenberg E.P.: Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci. USA, 2005; 102: 11076-11081
    Google Scholar
  • 9. Baraquet C., Harwood C.S.: Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc. Natl. Acad. Sci. USA, 2013; 110: 18478-18483
    Google Scholar
  • 10. Baraquet C., Murakami K., Parsek M.R., Harwood C.S.: The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res., 2012; 40: 7207-7218
    Google Scholar
  • 11. Bardoel B.W., van der Ent S., Pel M.J., Tommassen J., Pieterse C.M., van Kessel K.P., van Strijp J.A.: Pseudomonas evades immune recognition of flagellin in both mammals and plants. PLoS Pathog., 2011; 7: e1002206
    Google Scholar
  • 12. Billings N., Millan M.R., Caldara M., Rusconi R., Tarasova Y., Stocker R., Ribbeck K.: The extracellular matrix component Psl provides fast-acting antibiotic defense in Pseudomonas aeruginosa biofilms. PLOS Pathog., 2013; 9: e1003526
    Google Scholar
  • 13. Breidenstein E.B., de la Fuente-Núñez C., Hancock R.E.: Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol., 2011; 19: 419-426
    Google Scholar
  • 14. Briers Y., Schmelcher M., Loessner M.J., Hendrix J., Engelborghs Y., Volckaert G., Lavigne R.: The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144. Biochem. Biophys. Res. Commun., 2009; 383: 187-191
    Google Scholar
  • 15. Briers Y., Volckaert G., Cornelissen A., Lagaert S., Michiels C.W., Hertveldt K., Lavigne R.: Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol. Microbiol., 2007; 65: 1334-1344
    Google Scholar
  • 16. Briers Y., Walmagh M., Lavigne R.: Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J. Appl. Microbiol., 2011; 110: 778-785
    Google Scholar
  • 17. Byrd M.S., Sadovskaya I., Vinogradov E., Lu H., Sprinkle A.B., Richardson S.H., Ma L., Ralston B., Parsek M.R., Anderson E.M., Lam J.S., Wozniak D.J.: Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol., 2009; 73: 622-638
    Google Scholar
  • 18. Bystrova O.V., Knirel Y.A., Lindner B., Kocharova N.A., Kondakova A.N., Zähringer U., Pier G.B.: Structures of the core oligosaccharide and O-units in the R- and SR-type lipopolysaccharides of reference strains of Pseudomonas aeruginosa O-serogroups. FEMS Immunol. Med. Microbiol., 2006; 46: 85-99
    Google Scholar
  • 19. Bystrova O.V., Shashkov A.S., Kocharova N.A., Knirel Y.A., Lindner B., Zähringer U., Pier G.B.: Structural studies on the core and the O-polysaccharide repeating unit of Pseudomonas aeruginosa immunotype1 lipopolysaccharide. Eur. J. Biochem., 2002; 269: 2194-2203
    Google Scholar
  • 20. Chan B.K., Abedon S.T.: Bacteriophages and their enzymes in biofilm control. Curr. Pharm. Des., 2015; 21: 85-99
    Google Scholar
  • 21. Chatterjee M., Anju C.P., Biswas L., Kumar V.A., Mohan C.G., Biswas R.: Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol., 2016; 306: 48-58
    Google Scholar
  • 22. Chemani C., Imberty A., de Bentzmann S., Pierre M., Wimmerová M., Guery B.P., Faure K.: Role of LecA and LecB lectins in Pseudomonas aeruginosa induced lung injury and effect of carbohydrate ligands. Infect. Immun., 2009; 77: 2065-2075
    Google Scholar
  • 23. Chiang W.C., Nilsson M., Jensen P.O., Hoiby N., Nielsen T.E., Givskov M., Tolker-Nielsen T.: Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother., 2013; 57: 2352-2361
    Google Scholar
  • 24. Colvin K.M., Gordon V.D., Murakami K., Borlee B.R., Wozniak D.J., Wong G.C., Parsek M.R.: The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog., 2011; 7: e1001264
    Google Scholar
  • 25. Colvin K.M., Irie Y., Tart C.S., Urbano R., Whitney J.C., Ryder C., Howell P.L., Wozniak D.J., Parsek M.R.: The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol., 2012; 14: 1913-1928
    Google Scholar
  • 26. Costa T.R., Felisberto-Rodrigues C., Meir A., Prevost M.S., Redzej A., Trokter M., Waksman G.: Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol., 2015; 13: 343-359
    Google Scholar
  • 27. Coulon C., Vinogradov E., Filloux A., Sadovskaya I.: Chemical analysis of cellular and extracellular carbohydrates of a biofilmforming strain Pseudomonas aeruginosa PA14. PLoS One, 2010; 5, e14220
    Google Scholar
  • 28. Coulter L.B., McLean R.J., Rohde R.E., Aron G.M.: Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses, 2014; 6: 3778-3786
    Google Scholar
  • 29. da Mata Madeira P.V., Zouhir S., Basso P., Neves D., Laubier A., Salacha R., Bleves S., Faudry E., Contreras-Martel C., Dessen A.: Structural basis of lipid targeting and destruction by the type V secretion system of Pseudomonas aeruginosa. J. Mol. Biol., 2016; 428: 1790-1803
    Google Scholar
  • 30. De Kievit T.R., Gillis R., Marx S., Brown C., Iglewski B.H.: Quorumsensing genes in Pseudomonas aeruginosa biofilms: Their role and expression patterns. Appl. Environ. Microbiol., 2001; 67: 1865-1873
    Google Scholar
  • 31. Debarbieux L., Leduc D., Maura D., Morello E., Criscuolo A., Grossi O., Balloy V., Touqui L.: Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J. Iinfect. Dis., 2010; 201: 1096-1104
    Google Scholar
  • 32. Deep A., Chaudhary U., Gupta V.: Quorum sensing and bacterial pathogenicity: from molecules to disease. J. Lab. Physicians, 2011; 3: 4-11
    Google Scholar
  • 33. Diggle S.P., Winzer K., Lazdunski A., Williams P., Cámara M.: Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J. Bacteriol., 2002; 184: 2576-2586
    Google Scholar
  • 34. Domingo-Calap P., Georgel P., Bahram S.: Back to the future: bacteriophages as promising therapeutic tools. HLA, 2016; 87: 133-140
    Google Scholar
  • 35. Driscoll J.A., Brody S.L., Kollef M.H.: The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 2007; 67: 351-368
    Google Scholar
  • 36. Ernst R.K., Moskowitz S.M., Emerson J.C., Kraig G.M., Adams K.N., Harvey M.D., Ramsey B., Speert D.P., Burns J.L., Miller S.I.: Unique lipid A modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis. J. Infect. Dis., 2007; 196: 1088-1092
    Google Scholar
  • 37. Favre-Bonté S., Chamot E., Köhler T., Romand J.A., Van Delden C.: Autoinducer production and quorum-sensing dependent phenotypes of Pseudomonas aeruginosa vary according to isolation site during colonization of intubated patients. BMC Microbiol., 2007; 7: 33
    Google Scholar
  • 38. Fazli M., Almblad H., Rybtke M.L., Givskov M., Eberl L., TolkerNielsen T.: Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ. Microbiol., 2014; 16: 1961-1981
    Google Scholar
  • 39. Franklin M.J., Nivens D.E., Weadge J.T., Howell P.L.: Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front. Microbiol., 2011; 2: 167
    Google Scholar
  • 40. Friedman L., Kolter R.: Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol., 2004; 51: 675690
    Google Scholar
  • 41. Fu W., Forster T., Mayer O., Curtin J.J., Lehman S.M., Donlan R.M.: Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother., 2010; 54: 397-404
    Google Scholar
  • 42. Gellatly S.L., Hancock R.E.: Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog. Dis., 2013; 67: 159-173
    Google Scholar
  • 43. Germoni L.A., Bremer P.J., Lamont I.L.: The effect of alginate lyase on the gentamicin resistance of Pseudomonas aeruginosa in mucoid biofilms. J. Appl. Microbiol., 2016; 121: 126-135
    Google Scholar
  • 44. Gilbert K.B., Kim T.H., Gupta R., Greenberg E.P., Schuster M.: Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol. Microbiol., 2009; 73: 1072-1085
    Google Scholar
  • 45. Glonti T., Chanishvili N., Taylor P.W.: Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J. Appl. Microbiol., 2010; 108: 695-702
    Google Scholar
  • 46. Goodman A.L., Merighi M., Hyodo M., Ventre I., Filloux A., Lory S.: Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev., 2009; 23: 249-259
    Google Scholar
  • 47. Hanlon G.W., Denyer S.P., Olliff C.J., Ibrahim L.J.: Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol., 2001; 67: 2746-2753
    Google Scholar
  • 48. Harper D., Parracho H.M., Walker J., Sharp R., Hughes G., Werthén M., Lehman S., Morales S.: Bacteriophages and biofilms. Antibiotics, 2014; 3: 270-284
    Google Scholar
  • 49. Hauser A.R.: The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat. Rev. Microbiol., 2009; 7: 654-665
    Google Scholar
  • 50. Hickman J.W., Harwood C.S.: Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol. Microbiol., 2008; 69: 376-389
    Google Scholar
  • 51. Hraiech S., Bregeon F., Rolain J.M.: Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Des. Devel. Ther., 2015; 9: 3653-3663
    Google Scholar
  • 52. Hughes K.A., Sutherland I.W., Clark J., Jones M.V.: Bacteriophage and associated polysaccharide depolymerases – novel tools for study of bacterial biofilms. J. Appl. Microbiol., 1998; 85: 583-590
    Google Scholar
  • 53. Irie Y., Borlee B.R., O’Connor J.R., Hill P.J., Harwood C.S., Wozniak D.J., Parsek M.R.: Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2012; 109: 20632-20636
    Google Scholar
  • 54. Irie Y., Starkey M., Edwards A.N., Wozniak D.J., Romeo T., Parsek M.R.: Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol. Microbiol., 2010; 78: 158-172
    Google Scholar
  • 55. Jackson K.D., Starkey M., Kremer S., Parsek M.R., Wozniak D.J.: Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J. Bacteriol., 2004; 186: 4466-4475
    Google Scholar
  • 56. Jain R., Behrens A.J., Kaever V., Kazmierczak B.I.: Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic diGMP concentrations. J. Bacteriol., 2012; 194: 4285-4294
    Google Scholar
  • 57. James C.E., Davies E.V., Fothergill J.L., Walshaw M.J., Beale C.M., Brockhurst M.A., Winstanley C.: Lytic activity by temperate phages of Pseudomonas aeruginosa in long-term cystic fibrosis chronic lung infections. ISME J., 2015; 9: 1391-1398
    Google Scholar
  • 58. Jennings L.K., Storek K.M., Ledvina H.E., Coulon C., Marmont L.S., Sadovskaya I., Secor P.R., Tseng B.S., Scian M., Filloux A., Wozniak D.J., Howell P.L., Parsek M.R.: Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc. Natl. Acad. Sci. USA, 2015; 112: 11353-11358
    Google Scholar
  • 59. Jyot J., Balloy V., Jouvion G., Verma A., Touqui L., Huerre M., Chignard M., Ramphal R.: Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection. J. Infect. Dis., 2011; 203: 1369-1377
    Google Scholar
  • 60. Kalferstova L., Vilimovska Dedeckova K., Antuskova M., Melter O., Drevinek P.: How and why to monitor Pseudomonas aeruginosa infections in the long term at a cystic fibrosis centre. J. Hosp. Infect., 2016; 92: 54-60
    Google Scholar
  • 61. Keren I., Wu Y., Inocencio J., Mulcahy L.R., Lewis K.: Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science, 2013; 339: 1213-1216
    Google Scholar
  • 62. Kim S., Rahman M., Seol S.Y., Yoon S.S., Kim J.: Pseudomonas aeruginosa bacteriophage PA1Ø requires type IV pili for infection and shows broad bactericidal and biofilm removal activities. Appl. Environ. Microbiol., 2012; 78: 6380-6385
    Google Scholar
  • 63. King J.D., Kocincova D., Westman E.L., Lam J.S.:Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Innate Immun., 2009; 15: 261-312
    Google Scholar
  • 64. Kulasakara H., Lee V., Brencic A., Liberati N., Urbach J., Miyata S., Lee D.G., Neely A.N., Hyodo M., Hayakawa Y., Ausubel F.M., Lory S.: Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3’-5’)-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. USA, 2006; 103: 2839-2844
    Google Scholar
  • 65. Kwiatek M., Mizak L., Parasion S., Gryko R., Olender A., Niemcewicz M.: Characterization of five newly isolated bacteriophages active against Pseudomonas aeruginosa clinical strains. Folia Microbiol., 2015; 60: 7-14
    Google Scholar
  • 66. Lam J.S., Taylor V.L., Islam S.T., Hao Y., Kocincová D.: Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front. Microbiol., 2011; 2: 118
    Google Scholar
  • 67. Lau G.W., Hassett D.J., Ran H., Kong F.: The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med., 2004; 10: 599-606
    Google Scholar
  • 68. Lau P.C., Lindhout T., Beveridge T.J., Dutcher J.R., Lam J.S.: Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J. Bacteriol., 2009; 191: 6618-6631
    Google Scholar
  • 69. Lee J.Y., Na I.Y., Park Y.K., Ko K.S.: Genomic variations between colistin-susceptible and resistant Pseudomonas aeruginosa clinical isolates and their effects on colistin resistance. J. Antimicrob. Chemother., 2014; 69: 1248-1256
    Google Scholar
  • 70. ] Lee V.T., Matewish J.M., Kessler J.L., Hyodo M., Hayakawa Y., Lory S.: A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol., 2007; 65: 1474-1484
    Google Scholar
  • 71. Leid J.G., Willson C.J., Shirtliff M.E., Hassett D.J., Parsek M.R., Jeffers A.K.: The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J. Immunol., 2005; 175: 7512-7518
    Google Scholar
  • 72. Li X.Z., Plésiat P., Nikaido H.: The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev., 2015; 28: 337-418
    Google Scholar
  • 73. Liao K.S., Lehman S.M., Tweardy D.J., Donlan R.M., Trautner B.W.: Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J. Appl. Microbiol., 2012; 113:1530-1539
    Google Scholar
  • 74. Lister P.D., Wolter D.J., Hanson N.D.: Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev., 2009; 22; 582-610
    Google Scholar
  • 75. Livermore D.M.: Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis., 2002; 34: 634-640
    Google Scholar
  • 76. Lyczak J.B., Cannon C.L., Pier G.B.: Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect., 2000; 2: 1051-1060
    Google Scholar
  • 77. Ma L., Jackson K.D., Landry R.M., Parsek M.R., Wozniak D.J.: Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure post attachment. J. Bacteriol., 2006; 188: 8213-8221
    Google Scholar
  • 78. Ma L., Wang J., Wang S., Anderson E.M., Lam J.S., Parsek M.R., Wozniak D.J.: Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated. Environ. Microbiol., 2012; 14: 1995-2005
    Google Scholar
  • 79. Merighi M., Lee V.T., Hyodo M., Hayakawa Y., Lory S.: The second messenger bis-(3’-5’)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol., 2007; 65: 876-895
    Google Scholar
  • 80. Mishra M., Byrd M.S., Sergeant S., Azad A.K., Parsek M.R., McPhail L., Schlesinger L.S., Wozniak D.J.: Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cell. Microbiol., 2012; 14: 95-106
    Google Scholar
  • 81. Moghaddam M.M., Khodi S., Mirhosseini A.: Quorum sensing in bacteria and a glance on Pseudomonas aeruginosa. Clin. Microbial., 2014, 3: 156
    Google Scholar
  • 82. Morello E., Saussereau E., Maura D., Huerre M., Touqui L., Debarbieux L.: Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One, 2011; 6: e16963
    Google Scholar
  • 83. Mulcahy L.R., Isabella V.M., Lewis K.: Pseudomonas aeruginosa biofilms in disease. Microb. Ecol., 2014; 68: 1-12
    Google Scholar
  • 84. Olaitan A.O., Morand S., Rolain J.M.: Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol., 2014; 5: 643
    Google Scholar
  • 85. Oliver A., Mulet X., López-Causapé C., Juan C.: The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat., 2015; 21-22: 41-59
    Google Scholar
  • 86. Olszak T., Zarnowiec P., Kaca W., Danis-Wlodarczyk K., Augustyniak D., Drevinek P., de Soyza A., McClean S., Drulis-Kawa Z.: In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. Appl. Microbiol. Biotechnol., 2015; 99: 6021-6033
    Google Scholar
  • 87. Ostroff R.M., Vasil A.I., Vasil M.L.: Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J. Bacteriol., 1990; 172: 5915-5923
    Google Scholar
  • 88. Parasion S., Kwiatek M., Gryko R., Mizak L., Malm A.: Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol., 2014; 63: 137–145
    Google Scholar
  • 89. Parisien A., Allain B., Zhang J., Mandeville R., Lan C.Q.: Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J. Appl. Microbiol., 2008; 104: 1-13
    Google Scholar
  • 90. Pier G.B.: Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int. J. Med. Microbiol., 2007; 297: 277-295
    Google Scholar
  • 91. Pier G.B., Coleman F., Grout M., Franklin M., Ohman D.E.: Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect. Immun., 2001; 69: 1895-1901
    Google Scholar
  • 92. Pires D., Sillankorva S., Faustino A., Azeredo J.: Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res. Microbiol., 2011; 162: 798-806
    Google Scholar
  • 93. Potron A., Poirel L., Nordmann P.: Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int. J. Antimicrob. Agents, 2015; 45: 568-585
    Google Scholar
  • 94. Prigent-Combaret C., Vidal O., Dorel C., Lejeune P.: Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol., 1999; 181: 5993-6002
    Google Scholar
  • 95. Remminghorst U., Rehm B.H.: Alg44, a unique protein required for alginate biosynthesis in Pseudomonas aeruginosa. FEBS Lett., 2006; 580: 3883-3888
    Google Scholar
  • 96. Romling U., Galperin M.Y., Gomelsky M.: Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev., 2013; 77: 1-52
    Google Scholar
  • 97. Rule C.S., Patrick M., Camberg J.L., Maricic N., Hol W.G., Sandkvist M.: Zinc coordination is essential for the function and activity of the type II secretion ATPase EpsE. Microbiol. Open, 2016; 5: 870-882
    Google Scholar
  • 98. Rybtke M., Hultqvist L.D., Givskov M., Tolker-Nielsen T.: Pseudomonas aeruginosa Biofilm infections: community structure, antimicrobial tolerance and immune response. J. Mol. Biol., 2015; 427: 3628-3645
    Google Scholar
  • 99. Rybtke M.T., Borlee B.R., Murakami K., Irie Y., Hentzer M., Nielsen T.E., Givskov M., Parsek M.R., Tolker-Nielsen T.: Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl. Environ. Microbiol., 2012; 78: 5060-5069
    Google Scholar
  • 100. Ryder C., Byrd M., Wozniak D.J.: Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr. Opin. Microbiol., 2007; 10: 644-648
    Google Scholar
  • 101. Sauer K., Camper A.K., Ehrlich G.D., Costerton J.W., Davies D.G.: Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol., 2002; 184: 1140-1154
    Google Scholar
  • 102. Schmelcher M., Donovan D.M., Loessner M.J.: Bacteriophage endolysins as novel antimicrobials. Future Microbiol., 2012; 7: 11471171
    Google Scholar
  • 103. Shankar E.M., Mohan V., Premalatha G., Srinivasan R.S., Usha A.R.: Bacterial etiology of diabetic foot infections in South India. Eur. J. Intern. Med., 2005; 16: 567-570
    Google Scholar
  • 104. Sharma G., Rao S., Bansal A., Dang S., Gupta S., Gabrani R.: Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals, 2014; 42: 1-7
    Google Scholar
  • 105. Simpson J.A., Smith S.E., Dean R.T.: Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. J. Gen. Microbiol., 1988; 134: 29-36
    Google Scholar
  • 106. Sivanmaliappan T.S., Sevanan M.: Antimicrobial susceptibility patterns of Pseudomonas aeruginosa from diabetes patients with foot ulcers. Int. J. Microbiol., 2011; 2011: 605195
    Google Scholar
  • 107. Sriramulu D.D., Lünsdorf H., Lam J.S., Römling U.: Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J. Med. Microbiol., 2005; 54: 667-676
    Google Scholar
  • 108. Tetz G.V., Artemenko N.K., Tetz V.V.: Effect of DNase and antibiotics on biofilm characteristics. Antimicrob. Agents Chemother., 2009; 53: 1204-1209
    Google Scholar
  • 109. Tokajian S., Timani R., Issa N., Araj G.: Molecular characterization, multiple drug resistance, and virulence determinants of Pseudomonas aeruginosa isolated from Lebanon. Br. Microbiol. Res. J., 2012; 2: 243-250
    Google Scholar
  • 110. Vasseur P., Vallet-Gely I., Soscia C., Genin S., Filloux A.: The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology, 2005; 151: 985-997
    Google Scholar
  • 111. Ventre I., Goodman A.L., Vallet-Gely I., Vasseur P., Soscia C., Molin S., Bleves S., Lazdunski A., Lory S., Filloux A.: Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl. Acad. Sci. USA, 2006; 103: 171-176
    Google Scholar
  • 112. Walters M.C., Roe F., Bugnicourt A., Franklin M.J., Stewart P.S.: Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother., 2003; 47: 317-323
    Google Scholar
  • 113. Wang S., Liu X., Liu H., Zhang L., Guo Y., Yu S., Wozniak D.J., Ma L.Z.: The exopolysaccharide Psl–eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environ. Microbiol Rep., 2015; 7: 330-340
    Google Scholar
  • 114. Wei Q., Ma L.Z.: Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci., 2013; 14: 20983-21005
    Google Scholar
  • 115. Williams B.J., Dehnbostel J., Blackwell T.S.: Pseudomonas aeruginosa: host defence in lung diseases. Respirology, 2010; 15: 1037-1056
    Google Scholar
  • 116. Winstanley C., O’Brien S., Brockhurst M.A.: Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol., 2016; 24: 327-337
    Google Scholar
  • 117. Wozniak D.J., Wyckoff T.J., Starkey M., Keyser R Azadi P., O’Toole G.A., Parsek M.R.: Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl. Acad. Sci. USA, 2003; 100: 7907-7912
    Google Scholar
  • 118. Wright A., Hawkins C.H., Anggard E.E., Harper D.R.: A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 2009; 34: 349-357
    Google Scholar
  • 119. Yan J., Mao J., Xie J.: Bacteriophage polysaccharide depolymerases and biomedical applications. Bio. Drugs, 2014; 28: 265-274
    Google Scholar
  • 120. Yang L., Hu Y., Liu Y., Zhang J., Ulstrup J., Molin S.: Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ. Microbiol., 2011; 13: 1705-1717
    Google Scholar

Pełna treść artykułu

Przejdź do treści