Długotrwałe spożywanie oleju rybnego może chronić mózg przed zmianami neurodegeneracyjnymi związanymi z wiekiem

ARTYKUŁ PRZEGLĄDOWY

Długotrwałe spożywanie oleju rybnego może chronić mózg przed zmianami neurodegeneracyjnymi związanymi z wiekiem

Maciej Firląg 1 , Maciej Kamaszewski 2 , Dobrochna Adamek 2 , Małgorzata Gajewska 1 , Bożena Bałasińska 1

1. Department of Physiological Science, Faculty of Veterinary Medicine, Warsaw University of Life Sciences
2. Department of Ichthyobiology and Fisheries, Faculty of Animal Science, Warsaw University of Life Sciences

Opublikowany: 2015-02-06
GICID: 01.3001.0009.6490
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2015; 69 : 188-196

 

Abstrakt

Przypisy

  • 1. Akbar M., Calderon F., Wen Z., Kim, H.Y.: Docosahexaenoic acid: apositive modulator of Akt signaling in neuronal survival. Proc. Natl.Acad. Sci. USA, 2005; 102: 10858-10863
    Google Scholar
  • 2. Babenko N.A. Semenova A.Y.: Effects of long-term fish oil-enricheddiet on the sphingolipid metabolism in brain of old rats. Exp.Gerontol., 2010; 45: 375-380
    Google Scholar
  • 3. Blondeau N., Nguemeni C., Debruyne D.N., Piens M., Wu X., PanH., Hu X., Gandin C., Lipsky R.H., Plumier J.C., Marini A.M., HeurteauxC.: Subchronic alpha-linolenic acid treatment enhancesbrain plasticity and exerts an antidepressant effect: a versatilepotential therapy for stroke. Neuropsychopharmacology, 2009;34: 2548-2559
    Google Scholar
  • 4. Borsonelo E.C., Galduroz J.C.: The role of polyunsaturated fatty acids(PUFAs) in development, aging and substance abuse disorders: review andpropositions. Prostaglandins, Leucot. Essent. Fatty Acids, 2008; 78: 237-245
    Google Scholar
  • 5. Boudrault C., Bazinet R.P., Ma D.W.: Experimental models andmechanisms underlying the protective effects of n-3 polyunsaturatedfatty acids in Alzheimer’s disease. J. Nutr. Biochem., 2009; 20: 1-10
    Google Scholar
  • 6. Brizzee K.R., Eddy D.E., Harman D., Ordy J.M.: Free radical theoryof aging: effect of dietary lipids on lipofuscin accumulation in thehippocampus of rats. Age, 1984; 7: 9-15
    Google Scholar
  • 7. Brunk U., Jones C. Sohal R.: A novel hypothesis of lipofuscinogenesisand cellular aging based on interaction between oxidative stressand autophagocytosis. Mut. Res., 1992; 275: 395-403
    Google Scholar
  • 8. Carrie I., Clément M., de Javel D., Francès H., Bourre J.M.: Specificphospholipid fatty acid composition of brain regions in mice: effectsof n-3 polyunsaturated fatty acid deficiency and phospholipidsupplementation. J. Lipid Res., 2000; 41: 465-472
    Google Scholar
  • 9. Cysneiros R.M., Ferrari D., Arida R.M., Terra V.C., de Almeida A.C.,Cavalheiro E.A., Scorza F.A.: Qualitative analysis of hippocampal plasticchanges in rats with epilepsy supplemented with oral omega-3fatty acids. Epilepsy Behav., 2010; 17: 33-38
    Google Scholar
  • 10. Diplock A.T., Symons M.C., Rice-Evans C.A.: Techniques in FreeRadical Research, Amsterdam, Elsevier, 1991
    Google Scholar
  • 11. Dyall S.C., Michael G.J., Michael-Titus A.T.: Omega-3 fatty acidsreverse age-related decreases in nuclear receptors and increase neurogenesisin old rats. J. Neurosci. Res., 2010; 88: 2091-2102
    Google Scholar
  • 12. Firląg M., Kamaszewski M., Gaca K., Adamek D., Bałasińska B.:The neuroprotective effect of long term n-3 polyunsaturated fattyacids supplementation in the cerebral cortex and hippocampus ofaging rats. Folia Neuropathol., 2013; 51: 235-242
    Google Scholar
  • 13. Florent S., Malaplate-Armand C., Youssef I., Kriem B., Koziel V., EscanyéM.C., Fifre A., Sponne I., Leininger-Muller B., Olivier J.L., Pillot T.,Oster T.: Docosahexaenoic acid prevents neuronal apoptosis inducedby soluble amyloid-β oligomers. J. Neurochem., 2006; 96: 385-395
    Google Scholar
  • 14. Gilissen E.P., Jacobs R.E., Mcguinness E.R., Allman J.M.: Topographicallocalization of lipofuscin pigment in the brain of the agedfat-tailed dwarf lemur (Cheirogaleus medius) and grey lesser mouselemur (Microcebus murinus): comparison to iron localization. Am. J.Primatol., 1999; 49: 183-193
    Google Scholar
  • 15. Gruber A., Schmidt P., Url A.: Immunohistochemical Studiesconcerning the neuronal cell cycle of the cat using PCNA, Ki-67 and p53 markers. J. Vet. Med. A, 2004; 51: 416-419
    Google Scholar
  • 16. Harbeby E., Jouin M., Alessandri J.M., Lallemand M.S., Linard A.,Lavialle M., Huertas A., Cunnane S.C., Guesnet P.: n-3 PUFA statusaffects expression of genes involved in neuroenergetics differentlyin the fronto-parietal cortex compared to the CA1 area of the hippocampus:effect of rest and neuronal activation in the rat. ProstaglandinsLeukot. Essent. Fatty Acids, 2012; 86: 211-220
    Google Scholar
  • 17. Ikeda H., Tauchi H., Sato T.: Fine structural analysis of lipofuscinin various tissues of rats of different ages. Mech. Ageing Dev.,1985; 33: 77-93
    Google Scholar
  • 18. Innis S.M.: Dietary (n-3) fatty acids and brain development. J.Nutr., 2007; 137: 855-859
    Google Scholar
  • 19. Jahns H., Callanan J.J., McElroy M.C., Sammin D.J., Bassett H.F.:Age-related and non-age-related changes in 100 surveyed horsebrains. Vet. Pathol., 2006; 43: 740-750
    Google Scholar
  • 20. Kawabata T., Hirota S., Hirayama T., Adachi N., Hagiwara C.,Iwama N., Kamachi K., Araki E., Kawashima H., Kiso Y.: Age-relatedchanges of dietary intake and blood eicosapentaenoic acid, docosahexaenoicacid, and arachidonic acid levels in Japanese men andwomen. Prostaglandins Leukot. Essent. Fatty Acids, 2011; 84: 131-137
    Google Scholar
  • 21. Kubo K., Saito M., Tadokoro T., Maekawa A.: Changes in susceptibilityof tissues to lipid peroxidation after ingestion of various levelsof docosahexaenoic acid and vitamin E. Br. J. Nutr., 1997; 78: 655–669
    Google Scholar
  • 22. Kubo K., Saito M., Tadokoro T., Maekawa A.: Dietary docosahexaenoicacid dose not promote lipid peroxidation in rat tissue tothe extent expected from peroxidizability index of the lipids. Biosci.Biotechnol. Biochem., 1998; 62: 1698-1706
    Google Scholar
  • 23. Kubo K., Saito M., Tadokoro T., Maekawa A.: Preferential incorporationof docosahexaenoic acid into nonphosphorus lipid and phosphatidylethanolamineprotects rats from dietary DHA-stimulatedlipid peroxidation. J. Nutr., 2000, 130: 1749-1759
    Google Scholar
  • 24. Ledesma M.D., Martin G.M., Dotti C.G.: Lipid changes in the agedbrain: effect on synaptic function and neuronal survival. Prog. LipidRes., 2012; 51: 23-35
    Google Scholar
  • 25. Lennon S.V., Martin S.J., Cotter T.G.: Dose-dependent inductionof apoptosis in human tumour cell lines by widely diverging stimuli.Cell Prolif., 1991; 24: 203-214
    Google Scholar
  • 26. Lukiw W.J. Bazan N.G.: Docosahexaenoic acid and the agingbrain. J. Nutr., 2008; 138: 2510-2514
    Google Scholar
  • 27. Miller D.B., O’Callaghan J.P.: Aging, stress and the hippocampus.Ageing Res. Rev., 2005; 4: 123-140
    Google Scholar
  • 28. Ostaszewska T., Dabrowski K., Wegner A., Krawiec M.: The effectsof feeding on muscle growth dynamics, and the proliferationof myogenic progenitor cells during pike-perch (Sander lucioperca)development. J.World Aquacult. Soc., 2008; 39: 184-195
    Google Scholar
  • 29. Ozdemir D., Uysal N., Gonenc S., Acikgoz O., Sonmez A., TopcuA., Ozdemir N., Duman M., Semin I., Ozkan H.: Effect of melatoninon brain oxidative damage induced by traumatic brain injury in immaturerats. Physiol. Res., 2005; 54: 631-637
    Google Scholar
  • 30. Ozyurt B., Sarsilmaz M., Akpolat N., Ozyurt H., Akyol O., HerkenH., Kus I.: The protective effects of omega-3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem.Int., 2007; 50: 196-202
    Google Scholar
  • 31. Palacios-Pelaez R., Lukiw W.J., Bazan N.G.: Omega-3 essentialfatty acids modulate initiation and progression of neurodegenerativedisease. Mol. Neurobiol., 2010; 41: 367-374
    Google Scholar
  • 32. Pamplona R., Portero-Otín M., Riba D., Requena J.R., Thorpe S.R.,López-Torres M., Barja G.: Low fatty acid unsaturation: a mechanismfor lowered lipoperoxidative modification of tissue proteinsin mammalian species with long life spans. J. Gerontol. A. Biol. Sci.Med. Sci., 2000; 55: B286-B291
    Google Scholar
  • 33. Pisu M.B., Roda E., Guioli S., Avella D., Bottone M.G., BernocchiG.: Proliferation and migration of granule cells in the developing ratcerebellum: cisplatin effects. Anatom. Rec. A, 2005; 287A: 1226-1235
    Google Scholar
  • 34. Rapoport S.I.: In vivo fatty acid incorporation into brain phosholipidsin relation to plasma availability, signal transduction andmembrane remodeling. J. Mol. Neurosci., 2001; 16: 243-261
    Google Scholar
  • 35. Shukla V., Mishra S.K., Pant H.C.: Oxidative stress in neurodegeneration.Adv. Pharmacol. Sci., 2011; 2011: 572634
    Google Scholar
  • 36. Spector A.A.: Plasma free fatty acid and lipoproteins as sources ofpolyunsaturated fatty acid for the brain. J. Mol. Neurosci., 2001; 16: 159-165
    Google Scholar
  • 37. Tsuduki T., Honma T., Nakagawa K., Ikeda I., Miyazawa T.: Longtermintake of fish oil increases oxidative stress and decreases lifespanin senescence-accelerated mice. Nutrition, 2011; 27: 334-337
    Google Scholar
  • 38. Ulmann L., Mimouni V., Roux S., Porsolt R., Poisson J.P.: Brainand hippocampus fatty acid composition in phospholipid classes ofaged-relative cognitive deficit rats. Prostaglandins Leukot. Essent.Fatty Acids, 2001; 64: 189-195
    Google Scholar
  • 39. Yehuda S., Rabinovitz S., Mostofsky, D.I.: Essential fatty acidsand the brain: from infancy to aging. Neurobiol. Aging, 2005; 26,Suppl. 1: 98-102
    Google Scholar

Pełna treść artykułu

Przejdź do treści