Koniugaty metotrexatu i epirubicyny jako potencjalne leki przeciwnowotworowe

ARTYKUŁ PRZEGLĄDOWY

Koniugaty metotrexatu i epirubicyny jako potencjalne leki przeciwnowotworowe

Szymon Wojciech Kmiecik 1 , Mateusz Adam Krzyścik 1 , Beata Filip-Psurska 1 , Joanna Wietrzyk 1 , Janusz Boratyński 1 , Tomasz Marek Goszczyński 1

1. Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland

Opublikowany: 2017-07-30
DOI: 10.5604/01.3001.0010.3842
GICID: 01.3001.0010.3842
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2017; 71 : 618-623

 

Abstrakt

Przypisy

  • 1. Afar D.E., Bhaskar V., Ibsen E., Breinberg D., Henshall S.M., Kench J.G., Drobnjak M., Powers R., Wong M., Evangelista F., O’Hara C., Powers D., DuBridge R.B., Caras I., Winter R., et al.: Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer. Mol. Cancer Ther., 2004; 3: 921-932
    Google Scholar
  • 2. Biswal B.K., Verma R.S.: Differential usage of the transport systems for folic acid and methotrexate in normal human T-lymphocytes and leukemic cells. J. Biochem., 2009; 146: 693-703
    Google Scholar
  • 3. Bonadonna G., Gianni L., Santoro A., Bonfante V., Bidoli P., Casali P., Demicheli R., Valagussa P.: Drugs ten years later: epirubicin. Ann. Oncol., 1993; 4: 359-369
    Google Scholar
  • 4. Capranico G., Supino R., Binaschi M., Capolongo L., Grandi M., Suarato A., Zunino F.: Influence of structural modifications at the 3’ and 4’ positions of doxorubicin on the drug ability to trap topoisomerase-II and to overcome multidrug-resistance. Mol. Pharmacol., 1994; 45: 908-915
    Google Scholar
  • 5. Charak S., Jangir D.K., Tyagi G., Mehrotra R.: Interaction studies of epirubicin with DNA using spectroscopic techniques. J. Mol. Struct., 2011; 1000: 150-154
    Google Scholar
  • 6. Feng D., Song Y., Shi W., Li X., Ma H.: Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe. Anal. Chem., 2013; 85: 6530-6535
    Google Scholar
  • 7. Fortin S., Bérubé G.: Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013; 8: 1029-1047
    Google Scholar
  • 8. Greco F., Arif I., Botting R., Fante C., Quintieri L., Clementi C., Schiavon O., Pasut G.: Polysialic acid as a drug carrier: evaluation of a new polysialic acid-epirubicin conjugate and its comparison against established drug carriers. Polym. Chem., 2013; 4: 1600-1609
    Google Scholar
  • 9. Guo H., Xie F., Zhu M., Li Y., Yang Z., Wang X., Lu J.: The synthesis of pteroyl-lys conjugates and its application as Technetium-99m labeled radiotracer for folate receptor-positive tumor targeting. Bioorg. Med. Chem. Lett., 2011; 21: 2025-2029
    Google Scholar
  • 10. Halwachs S., Lakoma C., Schäefer I., Seibel P., Honscha W.: The antiepileptic drugs phenobarbital and carbamazepine reduce transport of methotrexate in rat choroid plexus by down-regulation of the reduced folate carrier. Mol. Pharmacol., 2011; 80: 621-629
    Google Scholar
  • 11. Hattori Y., Takizawa A., Kishida T., Kakizoe M., Fujikawa N., Teranishi J., Kondo K., Saito K., Noguchi K., Nakaigawa N., Kubota Y.: Clinical study of combination chemotherapy of methotrexate, epirubicin and nedaplatin (MEN) in patients with advanced urothelial carcinoma. Gan. To. Kagaku. Ryoho, 2007; 34: 739-743
    Google Scholar
  • 12. Kaminskas L.M., Kelly B.D., McLeod V.M., Boyd B.J., Krippner G.Y., Williams E.D., Porter C.J.: Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated poly-L-lysine dendrimers. Mol. Pharm., 2009; 6: 1190-1204
    Google Scholar
  • 13. Lee J.Y., Termsarasab U., Park J.H., Lee S.Y., Ko S.H., Shim J.S., Chung S.J., Cho H.J., Kim D.D.: Dual CD44 and folate receptor-targeted nanoparticles for cancer diagnosis and anticancer drug delivery. J. Control. Release, 2016, 236: 38-46
    Google Scholar
  • 14. Leurs U., Lajkó E., Mező G., Orbán E., Öhlschläger P., Marquardt A., Kőhidai L., Manea M.: GnRH-III based multifunctional drug delivery systems containing daunorubicin and methotrexate. Eur. J. Med. Chem., 2012; 52: 173-183
    Google Scholar
  • 15. Li H., Lu Y., Piao L., Wu J., Liu S., Marcucci G., Ratnam M., Lee R.J.: Targeting human clonogenic acute myelogenous leukemia cells via folate conjugated liposomes combined with receptor modulation by all-trans retinoic acid. Int. J. Pharm., 2010; 402: 57-63
    Google Scholar
  • 16. Lown J.W.: Discovery and development of anthracycline antitumour antibiotics. Chem. Soc. Rev., 1993, 22: 165-176
    Google Scholar
  • 17. Majumdar S., Anderson M.E., Xu C.R., Yakovleva T.V., Gu L.C., Malefyt T.R., Siahaan T.J.: Methotrexate (MTX)-cIBR conjugate for targeting MTX to leukocytes: conjugate stability and in vivo efficacy in suppressing rheumatoid arthritis. J. Pharm. Sci., 2012; 101: 3275-3291
    Google Scholar
  • 18. Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L.: Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004; 56: 185-229
    Google Scholar
  • 19. Müller C., Schubiger P.A., Schibli R.: In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. Eur. J. Nucl. Med. Mol. Imaging, 2006; 33: 1162-1170
    Google Scholar
  • 20. Nepali K., Sharma S., Kumar D., Budhiraja A., Dhar K.L.: Anticancer hybrids – a patent survey. Recent Pat. Anticancer Drug Discov., 2014; 9: 303-339
    Google Scholar
  • 21. Nevozhay D.: Cheburator software for automatically calculating drug inhibitory concentrations from in vitro screening assays. PLoS One, 2014; 9: e106186
    Google Scholar
  • 22. Petrioli R., Roviello G., Fiaschi A.I., Laera L., Miano S.T., Bianco V., Francini E.: Carboplatin, methotrexate, vinblastine, and epirubicin (M-VECa) as salvage treatment in patients with advanced bladder cancer: a phase II study. Anticancer Drugs, 2015; 26: 878-883
    Google Scholar
  • 23. Priebe W., Van N.T., Burke T.G., Perez-Soler R.: Removal of the basic center from doxorubicin partially overcomes multidrug resistance and decreases cardiotoxicity. Anticancer Drugs, 1993; 4: 37-48
    Google Scholar
  • 24. Rabbani A., Finn R.M., Ausió J.: The anthracycline antibiotics: antitumor drugs that alter chromatin structure. Bioessays, 2005; 27: 50-56
    Google Scholar
  • 25. Santos M.A., Enyedy E.A., Nuti E., Rossello A., Krupenko N.I., Krupenko S.A.: Methotrexate g-hydroxamate derivatives as potential dual target antitumor drugs. Bioorg. Med. Chem., 2007; 15: 1266-1274
    Google Scholar
  • 26. Schneider E., Ryan T.J.: Gamma-glutamyl hydrolase and drug resistance. Clin. Chim. Acta, 2006; 374: 25-32
    Google Scholar
  • 27. Scomparin A., Salmaso S., Eldar-Boock A., Ben-Shushan D., Ferber S., Tiram G., Shmeeda H., Landa-Rouben N., Leor J., Caliceti P., Gabizon A., Satchi-Fainaro R.: A comparative study of folate receptor-targeted doxorubicin delivery systems: dosing regimens and therapeutic index. J. Control. Release, 2015; 208: 106-120
    Google Scholar
  • 28. Singh R., Fouladi-Nashta A.A., Li D., Halliday N., Barrett D.A., Sinclair K.D.: Methotrexate induced differentiation in colon cancer cells is primarily due to purine deprivation. J. Cell. Biochem., 2006; 99: 146-155
    Google Scholar
  • 29. Szuławska A., Czyz M.: Molecular mechanisms of anthracyclines action. Postępy Hig. Med. Dośw., 2006; 60: 78-100
    Google Scholar
  • 30. Thibodeau P.A., Bissonnette N., Bédard S.K., Hunting D., Paquette B.: Induction by estrogens of methotrexate resistance in MCF-7 breast cancer cells. Carcinogenesis, 1998; 19: 1545-1552
    Google Scholar
  • 31. Thomas T.P., Huang B., Choi S.K., Silpe J.E., Kotlyar A., Desai A.M., Zong H., Gam J., Joice M., Baker J.R. Jr.: Polyvalent dendrimer-methotrexate as a folate receptor-targeted cancer therapeutic. Mol. Pharm., 2012; 9: 2669-2676
    Google Scholar
  • 32. Visentin M., Zhao R., Goldman I.D.: The Antifolates. Hematol. Oncol. Clin. North. Am., 2012; 26: 629-648
    Google Scholar
  • 33. Wietrzyk J., Chodyński M., Fitak H., Wojdat E., Kutner A., Opolski A.: Antitumor properties of diastereomeric and geometric analogs of vitamin D-3. Anticancer Drugs, 2007; 18: 447-457
    Google Scholar
  • 34. Ye W.L., Teng Z.H., Liu D.Z., Cui H., Liu M., Cheng Y., Yang T.H., Mei Q.B., Zhou S.Y.: Synthesis of a new pH-sensitive folate-doxorubicin conjugate and its antitumor activity in vitro. J. Pharm. Sci., 2013; 102: 530-540
    Google Scholar
  • 35. Zhao R., Diop-Bove N., Visentin M., Goldman I.D.: Mechanisms of membrane transport of folates into cells and across epithelia. Annu. Rev. Nutr., 2011; 31: 177-201
    Google Scholar
  • 36. Zhao R., Goldman I.D.: Resistance to antifolates. Oncogene, 2003; 22: 7431-7457
    Google Scholar

Pełna treść artykułu

Przejdź do treści