Leczenie zespołu nerczycowego: immuno- czy raczej podocytoterapia?

GLOSA LUB KOMENTARZ PRAWNICZY

Leczenie zespołu nerczycowego: immuno- czy raczej podocytoterapia?

Barbara Lewko 1

1. Katedra i Zakład Patofizjologii Farmaceutycznej Gdański Uniwersytet Medyczny

Opublikowany: 2016-05-05
DOI: 10.5604/17322693.1201202
GICID: 01.3001.0009.6827
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2016; 70 : 459-470

 

Abstrakt

Przypisy

  • 1. Abbate M., Zoja C., Remuzzi G.: How does proteinuria cause progressiverenal damage? J. Am. Soc. Nephrol., 2006; 17: 2974-2984
    Google Scholar
  • 2. Akilesh S., Huber T.B., Wu H., Wang G., Hartleben B., Kopp J.B.,Miner J.H., Roopenian D.C., Unanue E.R., Shaw A.S.: Podocytes useFcRn to clear IgG from the glomerular basement membrane. Proc.Natl. Acad. Sci. USA, 2008; 105: 967-972
    Google Scholar
  • 3. Alachkar N., Wei C., Arend L.J., Jackson A.M., Racusen L.C., FornoniA., Burke G., Rabb H., Kakkad K., Reiser J., Estrella M.M.: Podocyteeffacement closely links to suPAR levels at time of posttransplantationfocal segmental glomerulosclerosis occurrence and improveswith therapy. Transplantation, 2013; 96: 649-656
    Google Scholar
  • 4. Ambalavanan S., Fauvel J.P., Sibley R.K.. Myers B.D.: Mechanismof the antiproteinuric effect of cyclosporine in membranous nephropathy.J. Am. Soc. Nephrol., 1996; 7: 290-298
    Google Scholar
  • 5. Anderson D.R., Grillo-López A., Varns C., Chambers K.S., HannaN.: Targeted anti-cancer therapy using rituximab, a chimaeric anti–CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin›s B–cell lymphoma. Biochem. Soc. Trans., 1997; 25: 705-708
    Google Scholar
  • 6. Appel D., Kershaw D.B., Smeets B., Yuan G., Fuss A., Frye B., ElgerM., Kriz W., Floege J., Moeller M.J.: Recruitment of podocytes fromglomerular parietal epithelial cells. J. Am. Soc. Nephrol., 2009; 20:333-343
    Google Scholar
  • 7. Asanuma K., Yanagida-Asanuma E., Faul C., Tomino Y., Kim K.,Mundel P.: Synaptopodin orchestrates actin organization and cellmotility via regulation of RhoA signalling. Nat. Cell Biol., 2006; 8:485-491
    Google Scholar
  • 8. Bakker W.W., van Dael C.M., Pierik L.J., van Wijk J.A., Nauta J.,Borghuis T., Kapojos J.J.: Altered activity of plasma hemopexin inpatients with minimal change disease in relapse. Pediatr. Nephrol.,2005; 20: 1410-1415
    Google Scholar
  • 9. Banas M.C., Banas B., Hudkins K.L., Wietecha T.A., Iyoda M., BockE., Hauser P., Pippin J.W., Shankland S.J., Smith K.D., Stoelcker B., LiuG., Gröne H.J., Krämer B.K., Alpers C.E.: TLR4 links podocytes withthe innate immune system to mediate glomerular injury. J. Am. SocNephrol., 2008; 19: 704-713
    Google Scholar
  • 10. Berger K., Schulte K., Boor P., Kuppe C., van Kuppevelt T.H., FloegeJ., Smeets B., Moeller M.J.: The regenerative potential of parietalepithelial cells in adult mice. J. Am. Soc. Nephrol., 2014; 25: 693-705
    Google Scholar
  • 11. Bezombes C., Grazide S., Garret C., Fabre C., Quillet-Mary A.,Müller S., Jaffrézou J.P., Laurent G.: Rituximab antiproliferative effectin B-lymphoma cells is associated with acid-sphingomyelinaseactivation in raft microdomains. Blood, 2004; 104: 1166-1173
    Google Scholar
  • 12. Blasi F., Carmeliet P.: uPAR: a versatile signalling orchestrator.Nat. Rev. Mol. Cell Biol., 2002; 3: 932-943 13 Brinkkoetter P.T., Ising C., Benzing T.: The role of the podocytein albumin filtration. Nat. Rev. Nephrol., 2013; 9: 328-336
    Google Scholar
  • 13. act on glomerular visceral epithelial cells. J. Am. Soc. Nephrol.,2000; 11: 413-422
    Google Scholar
  • 14. Cara-Fuentes G., Wei C., Segarra A., Ishimoto T., Rivard C., JohnsonR.J., Reiser J., Garin E.H.: CD80 and suPAR in patients with minimalchange disease and focal segmental glomerulosclerosis: diagnosticand pathogenic significance. Pediatr. Nephrol., 2014; 29:1363-1371
    Google Scholar
  • 15. Chan A.C.: Rituximab’s new therapeutic target: the podocyteactin cytoskeleton. Sci. Transl. Med., 2011; 3: 85ps21
    Google Scholar
  • 16. Charbit M., Gubler M.C., Dechaux M., Gagnadoux M.F., GrünfeldJ.P., Niaudet P.: Cyclosporin therapy in patients with Alport syndrome.Pediatr. Nephrol., 2007; 22: 57-63
    Google Scholar
  • 17. Chen D., Jefferson B., Harvey S.J., Zheng K., Gartley C.J., JacobsR.M., Thorner P.S.: Cyclosporine a slows the progressive renal diseaseof alport syndrome (X-linked hereditary nephritis): results froma canine model. J. Am. Soc. Nephrol., 2003; 14: 690-698
    Google Scholar
  • 18. Cheung P.K., Klok P.A., Baller J.F., Bakker W.W.: Induction ofexperimental proteinuria in vivo following infusion of human plasmahemopexin. Kidney Int., 2000; 57: 1512-1520
    Google Scholar
  • 19. Cho M.H., Hong E.H., Lee T.H., Ko C.W.: Pathophysiology of minimalchange nephrotic syndrome and focal segmental glomerulosclerosis.Nephrology, 2007; 12 (Suppl. 3): S11-S14
    Google Scholar
  • 20. Chugh S.S., Clement L.C., Macé C.: New insights into humanminimal change disease: lessons from animal models. Am. J. KidneyDis., 2012; 59: 284-292
    Google Scholar
  • 21. Clement L.C., Avila-Casado C., Macé C., Soria E., Bakker W.W.,Kersten S., Chugh S.S.: Podocyte-secreted angiopoietin-like-4 mediatesproteinuria in glucocorticoid-sensitive nephrotic syndrome.Nat. Med., 2011; 17: 117-122
    Google Scholar
  • 22. Clement L.C., Macé C., Avila-Casado C., Joles J.A., Kersten S.,Chugh S.S.: Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemiain nephrotic syndrome. Nat. Med., 2014; 20: 37-46
    Google Scholar
  • 23. Coutinho A.E., Chapman K.E.: The anti-inflammatory and immunosuppressiveeffects of glucocorticoids, recent developments andmechanistic insights. Mol. Cell. Endocrinol., 2011; 335: 2-13
    Google Scholar
  • 24. Coward R.J., Foster R.R., Patton D., Ni L., Lennon R., Bates D.O.,Harper S.J., Mathieson P.W., Saleem M.A.: Nephrotic plasma altersslit diaphragm-dependent signaling and translocates nephrin, Podocin,and CD2 associated protein in cultured human podocytes. J.Am. Soc. Nephrol., 2005; 16: 629-637
    Google Scholar
  • 25. D›Agati V.D.: Podocyte injury in focal segmental glomerulosclerosis:lessons from animal models (a play in five acts). KidneyInt., 2008; 73: 399-406
    Google Scholar
  • 26. Dijkman H.B., Gerlofs-Nijland M.E., van der Laak J.A., WetzelsJ.F., Groenen P.J., Assmann K.J.: Podocyte changes after induction ofacute albuminuria in mice by anti-aminopeptidase A mAb. NephronExp. Nephrol., 2003; 94: e85-e93
    Google Scholar
  • 27. Ding W.Y., Saleem M.A.: Current concepts of the podocyte innephrotic syndrome. Kidney Res. Clin. Pract., 2012; 31: 87-93
    Google Scholar
  • 28. Doublier S., Musante L., Lupia E., Candiano G., Spatola T., CaridiG., Zennaro C., Carraro M., Ghiggeri G.M., Camussi G.: Direct effectof plasma permeability factors from patients with idiopatic FSGS onnephrin and podocin expression in human podocytes. Int. J. Mol.Med., 2005; 16: 49-58
    Google Scholar
  • 29. Eddy A.A., Symons J.M.: Nephrotic syndrome in childhood. Lancet,2003; 362: 629-639
    Google Scholar
  • 30. Eugen-Olsen J., Andersen O., Linneberg A., Ladelund S., Hansen T.W.,Langkilde A., Petersen J., Pielak T., Moller L.N., Jeppesen J., Lyngbaek S.,Fenger M., Olsen M.H., Hildebrandt P.R., Borch-Johnsen K., JorgensenT., Haugaard S.B.: Circulating soluble urokinase plasminogen activatorreceptor predicts cancer, cardiovascular disease, diabetes and mortalityin the general population. J. Intern. Med., 2010; 268: 296-308
    Google Scholar
  • 31. Faul C., Donnelly M., Merscher-Gomez S., Chang Y.H., Franz S.,Delfgaauw J., Chang J.M., Choi H.Y., Campbell K.N., Kim K., Reiser J.,Mundel P.: The actin cytoskeleton of kidney podocytes is a directtarget of the antiproteinuric effect of cyclosporine A. Nat. Med.,2008; 14: 931-938
    Google Scholar
  • 32. Franco Palacios C.R., Lieske J.C., Wadei H.M., Rule A.D., FervenzaF.C., Voskoboev N., Garovic V.D., Zand L., Stegall M.D., Cosio F.G.,Amer H.: Urine but not serum soluble urokinase receptor (suPAR)may identify cases of recurrent FSGS in kidney transplant candidates.Transplantation, 2013; 96: 394-399
    Google Scholar
  • 33. Gbadegesin R., Lavin P., Foreman J., Winn M.: Pathogenesis andtherapy of focal segmental glomerulosclerosis: an update. Pediatr.Nephrol., 2011; 26: 1001-1015
    Google Scholar
  • 34. George K.S., Wu S.: Lipid raft: a floating island of death or survival.Toxicol. Appl. Pharmacol., 2012; 259: 311-319
    Google Scholar
  • 35. Gohh R.Y., Yango A.F., Morrissey P.E., Monaco A.P., Gautam A.,Sharma M., McCarthy E.T., Savin V.J.: Preemptive plasmapheresis andrecurrence of FSGS in high-risk renal transplant recipients. Am. J.Transplant., 2005; 5: 2907-2912
    Google Scholar
  • 36. Goldwich A., Burkard M., Olke M., Daniel C., Amann K., Hugo C.,Kurts C., Steinkasserer A., Gessner A.: Podocytes are nonhematopoieticprofessional antigen-presenting cells. J. Am. Soc. Nephrol.,2013; 24: 906-916
    Google Scholar
  • 37. Grahammer F., Schell C., Huber T.B.: The podocyte slit diaphragm– from a thin grey line to a complex signalling hub. Nat. Rev.Nephrol., 2013; 9: 587-598
    Google Scholar
  • 38. Gürcan H.M., Keskin D.B., Stern J.N., Nitzberg M.A., Shekhani H.,Ahmed A.R.: A review of the current use of rituximab in autoimmunediseases. Int. Immunopharmacol., 2009; 9: 10-25
    Google Scholar
  • 39. Gurkan S., Cabinian A., Lopez V., Bhaumik M., Chang J.M., RabsonA.B., Mundel P.: Inhibition of type I interferon signalling preventsTLR ligand-mediated proteinuria. J. Pathol., 2013; 231: 248-256
    Google Scholar
  • 40. Haas M., Meehan S.M., Karrison T.G., Spargo B.H.: Changingetiologies of unexplained adult nephrotic syndrome: a comparisonof renal biopsy findings from 1976-1979 and 1995-1997. Am. J. KidneyDis., 1997; 30: 621-631
    Google Scholar
  • 41. Haraldsson B., Nyström J., Deen W.M.: Properties of the glomerularbarrier and mechanisms of proteinuria. Physiol. Rev., 2008;88: 451-487
    Google Scholar
  • 42. Hingorani S.R., Finn L.S., Kowalewska J., McDonald R.A., EddyA.A.: Expression of nephrin in acquired forms of nephrotic syndromein childhood. Pediatr. Nephrol., 2004; 19: 300-305
    Google Scholar
  • 43. Hogan P.G., Chen L., Nardone J., Rao A.: Transcriptional regulationby calcium, calcineurin, and NFAT. Genes Dev., 2003; 17: 2205-2232
    Google Scholar
  • 44. Inagi R., Nangaku M., Onogi H., Ueyama H., Kitao Y., NakazatoK., Ogawa S., Kurokawa K., Couser W.G., Miyata T.: Involvementof endoplasmic reticulum (ER) stress in podocyte injury inducedby excessive protein accumulation. Kidney Int., 2005; 68: 2639-2650
    Google Scholar
  • 45. Ishimoto T., Cara-Fuentes G., Wang H., Shimada M., WasserfallC.H., Winter W.E., Rivard C.J., Araya C.E., Saleem M.A., MathiesonP.W., Johnson R.J., Garin E.H.: Serum from minimal change patientsin relapse increases CD80 expression in cultured podocytes. Pediatr.Nephrol., 2013; 28: 1803-1812
    Google Scholar
  • 46. Jefferson J.A., Alpers C.E., Shankland S.J.: Podocyte biology forthe bedside. Am. J. Kidney Dis., 2011; 58: 835-845
    Google Scholar
  • 47. Kadomatsu T., Tabata M., Oike Y.: Angiopoietin-like proteins:emerging targets for treatment of obesity and related metabolicdiseases. FEBS J., 2011; 278: 559-564
    Google Scholar
  • 48. Kapturczak M.H., Meier-Kriesche H.U., Kaplan B:. Pharmacologyof calcineurin antagonists. Transplant. Proc., 2004; 36 (Suppl.2): 25S-32S
    Google Scholar
  • 49. Keating G.M.: Abatacept: a review of its use in the managementof rheumatoid arthritis. Drugs, 2013; 73: 1095-1119
    Google Scholar
  • 50. Kemper M.J., Meyer-Jark T., Lilova M., Müller-Wiefel D.E.: CombinedT – and B-cell activation in childhood steroid-sensitive nephroticsyndrome. Clin. Nephrol., 2003; 60: 242-247
    Google Scholar
  • 51. Kim E.Y., Anderson M., Wilson C., Hagmann H., Benzing T., DryerS.E.: NOX2 interacts with podocyte TRPC6 channels and contributesto their activation by diacylglycerol: essential role of podocinin formation of this complex. Am. J. Physiol. Cell Physiol., 2013;305: C960-C971
    Google Scholar
  • 52. Klinger M., Mazanowska O.: Primary idiopathic glomerulonephritis:modern algorithm for diagnosis and treatment. Pol. Arch.Med. Wewn., 2008; 118: 567-571
    Google Scholar
  • 53. Kriz W., Elger M., Mundel P., Lemley K.V.: Structure-stabilizingforces in the glomerular tuft. J. Am. Soc. Nephrol., 1995; 5: 1731-1739
    Google Scholar
  • 54. Kriz W., Shirato I., Nagata M., LeHir M., Lemley K.V.: The podocyte›s response to stress: the enigma of foot process effacement.Am. J. Physiol. Renal Physiol., 2013; 304: F333-F347
    Google Scholar
  • 55. Lai K.W., Wei C.L., Tan L.K., Tan P.H., Chiang G.S., Lee C.G., JordanS.C., Yap H.K.: Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J. Am. Soc. Nephrol., 2007; 18: 1476-1485
    Google Scholar
  • 56. Lennon R., Singh A., Welsh G.I., Coward R.J., Satchell S., Ni L.,Mathieson P.W., Bakker W.W., Saleem M.A.: Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes.J. Am. Soc. Nephrol., 2008; 19: 2140-2149
    Google Scholar
  • 57. Maas R.J., Deegens J.K., Wetzels J.F.: Serum suPAR in patientswith FSGS: trash or treasure? Pediatr. Nephrol., 2013; 28: 1041-1048
    Google Scholar
  • 58. Machuca E., Benoit G., Antignac C.: Genetics of nephrotic syndrome:connecting molecular genetics to podocyte physiology. Hum.Mol. Genet., 2009; 18: R185-R194
    Google Scholar
  • 59. Macian F.: NFAT proteins: key regulators of T-cell developmentand function. Nat. Rev. Immunol., 2005; 5: 472-484
    Google Scholar
  • 60. Mansour H., Cheval L., Elalouf J.M., Aude J.C., Alyanakian M.A.,Mougenot B., Doucet A., Deschenes G.: T-cell transcriptome analysispoints up a thymic disorder in idiopathic nephrotic syndrome.Kidney Int., 2005; 67: 2168-2177
    Google Scholar
  • 61. Mathieson P.W.: Minimal change nephropathy and focal segmentalglomerulosclerosis. Semin. Immunopathol., 2007; 29: 415-426
    Google Scholar
  • 62. McCarthy E.T., Sharma M., Savin V.J.: Circulating permeabilityfactors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis.Clin. J. Am. Soc. Nephrol., 2010; 5: 2115-2121
    Google Scholar
  • 63. McLaughlin P., White C.A., Grillo-López A.J., Maloney D.G.: Clinicalstatus and optimal use of rituximab for B-cell lymphomas.Oncology, 1998; 12: 1763-1769
    Google Scholar
  • 64. Meyer T.N., Schwesinger C., Wahlefeld J., Dehde S., KerjaschkiD., Becker J.U., Stahl R.A., Thaiss F.: A new mouse model of immune–mediated podocyte injury. Kidney Int., 2007; 72: 841-852
    Google Scholar
  • 65. Morigi M., Buelli S., Angioletti S., Zanchi C., Longaretti L., ZojaC., Galbusera M., Gastoldi S., Mundel P., Remuzzi G., Benigni A.: Inresponse to protein load podocytes reorganize cytoskeleton andmodulate endothelin-1 gene: implication for permselective dysfunctionof chronic nephropathies. Am. J. Pathol., 2005; 166: 1309-1320
    Google Scholar
  • 66. Munyentwali H., Bouachi K., Audard V., Remy P., Lang P., MojaatR., Deschenes G., Ronco P.M., Plaisier E.M., Dahan K.Y.: Rituximab isan efficient and safe treatment in adults with steroid-dependentminimal change disease. Kidney Int., 2013; 83: 511-516
    Google Scholar
  • 67. Okamura K., Dummer P., Kopp J., Qiu L., Levi M., Faubel S., BlaineJ.: Endocytosis of albumin by podocytes elicits an inflammatoryresponse and induces apoptotic cell death. PLoS One, 2013; 8: e54817
    Google Scholar
  • 68. Pescovitz M.D.: Rituximab, an anti-cd20 monoclonal antibody:history and mechanism of action. Am. J. Transplant., 2006; 6: 859-866
    Google Scholar
  • 69. Pippin J.W., Glenn S.T., Krofft R.D., Rusiniak M.E., Alpers C.E.,Hudkins K.L., Duffield J.S., Gross K.W., Shankland S.J.: Cells of reninlineage take on a podocyte phenotype in aging nephropathy. Am. J.Physiol. Renal Physiol., 2014; 306: F1198-F1209
    Google Scholar
  • 70. Quintá H.R., Galigniana N.M., Erlejman A.G., Lagadari M., Piwien-Pilipuk G., Galigniana M.D.: Management of cytoskeleton architectureby molecular chaperones and immunophilins. Cell Signal.,2011; 23: 1907-1920
    Google Scholar
  • 71. Ransom R.F., Lam N.G., Hallett M.A., Atkinson S.J., Smoyer W.E.:Glucocorticoids protect and enhance recovery of cultured murinepodocytes via actin filament stabilization. Kidney Int., 2005; 68:2473-2483
    Google Scholar
  • 72. Ravani P., Ponticelli A., Siciliano C., Fornoni A., Magnasco A., SicaF., Bodria M., Caridi G., Wei C., Belingheri M., Ghio L., Merscher-GomezS., Edefonti A., Pasini A., Montini G. i wsp.: Rituximab is a safeand effective long-term treatment for children with steroid andcalcineurin inhibitor-dependent idiopathic nephrotic syndrome.Kidney Int., 2013; 84: 1025-1033
    Google Scholar
  • 73. Reiser J., Mundel P.: Danger signaling by glomerular podocytesdefines a novel function of inducible B7-1 in the pathogenesisof nephrotic syndrome. J. Am. Soc. Nephrol., 2004; 15: 2246-2248
    Google Scholar
  • 74. Reiser J., Oh J., Shirato I., Asanuma K., Hug A., Mundel T.M., HoneyK., Ishidoh K., Kominami E., Kreidberg J.A., Tomino Y., Mundel P.:Podocyte migration during nephrotic syndrome requires a coordinatedinterplay between cathepsin L and α3 integrin. J. Biol. Chem.,2004; 279: 34827-34832
    Google Scholar
  • 75. Reiser J., von Gersdorff G., Loos M., Oh J., Asanuma K., Giardino L.,Rastaldi M.P, Calvaresi N., Watanabe H., Schwarz K., Faul C., KretzlerM., Davidson A., Sugimoto H., Kalluri R., Sharpe A.H., Kreidberg J.A.,Mundel P.: Induction of B7-1 in podocytes is associated with nephroticsyndrome. J. Clin. Invest., 2004; 113: 1390-1397
    Google Scholar
  • 76. Salmon A.H., Neal C.R., Harper S.J.: New aspects of glomerularfiltration barrier structure and function: five layers (at least) notthree. Curr. Opin. Nephrol. Hypertens., 2009; 18: 197-205
    Google Scholar
  • 77. Schönenberger E., Ehrich J.H., Haller H., Schiffer M.: The podocyteas a direct target of immunosuppressive agents. Nephrol. Dial.Transplant., 2011; 26: 18-24
    Google Scholar
  • 78. Sellier-Leclerc A.L., Macher M.A., Loirat C., Guérin V., WatierH., Peuchmaur M., Baudouin V., Deschenes G.: Rituximab efficiencyin children with steroid-dependent nephrotic syndrome. Pediatr.Nephrol., 2010; 25: 1109-1115
    Google Scholar
  • 79. Shankland S.J., Anders H.J., Romagnani P.: Glomerular parietalepithelial cells in kidney physiology, pathology, and repair. Curr.Opin. Nephrol. Hypertens., 2013; 22: 302-309
    Google Scholar
  • 80. Sharma M., Sharma R., McCarthy E.T., Savin V.J.: “The FSGS factor”:enrichment and in vivo effect of activity from focal segmentalglomerulosclerosis plasma. J. Am. Soc. Nephrol., 1999; 10: 552-561
    Google Scholar
  • 81. Shimada M., Araya C., Rivard C., Ishimoto T., Johnson R.J., GarinE.H.: Minimal change disease: a “two-hit” podocyte immune disorder?Pediatr. Nephrol., 2011; 26: 645-649
    Google Scholar
  • 82. Simon D., Simon H.U.: New drug targets in atopic dermatitis.Chem. Immunol. Allergy, 2012; 96: 126-131
    Google Scholar
  • 83. Smith H.W., Marshall C.J.: Regulation of cell signalling by uPAR.Nat. Rev. Mol. Cell Biol., 2010; 11: 23-36
    Google Scholar
  • 84. Srivastava T., Sharma M., Yew K.H., Sharma R., Duncan R.S.,Saleem M.A., McCarthy E.T., Kats A., Cudmore P.A., Alon U.S., HarrisonC.J.: LPS and PAN-induced podocyte injury in an in vitro modelof minimal change disease: changes in TLR profile. J. Cell Commun.Signal., 2013; 7: 49-60
    Google Scholar
  • 85. Sugimoto H., Mundel T.M., Sund M., Xie L., Cosgrove D., KalluriR.: Bone-marrow-derived stem cells repair basement membrane collagendefects and reverse genetic kidney disease. Proc. Natl. Acad.Sci. USA, 2006; 103: 7321-7326
    Google Scholar
  • 86. Taylor R.P., Lindorfer M.A.: Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr. Opin. Immunol., 2008; 20: 444-449
    Google Scholar
  • 87. Thuno M., Macho B., Eugen-Olsen J.: suPAR: the molecular crystalball. Dis. Markers, 2009; 27: 157-172
    Google Scholar
  • 88. Tipping P.G.: Are podocytes passive or provocative in proteinuricglomerular pathology? J. Am. Soc. Nephrol., 2008; 19: 651-653
    Google Scholar
  • 89. Tolosano E., Fagoonee S., Morello N., Vinchi F., Fiorito V.: Hemescavenging and the other facets of hemopexin. Antioxid. Redox Signal.,2010; 12: 305-320
    Google Scholar
  • 90. van den Berg J.G., Aten J., Chand M.A., Claessen N., Dijkink L.,Wijdenes J., Lakkis F.G., Weening J.J.: Interleukin-4 and interleukin-
    Google Scholar
  • 91. van den Berg J.G., Weening J.J.: Role of the immune system inthe pathogenesis of idiopathic nephrotic syndrome. Clin. Sci., 2004;107: 125-136
    Google Scholar
  • 92. Vogelmann S.U., Nelson W.J., Myers B.D., Lemley K.V.: Urinaryexcretion of viable podocytes in health and renal disease. Am. J.Physiol. Renal Physiol., 2003; 285: F40-F48
    Google Scholar
  • 93. Wada T., Pippin J.W., Nangaku M., Shankland S.J.: Dexamethasone’sprosurvival benefits in podocytes require extracellular signal-regulated kinase phosphorylation. Nephron Exp. Nephrol.,2008; 109: e8-e19
    Google Scholar
  • 94. Wei C., El Hindi S., Li J., Fornoni A., Goes N., Sageshima J., Maiguel D., Karumanchi S.A., Yap H.K., Saleem M., Zhang Q., NikolicB., Chaudhuri A., Daftarian P., Salido E. i wsp.: Circulating urokinasereceptor as a cause of focal segmental glomerulosclerosis. Nat.Med., 2011; 17: 952-960
    Google Scholar
  • 95. Wei C., Möller C.C., Altintas M.M., Li J., Schwarz K., ZacchignaS., Xie L., Henger A., Schmid H., Rastaldi M.P., Cowan P., Kretzler M.,Parrilla R., Bendayan M., Gupta V., Nikolic B., Kalluri R., Carmeliet P.,Mundel P., Reiser J.: Modification of kidney barrier function by theurokinase receptor. Nat. Med., 2008; 14: 55-63
    Google Scholar
  • 96. Xing C.Y., Saleem M.A., Coward R.J., Ni L., Witherden I.R., MathiesonP.W.: Direct effects of dexamethasone on human podocytes.Kidney Int., 2006; 70: 1038-1045
    Google Scholar
  • 97. Yan K., Kudo A., Hirano H., Watanabe T., Tasaka T., Kataoka S.,Nakajima N., Nishibori Y., Shibata T., Kohsaka T., Higashihara E., TanakaH., Watanabe H., Nagasawa T., Awa S.: Subcellular localizationof glucocorticoid receptor protein in the human kidney glomerulus.Kidney Int., 1999; 56: 65-73
    Google Scholar
  • 98. Yap H.K., Cheung W., Murugasu B., Sim S.K., Seah C.C., JordanS.C.: Th1 and Th2 cytokine mRNA profiles in childhood nephroticsyndrome: evidence for increased IL-13 mRNA expression in relapse.J. Am. Soc. Nephrol., 1999; 10: 529-537
    Google Scholar
  • 99. Yu C.C., Fornoni A., Weins A., Hakroush S., Maiguel D., SageshimaJ., Chen L., Ciancio G., Faridi M.H., Behr D., Campbell K.N., Chang J.M.,Chen H.C., Oh J., Faul C. i wsp.: Abatacept in B7-1-positive proteinurickidney disease. N. Engl. J. Med., 2013; 369: 2416-2423
    Google Scholar
  • 100. Yu M., Ren Q., Yu S.Y.: Role of nephrin phosphorylation inductedby dexamethasone and angiotensin II in podocytes. Mol. Biol.Rep., 2014; 41: 3591-3595
    Google Scholar
  • 101. Yu S., Li Y.: Dexamethasone inhibits podocyte apoptosis by stabilizingthe PI3K/Akt signal pathway. Biomed. Res. Int., 2013; 2013:326986
    Google Scholar
  • 102. Zhang B., Shi W., Ma J., Sloan A., Faul C., Wei C., Reiser J., YangY., Liu S., Wang W.: The calcineurin-NFAT pathway allows for urokinasereceptor-mediated beta3 integrin signaling to cause podocyteinjury. J. Mol. Med., 2012; 90: 1407-1420
    Google Scholar
  • 103. Zhang C., Hu J.J., Xia M., Boini K.M., Brimson C., Li P.L.: Redoxsignaling via lipid raft clustering in homocysteine-induced injury ofpodocytes. Biochim. Biophys. Acta, 2010; 1803: 482-491
    Google Scholar
  • 104. Zhang S.Y., Audard V., Fan Q., Pawlak A., Lang P., Sahali D.:Immunopathogenesis of idiopathic nephrotic syndrome. Contrib.Nephrol., 2011; 169: 94-106
    Google Scholar
  • 105. Zhu P., Goh Y.Y., Chin H.F., Kersten S., Tan N.S.: Angiopoietin–like 4: a decade of research. Biosci. Rep., 2012; 32: 211-219
    Google Scholar

Pełna treść artykułu

Przejdź do treści