Mechanizmy wirulencji wykorzystywane w patogenezie chorób przyzębia przez bakterie Porphyromonas gingivalis*

ARTYKUŁ PRZEGLĄDOWY

Mechanizmy wirulencji wykorzystywane w patogenezie chorób przyzębia przez bakterie Porphyromonas gingivalis*

Michał Śmiga 1 , Paulina Ślęzak 1 , Klaudia Siemińska 1 , Teresa Olczak 1

1. Pracownia Biologii Medycznej, Wydział Biotechnologii, Uniwersytet Wrocławski

Opublikowany: 2020-07-08
DOI: 10.5604/01.3001.0014.3053
GICID: 01.3001.0014.3053
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2020; 74 : 247-259

 

Abstrakt

Choroby przyzębia to postępujące stany zapalne, które niszczą tkanki podporowe zębów. W zaawansowanym stadium choroby mogą spowodować krwawienie dziąseł oraz utratę zębów. Za jeden z czynników etiologicznych odpowiedzialnych za inicjację i progresję chorób przyzębia uważa się bakterie Porphyromonas gingivalis. Są to Gram-ujemne, beztlenowe bakterie wchodzące w skład wielogatunkowego biofilmu jamy ustnej. Bakterie P. gingivalis nie mają pełnego szlaku syntezy protoporfiryny IX, a także nie wytwarzają sideroforów, dlatego do przeżycia i proliferacji wymagają hemu jako źródła żelaza i protoporfiryny IX. W celu pozyskania hemu, wykorzystują wiele mechanizmów wpływających na ich zdolność do zapoczątkowania stanu patologicznego. W artykule przedstawiono wiadomości na temat najlepiej poznanych i scharakteryzowanych systemów biorących udział w pozyskiwaniu hemu przez bakterie P. gingivalis. Skoncentrowano się na procesach zachodzących w początkowych stanach choroby, w których główną rolę odgrywają: gingipainy, hemaglutyniny oraz hemolizyny. Szczegółowo opisano mechanizmy kodowane przez operony hmu, iht oraz hus, kodujące białka o właściwościach hemoforowych, a także zależne od TonB receptory błony zewnętrznej. Przedstawiono ich funkcje i udział w rozwoju choroby; uwzględniono rolę mechanizmów wykorzystywanych przez bakterie P. gingivalis oraz inne periodontopatogeny w synergistycznych procesach promujących rozwój, wzrost i wirulencję P. gingivalis. Omówiono także regulację homeostazy żelaza i hemu z uwzględnieniem homologa białka Fur, dwuskładnikowego systemu regulatorowego HaeSR oraz białka OxyR, SigH i PgDps.

Przypisy

  • 1. Adams P.A., Berman M.C.: Kinetics and mechanism of the interactionbetween human serum albumin and monomeric haemin.Biochem. J., 1980; 191: 95–102
    Google Scholar
  • 2. Anaya-Bergman C., Rosato A., Lewis J.P.: Iron- and hemin-dependentgene expression of Porphyromonas gingivalis. Mol. Oral Microbiol.,2015; 30: 39–61
    Google Scholar
  • 3. Benedyk M., Byrne D.P., Glowczyk I., Potempa J., Olczak M., OlczakT., Smalley J.W.: Pyocyanin, a contributory factor in haem acquisitionand virulence enhancement of Porphyromonas gingivalis in thelung. PLoS One, 2015; 11: e0148008
    Google Scholar
  • 4. Bielecki M., Antonyuk S., Strange R.W., Siemińska K., Smalley J.W.,Mackiewicz P., Śmiga M., Cowan M., Capper M.J., Ślęzak P., Olczak M.,Olczak T.: Prevotella intermedia produces two proteins homologous toPorphyromonas gingivalis HmuY but with different heme coordinationmode. Biochem J., 2020; 477: 381–405
    Google Scholar
  • 5. Bielecki M., Antonyuk S., Strange R.W., Smalley J.W., MackiewiczP., Śmiga M., Stępień P., Olczak M., Olczak T.: Tannerella forsythiaTfo belongs to Porphyromonas gingivalis HmuY-like family ofproteins but differs in heme-binding properties. Biosci. Rep., 2018;38: BSR20181325
    Google Scholar
  • 6. Blasco-Baque V., Garidou L., Pomié C., Escoula Q., Loubieres P., LeGall-David S., Lemaitre M., Nicolas S., Klopp P., Waget A., Azalbert V.,Colom A., Bonnaure-Mallet M., Kemoun P., Serino M., Burcelin R.:Periodontitis induced by Porphyromonas gingivalis drives periodontalmicrobiota dysbiosis and insulin resistance via an impaired adaptiveimmune response. Gut, 2017; 66: 872–885
    Google Scholar
  • 7. Bostanci N., Belibasakis G.N.: Porphyromonas gingivalis: An invasiveand evasive opportunistic oral pathogen. FEMS Microbiol.Lett., 2012; 333: 1–9
    Google Scholar
  • 8. Brown J.L., Yates E.A., Bielecki M., Olczak T., Smalley J.W.: Potentialrole for Streptococcus gordonii-derived hydrogen peroxide inheme acquisition by Porphyromonas gingivalis. Mol. Oral Microbiol.,2018; 33: 322–335
    Google Scholar
  • 9. Butler C., Mitchell H., Dashper S., Reynolds E.: The Porphyromonasgingivalis ferric uptake regulator orthologue does not regulate ironhomeostasis. Genom Data, 2015; 5: 167–168
    Google Scholar
  • 10. Byrne D.P., Manandhar S.P., Potempa J., Smalley J.W.: Break downof albumin and haemalbumin by the cysteine protease interpain A,an albuminase of Prevotella intermedia. BMC Microbiol., 2015; 15: 185
    Google Scholar
  • 11. Byrne D.P., Potempa J., Olczak T., Smalley J.W.: Evidence of mutualismbetween two periodontal pathogens: Co-operative haemacquisition by the HmuY haemophore of Porphyromonas gingivalisand the cysteine protease interpain A (InpA) of Prevotella intermedia.Mol. Oral Microbiol., 2013; 28: 219–229
    Google Scholar
  • 12. Carvalho-Filho P.C., Gomes-Filho I.S., Meyer R., Olczak T., XavierM.T., Trindade S.C.: Role of Porphyromonas gingivalis HmuY inimmunopathogenesis of chronic periodontitis. Mediators Inflamm.,2016; 2016: 7465852
    Google Scholar
  • 13. Castro S.A., Collighan R., Lambert P.A., Dias I.H., Chauhan P.,Bland C.E., Milic I., Milward M.R., Cooper P.R., Devitt A.: Porphyromonasgingivalis gingipains cause defective macrophage migrationtowards apoptotic cells and inhibit phagocytosis of primary apoptoticneutrophils. Cell Death Dis., 2017; 8: e2644
    Google Scholar
  • 14. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V.: Links between atheroscleroticand periodontal disease. Exp. Mol. Pathol., 2016; 100: 220–235
    Google Scholar
  • 15. Ciuraszkiewicz J., Śmiga M., Mackiewicz P., Gmiterek A., BieleckiM., Olczak M., Olczak T.: Fur homolog regulates Porphyromonas gingivalisvirulence under low-iron/heme conditions through a complexregulatory network. Mol. Oral Microbiol., 2014; 29: 333–353
    Google Scholar
  • 16. Contreras H., Chim N., Credali A., Goulding C.W.: Heme uptakein bacterial pathogens. Curr. Opin. Chem. Biol., 2014; 19: 34–41
    Google Scholar
  • 17. Curtis M.A., Sterne J.A., Price S.J., Griffiths G.S., Coulthurst S.K., WiltonJ.M., Johnson N.W.: The protein composition of gingival crevicularfluid sampled from male adolescents with no destructive periodontitis:Baseline data of a longitudinal study. J. Periodontal. Res., 1990; 25: 6–16
    Google Scholar
  • 18. Darveau R.P., Hajishengallis G., Curtis M.A.: Porphyromonas gingivalisas a potential community activist for disease. J. Dent. Res.,2012; 91: 816–820
    Google Scholar
  • 19. Dashper S.G., Hendtlass A., Slakeski N., Jackson C., Cross K.J.,Brownfield L., Hamilton R., Barr I., Reynolds E.C.: Characterizationof a novel outer membrane hemin-binding protein of Porphyromonasgingivalis. J. Bacteriol., 2000; 182: 6456–6462
    Google Scholar
  • 20. Dashper S.G., O’Brien-Simpson N.M., Bhogal P.S., FranzmannA.D., Reynolds E.C.: Purification and characterization of a putativefimbrial protein/receptor of Porphyromonas gingivalis. Aust. Dent.J., 1998; 43: 99–104
    Google Scholar
  • 21. Deng Z.L., Sztajer H., Jarek M., Bhuju S., Wagner-Döbler I.: Worldsapart- transcriptome profiles of key oral microbes in the periodontalpocket compared to single laboratory culture reflect synergisticinteractions. Front. Microbiol., 2018; 9: 124
    Google Scholar
  • 22. de Pablo P., Chapple I.L., Buckley C.D., Dietrich T.: Periodontitis insystemic rheumatic diseases. Nat. Rev. Rheumatol., 2009; 5: 218–224
    Google Scholar
  • 23. Dominy S.S., Lynch C., Ermini F., Benedyk M., Marczyk A., KonradiA., Nguyen M., Haditsch U., Raha D., Griffin C., Holsinger L.J.,Arastu-Kapur S., Kaba S., Lee A., Ryder M.I. i wsp.: Porphyromonasgingivalis in Alzheimer’s disease brains: Evidence for disease causationand treatment with small-molecule inhibitors. Sci. Adv., 2019;5: eaau3333
    Google Scholar
  • 24. Eke P.I., Thornton-Evans G.O., Wei L., Borgnakke W.S., Dye B.A.,Genco R.J.: Periodontitis in US adults: National health and nutritionexamination survey 2009–2014. J. Am. Dent. Assoc., 2018; 149:576–588.e6
    Google Scholar
  • 25. El-Awady A., de Sousa Rabelo M., Meghil M.M., Rajendran M.,Elashiry M., Stadler A.F., Foz A.M., Susin C., Romito G.A., Arce R.M.,Cutler C.W.: Polymicrobial synergy within oral biofilm promotesinvasion of dendritic cells and survival of consortia members. NPJBiofilms Microbiomes, 2019; 5: 11
    Google Scholar
  • 26. Enersen M., Nakano K., Amano A.: Porphyromonas gingivalis fimbriae.J. Oral Microbiol., 2013; 5: 10.3402/jom.v5i0.20265
    Google Scholar
  • 27. Fillat M.F.: The FUR (ferric uptake regulator) superfamily: Diversityand versatility of key transcriptional regulators. Arch. Biochem.Biophys., 2014; 546: 41–52
    Google Scholar
  • 28. Frencken J.E., Sharma P., Stenhouse L., Green D., Laverty D., DietrichT.: Global epidemiology of dental caries and severe periodontitis– a comprehensive review. J. Clin. Periodontol., 2017; 44: S94–S105
    Google Scholar
  • 29. Fujise K., Kikuchi Y., Kokubu E., Okamoto-Shibayama K., IshiharaK.: Effect of extracytoplasmic function sigma factors on autoaggregation,hemagglutination, and cell surface properties of Porphyromonasgingivalis. PLoS One, 2017; 12: e0185027
    Google Scholar
  • 30. Gao J.L., Kwan A.H., Yammine A., Zhou X., Trewhella J., HugrassB.M., Collins D.A.T., Horne J., Ye P., Harty D., Nguyen K.A., Gell D.A.,Hunter N.: Structural properties of a haemophore facilitate targetedelimination of the pathogen Porphyromonas gingivalis. Nat. Commun.,2018; 9: 4097
    Google Scholar
  • 31. Gao J.L., Lu Y., Browne G., Yap B.C., Trewhella J., Hunter N.,Nguyen K.A.: The role of heme binding by DNA-protective proteinfrom starved cells (Dps) in the tolerance of Porphyromonas gingivalisto heme toxicity. J. Biol. Chem., 2012; 287: 42243–42258
    Google Scholar
  • 32. Gao J.L., Nguyen K.A., Hunter N.: Characterization of a hemophore-like protein from Porphyromonas gingivalis. J. Biol. Chem., 2010;285: 40028–40038
    Google Scholar
  • 33. Gmiterek A., Kłopot A., Wójtowicz H., Trindade S.C., Olczak M., OlczakT.: Immune response of macrophages induced by Porphyromonasgingivalis requires HmuY protein. Immunobiology, 2016; 221: 1382–1394
    Google Scholar
  • 34. Gmiterek A., Wójtowicz H., Mackiewicz P., Radwan-Oczko M.,Kantorowicz M., Chomyszyn-Gajewska M., Frąszczak M., BieleckiM., Olczak M., Olczak T.: The unique hmuY gene sequence as a specificmarker of Porphyromonas gingivalis. PLoS One, 2013; 8: e67719
    Google Scholar
  • 35. Guo Y., Nguyen K.A., Potempa J.: Dichotomy of gingipains actionas virulence factors: From cleaving substrates with the precision ofa surgeon’s knife to a meat chopper-like brutal degradation of proteins.Periodontol. 2000, 2010; 54: 15–44
    Google Scholar
  • 36. Hajishengallis G., Darveau R.P., Curtis M.A.: The keystone-pathogenhypothesis. Nat. Rev. Microbiol., 2012; 10: 717–725
    Google Scholar
  • 37. Hanioka T., Matsuse R., Shigemoto Y., Ojima M., Shizukuishi S.:Relationship between periodontal disease status and combinationof biochemical assays of gingival crevicular fluid. J. Periodontal.Res., 2005; 40: 331–338
    Google Scholar
  • 38. Hendrickson E.L., Xia Q., Wang T., Lamont R.J., Hackett M.: Pathwayanalysis for intracellular Porphyromonas gingivalis using a strainATCC 33277 specific database. BMC Microbiol., 2009; 9: 185
    Google Scholar
  • 39. Hiratsuka K., Hayakawa M., Kiyama-Kishikawa M., Sasaki Y., HiraiT., Abiko Y.: Role of the hemin-binding protein 35 (HBP35) of Porphyromonasgingivalis in coaggregation. Microb. Pathog., 2008; 44: 320–328
    Google Scholar
  • 40. Holt S.C., Ebersole J.L.: Porphyromonas gingivalis, Treponema denticola,and Tannerella forsythia: The “red complex”, a prototype polybacterialpathogenic consortium in periodontitis. Periodontol.2000, 2005; 38: 72–122
    Google Scholar
  • 41. How K.Y., Song K.P., Chan K.G.: Porphyromonas gingivalis: An overviewof periodontopathic pathogen below the gum line. Front.Microbiol., 2016; 7: 53
    Google Scholar
  • 42. Jung H., Jung S.M., Rim Y.A., Park N., Nam Y., Lee J., Park S. H.,Ju J.H.: Arthritic role of Porphyromonas gingivalis in collagen-inducedarthritis mice. PLoS One, 2017; 12: e0188698
    Google Scholar
  • 43. Kamaguch A., Nakayama K., Ohyama T., Watanabe T., OkamotoM., Baba H.: Coaggregation of Porphyromonas gingivalis and Prevotellaintermedia. Microbiol. Immunol., 2001; 45: 649–656
    Google Scholar
  • 44. Kuboniwa M., Hendrickson E.L., Xia Q., Wang T., Xie H., HackettM., Lamont R.J.: Proteomics of Porphyromonas gingivalis within a modeloral microbial community. BMC Microbiol., 2009; 9: 98
    Google Scholar
  • 45. Kumar R., Lovell S., Matsumura H., Battaile K.P., Moënne-LoccozP., Rivera M.: The hemophore HasA from Yersinia pestis (HasAyp)coordinates hemin with a single residue, Tyr75, and with minimalconformational change. Biochemistry, 2013; 52: 2705–2707
    Google Scholar
  • 46. Lam R.S., O’Brien-Simpson N.M., Holden J.A., Lenzo J.C., FongS.B., Reynolds E.C.: Unprimed, M1 and M2 macrophages differentiallyinteract with Porphyromonas gingivalis. PLoS One, 2016; 11: e0158629
    Google Scholar
  • 47. Lappin D.F., Apatzidou D., Quirke A.M., Oliver-Bell J., ButcherJ.P., Kinane D.F., Riggio M.P., Venables P., McInnes I.B., Culshaw S.:Influence of periodontal disease, Porphyromonas gingivalis and cigarettesmoking on systemic anti-citrullinated peptide antibody titres.J. Clin. Periodontol., 2013; 40: 907–915
    Google Scholar
  • 48. Lasica A.M., Ksiazek M., Madej M., Potempa J.: The type IX secretionsystem (T9SS): Highlights and recent insights into its structureand function. Front. Cell Infect. Microbiol., 2017; 7: 215
    Google Scholar
  • 49. Lewis J.P., Macrina F.L.: IS195, an insertion sequence-like elementassociated with protease genes in Porphyromonas gingivalis. Infect.Immun., 1998: 66: 3035–3042
    Google Scholar
  • 50. Lewis J.P., Plata K., Yu F., Rosato A., Anaya C.: Transcriptionalorganization, regulation and role of the Porphyromonas gingivalisW83 hmu haemin-uptake locus. Microbiology, 2006; 152: 3367–3382
    Google Scholar
  • 51. Li N., Collyer C.A.: Gingipains from Porphyromonas gingivalis –Complex domain structures confer diverse functions. Eur. J. Microbiol.Immunol., 2011; 1: 41–58
    Google Scholar
  • 52. Lira-Junior R., Åkerman S., Klinge B., Boström E.A., GustafssonA.: Salivary microbial profiles in relation to age, periodontal, andsystemic diseases. PLoS One, 2018; 13: e0189374
    Google Scholar
  • 53. Marsh P.D., McDermid A.S., McKee A.S., Baskerville A.: The effectof growth rate and haemin on the virulence and proteolytic activityof Porphyromonas gingivalis W50. Microbiology, 1994; 140: 861–865
    Google Scholar
  • 54. Mesia R., Gholami F., Huang H., Clare-Salzler M., Aukhil I., WalletS.M., Shaddox L. M.: Systemic inflammatory responses in patientswith type 2 diabetes with chronic periodontitis. BMJ Open DiabetesRes. Care, 2016; 4: e000260
    Google Scholar
  • 55. Meuric V., Gracieux P., Tamanai-Shacoori Z., Perez-Chaparro J.,Bonnaure-Mallet M.: Expression patterns of genes induced by oxidativestress in Porphyromonas gingivalis. Oral Microbiol. Immunol.,2008; 23: 308–314
    Google Scholar
  • 56. Moutsopoulos N.M., Kling H.M., Angelov N., Jin W., Palmer R.J.,Nares S., Osorio M., Wahl S.M.: Porphyromonas gingivalis promotesTh17 inducing pathways in chronic periodontitis. J. Autoimmun.,2012; 39: 294–303
    Google Scholar
  • 57. Nazir M.A.: Prevalence of periodontal disease, its association withsystemic diseases and prevention. Int. J. Health Sci., 2017; 11: 72–80
    Google Scholar
  • 58. Nelson K.E., Fleischmann R.D., DeBoy R.T., Paulsen I.T., Fouts D.E.,Eisen J.A., Daugherty S.C., Dodson R.J., Durkin A.S., Gwinn M., HaftD.H., Kolonay J.F., Nelson W.C., Mason T., Tallon L. i wsp.: Completegenome sequence of the oral pathogenic bacterium Porphyromonasgingivalis strain W83. J. Bacteriol., 2003; 185: 5591–5601
    Google Scholar
  • 59. Olczak T.: Analysis of conserved glutamate residues in Porphyromonasgingivalis outer membrane receptor HmuR: Toward a furtherunderstanding of heme uptake. Arch. Microbiol., 2006; 186: 393–402
    Google Scholar
  • 60. Olczak, T., Dixon, D.W., Genco C.A.: Binding specificity of thePorphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipainK, and gingipain R1 for heme, porphyrins, and metalloporphyrins.J. Bacteriol., 2001; 183: 5599–5608
    Google Scholar
  • 61. Olczak T., Simpson W., Liu X., Genco C.A.: Iron and heme utilizationin Porphyromonas gingivalis. FEMS Microbiol. Rev., 2005; 29: 119–144
    Google Scholar
  • 62. Olczak T., Sosicka P., Olczak M.: HmuY is an important virulencefactor for Porphyromonas gingivalis growth in the heme-limited hostenvironment and infection of macrophages. Biochem. Biophys. Res.Commun., 2015; 467: 748–753
    Google Scholar
  • 63. Olczak T., Sroka A., Potempa J., Olczak M.: Porphyromonas gingivalisHmuY and HmuR: Further characterization of a novel mechanismof heme utilization. Arch. Microbiol., 2008; 189: 197–210
    Google Scholar
  • 64. Olczak T., Wójtowicz H., Ciuraszkiewicz J., Olczak M.: Speciesspecificity, surface exposure, protein expression, immunogenicity,and participation in biofilm formation of Porphyromonas gingivalisHmuY. BMC Microbiol., 2010; 10: 134
    Google Scholar
  • 65. Olsen I., Lambris J.D., Hajishengallis G.: Porphyromonas gingivalisdisturbs host-commensal homeostasis by changing complementfunction. J. Oral Microbiol., 2017; 9: 1340085
    Google Scholar
  • 66. Park Y., Simionato M.R., Sekiya K., Murakami Y., James D., ChenW., Hackett M., Yoshimura F., Demuth D.R., Lamont R.J.: Short fimbriaeof Porphyromonas gingivalis and their role in coadhesion withStreptococcus gordonii. Infect. Immun., 2005; 73: 3983–3989
    Google Scholar
  • 67. Petersen P.E., Ogawa H.: The global burden of periodontal disease:Towards integration with chronic disease prevention and control.Periodontol. 2000, 2012; 60: 15–39
    Google Scholar
  • 68. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., GreenblattD.M., Meng E.C., Ferrin T.E.: UCSF Chimera – a visualization systemfor exploratory research and analysis. J. Comput. Chem., 2004; 25:1605–1612
    Google Scholar
  • 69. Popadiak K., Potempa J., Riesbeck K., Blom A.M.: Biphasic effectof gingipains from Porphyromonas gingivalis on the human complementsystem. J. Immunol., 2007; 178: 7242–7250
    Google Scholar
  • 70. Potempa J., Banbula A., Travis J.: Role of bacterial proteinases inmatrix destruction and modulation of host responses. Periodontol.2000, 2000; 24: 153–192
    Google Scholar
  • 71. Potempa J., Sroka A., Imamura T., Travis J.: Gingipains, the majorcysteine proteinases and virulence factors of Porphyromonas gingivalis:Structure, function and assembly of multidomain protein complexes.Curr. Protein Pept. Sci., 2003; 4: 397–407
    Google Scholar
  • 72. Richard K.L., Kelley B.R., Johnson J.G.: Heme uptake and utilizationby Gram-negative bacterial pathogens. Front. Cell Infect.Microbiol., 2019; 9: 81
    Google Scholar
  • 73. Romero-Lastra P., Sánchez M.C., Llama-Palacios A., Figuero E.,Herrera D., Sanz M.: Gene expression of Porphyromonas gingivalisATCC 33277 when growing in an in vitro multispecies biofilm. PLoSOne, 2019; 14: e0221234
    Google Scholar
  • 74. Rudney J.D., Chen R., Sedgewick G.J.: Actinobacillus actinomycetemcomitans,Porphyromonas gingivalis, and Tannerella forsythensisare components of a polymicrobial intracellular flora within humanbuccal cells. J. Dent. Res., 2005; 84: 59–63
    Google Scholar
  • 75. Scott J.C., Klein B.A., Duran-Pinedo A., Hu L., Duncan M.J.: A twocomponentsystem regulates hemin acquisition in Porphyromonasgingivalis. PLoS One, 2013; 8: e73351
    Google Scholar
  • 76. Sender R., Fuchs S., Milo R.: Revised estimates for the number ofhuman and bacteria cells in the body. PLoS Biol., 2016; 14: e1002533
    Google Scholar
  • 77. Seymour G.J., Ford P.J., Cullinan M.P., Leishman S., Yamazaki K.:Relationship between periodontal infections and systemic disease.Clin. Microbiol. Infect., 2007; 13: 3–10
    Google Scholar
  • 78. Shimotahira N., Oogai Y., Kawada-Matsuo M., Yamada S., FukutsujiK., Nagano K., Yoshimura F., Noguchi K., Komatsuzawa H.: Thesurface layer of Tannerella forsythia contributes to serum resistanceand oral bacterial coaggregation. Infect. Immun., 2013; 81: 1198–1206
    Google Scholar
  • 79. Shoji M., Shibata Y., Shiroza T., Yukitake H., Peng B., Chen Y.Y.,Sato K., Naito M., Abiko Y., Reynolds E.C., Nakayama K.: Characterizationof hemin-binding protein 35 (HBP35) in Porphyromonas gingivalis:Its cellular distribution, thioredoxin activity and role in hemeutilization. BMC Microbiol., 2010; 10: 152
    Google Scholar
  • 80. Singh A., Wyant T., Anaya-Bergman C., Aduse-Opoku J., BrunnerJ., Laine M.L., Curtis M.A., Lewis J.P.: The capsule of Porphyromonasgingivalis leads to a reduction in the host inflammatory response,evasion of phagocytosis, and increase in virulence. Infect. Immun.,2011; 79: 4533–4542
    Google Scholar
  • 81. Smalley J.W., Birss A.J., Szmigielski B., Potempa J.: Sequential actionof R- and K-specific gingipains of Porphyromonas gingivalis in thegeneration of the haem-containing pigment from oxyhaemoglobin.Arch. Biochem. Biophys., 2007; 465: 44–49
    Google Scholar
  • 82. Smalley J.W., Byrne D.P., Birss A.J, Wojtowicz H., Sroka A., PotempaJ., Olczak T.: HmuY haemophore and gingipain proteasesconstitute a unique synthrophic system of haem acquisition by Porphyromonasgingivalis. PLoS One, 2011; 6, e17182
    Google Scholar
  • 83. Smalley J.W., Silver J., Marsh P.J., Birss A.J.: The periodontopathogenPorphyromonas gingivalis binds iron protoporphyrin IX in themu-oxo dimeric form: An oxidative buffer and possible pathogenicmechanism. Biochem. J., 1998; 331: 681–685
    Google Scholar
  • 84. Smalley J.W., Thomas M.F., Birss A.J., Withnall R., Silver J.: A combinationof both arginine- and lysine-specific gingipain activity of Porphyromonasgingivalis is necessary for the generation of the μ-oxo bishaemcontainingpigment from haemoglobin. Biochem. J., 2004; 379: 833–840
    Google Scholar
  • 85. Socransky S.S., Haffajee A.D., Cugini M.A., Smith C., Kent R.L.Jr.:Microbial complexes in subgingival plaque. J. Clin. Periodontol., 1998;25: 134–144
    Google Scholar
  • 86. Sroka A., Sztukowska M., Potempa J., Travis J., Genco C.A.: Degradationof host heme proteins by lysine- and arginine-specific cysteineproteinases (gingipains) of Porphyromonas gingivalis. J. Bacteriol., 2001;183: 5609–5616
    Google Scholar
  • 87. Suzuki N., Yoneda M., Hirofuji T.: Mixed red-complex bacterial infectionin periodontitis. Int. J. Dent., 2013; 2013: 587279
    Google Scholar
  • 88. Szafrański S.P., Deng Z.L., Tomasch J., Jarek M., Bhuju S., MeisingerC., Kühnisch J., Sztajer H., Wagner-Döbler I.: Functional biomarkersfor chronic periodontitis and insights into the roles of Prevotellanigrescens and Fusobacterium nucleatum; A metatranscriptomeanalysis. NPJ Biofilms Microbiomes, 2015; 1: 15017
    Google Scholar
  • 89. Śmiga M., Bielecki M., Olczak M., Olczak T.: Porphyromonas gingivalisPgFur is a member of a novel Fur subfamily with non-canonicalfunction. Front. Cell Infect. Microbiol., 2019; 9: 233
    Google Scholar
  • 90. Śmiga M., Bielecki M., Olczak M., Smalley J.W., Olczak T.: Anti-HmuY antibodies specifically recognize Porphyromonas gingivalisHmuY protein but not homologous proteins in other periodontopathogens.PLoS One, 2015; 10: e0117508
    Google Scholar
  • 91. Śmiga M., Stępień P., Olczak M., Olczak T.: PgFur participatesdifferentially in expression of virulence factors in more virulentA7436 and less virulent ATCC 33277 Porphyromonas gingivalis strains.BMC Microbiol., 2019; 19: 127
    Google Scholar
  • 92. Tolosano E., Altruda F.: Hemopexin: Structure, function, andregulation. DNA Cell Biol., 2002; 21; 297–306
    Google Scholar
  • 93. Trindade S.C., Olczak T., Gomes-Filho I.S., Moura-Costa L.F., CerqueiraE.M., Galdino-Neto M., Alves H., Carvalho-Filho P.C., XavierM.T., Meyer R.: Induction of interleukin (IL)-1β, IL-10, IL-8 and immunoglobulinG by Porphyromonas gingivalis HmuY in humans. J.Periodontal. Res., 2012; 47: 27–32
    Google Scholar
  • 94. Veith P.D., Chen Y.Y., Gorasia D.G., Chen D., Glew M.D., O’Brien-Simpson N.M., Cecil J.D., Holden J.A., Reynolds E.C.: Porphyromonasgingivalis outer membrane vesicles exclusively contain outer membraneand periplasmic proteins and carry a cargo enriched withvirulence factors. J. Proteome Res., 2014; 13: 2420–2432
    Google Scholar
  • 95. Wang R.E., Tian L., Chang Y.H.: A homogeneous fluorescentsensor for human serum albumin. J. Pharm. Biomed. Anal., 2012;63: 165–169
    Google Scholar
  • 96. Widziolek M., Prajsnar T.K., Tazzyman S., Stafford G.P., PotempaJ., Murdoch C.: Zebrafish as a new model to study effects of periodontalpathogens on cardiovascular diseases. Sci. Rep., 2016; 6: 36023
    Google Scholar
  • 97. Wójtowicz H., Guevara T., Tallant C., Olczak M., Sroka A., PotempaJ., Solà M., Olczak T., Gomis-Rüth F.X.: Unique structure andstability of HmuY, a novel heme-binding protein of Porphyromonasgingivalis. PLoS Pathog., 2009; 5: e1000419
    Google Scholar
  • 98. Wójtowicz H., Wojaczyński J., Olczak M., Króliczewski J., Latos-Grazyński L., Olczak T.: Heme environment in HmuY, the hemebindingprotein of Porphyromonas gingivalis. Biochem. Biophys. Res.Commun., 2009; 383: 178–182
    Google Scholar
  • 99. Xie H., Zheng C.: OxyR activation in Porphyromonas gingivalis inresponse to a hemin-limited environment. Infect. Immun., 2012;80: 3471–3480
    Google Scholar
  • 100. Yanamandra S.S., Sarrafee S.S., Anaya-Bergman C., Jones K.,Lewis J.P.: Role of the Porphyromonas gingivalis extracytoplasmicfunction sigma factor, SigH. Mol. Oral Microbiol., 2012; 27: 202–219
    Google Scholar
  • 101. Zhang Y., Wang T., Chen W., Yilmaz O., Park Y., Jung I.Y., HackettM., Lamont R.J.: Differential protein expression by Porphyromonasgingivalis in response to secreted epithelial cell components.Proteomics, 2005; 5: 198–211
    Google Scholar
  • 102. Zhou L.N., Bi C.S., Gao L.N., An Y., Chen F., Chen F.M.: Macrophagepolarization in human gingival tissue in response to periodontaldisease. Oral Dis., 2019; 25: 265–273
    Google Scholar
  • 103. Zhu W., Lee S.W.: Surface interactions between two of the mainperiodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia.J. Periodontal. Implant. Sci., 2016; 46: 2–9
    Google Scholar

Pełna treść artykułu

Skip to content