Molekularna charakterystyka oraz fizjologiczne znaczenie DOPA-dekarboksylazy

GLOSA LUB KOMENTARZ PRAWNICZY

Molekularna charakterystyka oraz fizjologiczne znaczenie DOPA-dekarboksylazy

Joanna Guenter 1 , Robert Lenartowski 2

1. Zakład Genetyki, Uniwersytet Mikołaja Kopernika w Toruniu
2. Pracownia Izotopowa i Analizy Instrumentalnej, Uniwersytet Mikołaja Kopernika w Toruniu

Opublikowany: 2016-12-31
DOI: 10.5604/17322693.1227773
GICID: 01.3001.0009.6918
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2016; 70 : 1424-1440

 

Abstrakt

DOPA-dekarboksylaza jest jednym z istotnych elementów układu dopaminergicznego mózgu oraz sytemu wychwytu i dekarboksylacji prekursorów amin w tkankach obwodowych. Oprócz amin katecholowych, enzym DDC odpowiada za biogenezę serotoniny oraz amin śladowych. Sekwencja aminokwasowa DDC jest zachowywana w toku ewolucji. Aktywność funkcjonalnej cząsteczki enzymu jest regulowana przez stymulację/hamowanie wielu typów receptorów błonowych, fosforylację reszt serynowych oraz bezpośrednie interakcje DDC z białkami regulatorowymi. Jednokopiowy gen DDC jest matrycą dla izoform mRNA różniących się sekwencją 5’ UTR, a także obecnością alternatywnych eksonów. Swoista tkankowo ekspresja genu DDC jest kontrolowana przez dwie sekwencje promotorowe – obwodową i neuronalną, które pozostają w przestrzennym oddaleniu od siebie. Mapowanie miejsc regulatorowych w promotorze neuronalnym wykazało, że jest wiązany przez białka z rodziny POU i HNF. Ze względu na położenie genu DDC w konserwowanym ewolucyjnie obszarze częściowo podlegającemu piętnowaniu rodzicielskiemu, sugeruje się zaangażowanie mechanizmów epigenetycznych w regulację ekspresji DDC. Nieprawidłowe funkcjonowanie lub niedobór tego białka wywołuje dysfunkcję układu nerwowego, zaburzenia psychiczne oraz koreluje z procesem nowotworzenia. Oprócz wymienionych problemów, w pracy zwrócono uwagę na rolę DDC w etiologii chorób gruczołu krokowego, afektywnej dwubiegunowej, Parkinsona oraz niedoboru DDC. Omówiono również nowoczesne i perspektywiczne metody kuracji chorych oparte na terapii genowej oraz wykorzystujące komórki macierzyste.

Przypisy

  • 1. Abeling N.G., Bräutigam C., Hoffmann G.F., Barth P.G., Wevers R.A.,Jaeken J., Fiumara A., Knust A., van Gennip A.H.: Pathobiochemicalimplications of hyperdopaminuria in patients with aromatic L-aminoacid decarboxylase deficiency. J. Inherit. Metab. Dis., 2000; 23: 325-328
    Google Scholar
  • 2. Aguanno A., Afar R., Albert V.R.: Tissue-specific expression of thenonneuronal promoter of the aromatic L-amino acid decarboxylasegene is regulated by hepatocyte nuclear factor 1. J. Biol. Chem.,1996; 271: 4528-4538
    Google Scholar
  • 3. Aguanno A., Lee M.R., Marden C.M., Rattray M., Gault A., AlbertV.R.: Analysis of the neuronal promoter of the rat aromatic L-aminoacid decarboxylase gene. J. Neurochem., 1995; 65: 1944-1954
    Google Scholar
  • 4. Albert V.R., Allen J.M., Joh T.H.: A single gene codes for aromaticL-amino acid decarboxylase in both neuronal and non-neuronaltissues. J. Biol. Chem., 1987; 262: 9404-9411
    Google Scholar
  • 5. Albert V.R., Lee M.R., Bolden A.H., Wurzburger R.J., Aguanno A.:Distinct promoters direct neuronal and nonneuronal expression ofrat aromatic L-amino acid decarboxylase. Proc. Natl. Acad. Sci. USA,1992; 89: 12053-12057
    Google Scholar
  • 6. Ali F., Stott S.R., Barker R.A.: Stem cells and the treatment of Parkinson’sdisease. Exp. Neurol., 2014; 260: 3-11
    Google Scholar
  • 7. Allen G.F., Neergheen V., Oppenheim M., Fitzgerald J.C., Footitt E.,Hyland K., Clayton P.T., Land J.M., Heales S.J.: Pyridoxal 5’-phosphatedeficiency causes a loss of aromatic L-amino acid decarboxylase inpatients and human neuroblastoma cells, implications for aromaticL-amino acid decarboxylase and vitamin B6 deficiency states. J.Neurochem., 2010; 114: 87-96
    Google Scholar
  • 8. Ariga H., Takahashi-Niki K., Kato I., Maita H., Niki T., Iguchi-ArigaS.M.: Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid.Med. Cell. Longev., 2013; 2013: 683920
    Google Scholar
  • 9. Baptista M.J., O’Farrell C., Daya S., Ahmad R., Miller D.W., Hardy J.,Farrer M.J., Cookson M.R.: Co-ordinate transcriptional regulation ofdopamine synthesis genes by α-synuclein in human neuroblastomacell lines. J. Neurochem., 2003; 85: 957-968
    Google Scholar
  • 10. Baylin S. B., Mendelsohn G.: Medullary thyroid carcinoma –a model for the study of human tumor progression and cell heterogeneity.New York, Acad. Press, 1984; 4: 9-27
    Google Scholar
  • 11. Berry M.D., Juorio A.V., Li X.M., Boulton A.A.: Aromatic L-aminoacid decarboxylase: a neglected and misunderstood enzyme. Neurochem.Res., 1996; 21: 1075-1087
    Google Scholar
  • 12. Bertoldi M.: Mammalian Dopa decarboxylase: structure, catalyticactivity and inhibition. Arch. Biochem. Biophys., 2014; 546: 1-7
    Google Scholar
  • 13. Bertoldi M., Voltattorni C.B.: Multiple roles of the active sitelysine of Dopa decarboxylase. Arch. Biochem. Biophys., 2009; 488:130-139
    Google Scholar
  • 14. Blaud M., Vossen C., Joseph G., Alazard R., Erard M., Nieto L.:Characteristic patterns of N Oct-3 binding to a set of neuronal promoters.J. Mol. Biol., 2004; 339: 1049-1058
    Google Scholar
  • 15. Blechingberg J., Holm I.E., Johansen M.G., Børglum A.D., NielsenA.L.: Aromatic l-amino acid decarboxylase expression profilingand isoform detection in the developing porcine brain. Brain Res.,2010; 1308: 1-13
    Google Scholar
  • 16. Bonifati V., Rizzu P., van Baren M.J., Schaap O., Breedveld G.J.,Krieger E., Dekker M.C., Squitieri F., Ibanez P., Joosse M., van DongenJ.W., Vanacore N., van Swieten J.C., Brice A., Meco G. i wsp.: Mutationsin the DJ-1 gene associated with autosomal recessive early-onsetparkinsonism. Science, 2003; 299: 256-259
    Google Scholar
  • 17. Børglum A.D., Bruun T.G., Kjeldsen T.E., Ewald H., Mors O., KirovG., Russ C., Freeman B., Collier D.A., Kruse T.A.: Two novel variantsin the DOPA decarboxylase gene: association with bipolar affectivedisorder. Mol. Psychiatry, 1999; 4: 545-551
    Google Scholar
  • 18. Børglum A.D., Hampson M., Kjeldsen T.E., Muir W., Murray V.,Ewald H., Mors O., Blackwood D., Kruse T.A.: Dopa decarboxylasegenotypes may influence age at onset of schizophrenia. Mol. Psychiatry,2001; 6: 712-717
    Google Scholar
  • 19. Børglum A.D., Kirov G., Craddock N., Mors O., Muir W., MurrayV., McKee I., Collier D.A., Ewald H., Owen M.J., Blackwood D., KruseT.A.: Possible parent-of-origin effect of Dopa decarboxylase in susceptibilityto bipolar affective disorder. Am. J. Med. Genet. B Neuropsychiatr.Genet., 2003; 117B: 18-22
    Google Scholar
  • 20. Brun L., Ngu L.H., Keng W.T., Ch’ng G.S., Choy Y.S., Hwu W.L., LeeW.T., Willemsen M.A., Verbeek M.M., Wassenberg T., Régal L., OrcesiS., Tonduti D., Accorsi P., Testard H. i wsp.: Clinical and biochemicalfeatures of aromatic L-amino acid decarboxylase deficiency. Neurology,2010; 75: 64-71
    Google Scholar
  • 21. Bruneau G., Thibault J., Gros F., Mattei M.G.: Mapping of thedopa decarboxylase gene to the 11A band of the murine genome.Biochem. Biophys. Res. Commun., 1992; 186: 926-930
    Google Scholar
  • 22. Buckland P.R., O’Donovan M.C., McGuffin P.: Changes in dopadecarboxylase mRNA but not tyrosine hydroxylase mRNA levels inrat brain following antipsychotic treatment. Psychopharmacology,1992; 108: 98-102
    Google Scholar
  • 23. Burkhard P., Dominici P., Borri-Voltattorni C., Jansonius J.N.,Malashkevich V.N.: Structural insight into Parkinson’s disease treatmentfrom drug-inhibited DOPA decarboxylase. Nat. Struct. Biol.,2001; 8: 963-967
    Google Scholar
  • 24. Cartier E.A., Parra L.A., Baust T.B., Quiroz M., Salazar G., FaundezV., Egaña L., Torres G.E.: A biochemical and functional proteincomplex involving dopamine synthesis and transport into synapticvesicles. J. Biol. Chem., 2010; 285: 1957-1966
    Google Scholar
  • 25. Chalatsa I., Fragoulis E.G., Vassilacopoulou D.: Release of membrane-associated L-dopa decarboxylase from human cells. Neurochem.Res., 2011; 36: 1426-1434
    Google Scholar
  • 26. Chang Y.T., Mues G., Hyland K.: Alternative splicing in the codingregion of human aromatic L-amino acid decarboxylase mRNA.Neurosci. Lett., 1996; 202: 157-160
    Google Scholar
  • 27. Cho S., Neff N.H., Hadjiconstantinou M.: Regulation of tyrosinehydroxylase and aromatic L-amino acid decarboxylase by dopaminergicdrugs. Eur. J. Pharmacol., 1997; 323: 149-157
    Google Scholar
  • 28. Cho S., Duchemin A.M., Neff N.H., Hadjiconstantinou M.: Tyrosinehydroxylase, aromatic L-amino acid decarboxylase and dopaminemetabolism after chronic treatment with dopaminergic drugs. BrainRes., 1999; 830: 237-245
    Google Scholar
  • 29. Christenson J.G., Dairman W., Udenfriend S.: Preparation andproperties of a homogeneous aromatic L-amino acid decarboxylasefrom hog kidney. Arch. Biochem. Biophys., 1970; 141: 356-367
    Google Scholar
  • 30. Coune P.G., Schneider B.L., Aebischer P.: Parkinson’s disease:gene therapies. Cold Spring Harb. Perspect. Med., 2012; 2: a009431
    Google Scholar
  • 31. Daidone F., Montioli R., Paiardini A., Cellini B., Macchiarulo A.,Giardina G., Bossa F., Borri Voltattorni C.: Identification by virtualscreening and in vitro testing of human DOPA decarboxylase inhibitors.PLoS One, 2012; 7: e31610
    Google Scholar
  • 32. Doucet-Beaupré H., Lévesque M.: The role of developmentaltranscription factors in adult midbrain dopaminergic neurons. OA.Neurosci., 2013; 1: 3
    Google Scholar
  • 33. Drożak J., Bryła J.: Dopamine: not just a neurotransmitter. PostępyHig. Med. Dośw., 2005; 59: 405-420
    Google Scholar
  • 34. Duchemin A.M., Berry M.D., Neff N.H., Hadjiconstantinou M.:Phosphorylation and activation of brain aromatic L-amino acid decarboxylaseby cyclic AMP-dependent protein kinase. J. Neurochem.,2000; 75: 725-731
    Google Scholar
  • 35. Duchemin A.M., Neff N.H., Hadjiconstantinou M.: Aromatic L–amino acid decarboxylase phosphorylation and activation by PKGIαin vitro. J. Neurochem., 2010; 114: 542-552
    Google Scholar
  • 36. Dugast C., Weber M.J.: NF-Y binding is required for transactivationof neuronal aromatic L-amino acid decarboxylase gene promoterby the POU-domain protein Brn-2. Brain Res. Mol. Brain Res.,2001; 89: 58-70
    Google Scholar
  • 37. Dugast-Darzacq C., Egloff S., Weber M.J.: Cooperative dimerizationof the POU domain protein Brn-2 on a new motif activates theneuronal promoter of the human aromatic L-amino acid decarboxylasegene. Brain Res. Mol. Brain Res., 2004; 120: 151-163
    Google Scholar
  • 38. Facchini P.J., Huber-Allanach K.L., Tari L.W.: Plant aromatic L–amino acid decarboxylases: evolution, biochemistry, regulation,and metabolic engineering applications. Phytochemistry, 2000; 54:121-138
    Google Scholar
  • 39. Friedman J.R., Kaestner K.H.: The Foxa family of transcriptionfactors in development and metabolism. Cell. Mol. Life Sci., 2006;63: 2317-2328
    Google Scholar
  • 40. Gazdar A.F., Helman L.J., Israel M.A., Russell E.K., Linnoila R.I.,Mulshine J.L., Schuller H.M., Park J.G.: Expression of neuroendocrinecell markers L-dopa decarboxylase, chromogranin A, and dense coregranules in human tumors of endocrine and nonendocrine origin.Cancer Res., 1988; 48: 4078-4082
    Google Scholar
  • 41. GeneCards. Human Gene Database. DDC Gene (Protein coding)http://www.genecards.org/cgi-bin/carddisp.pl?gene=DDC&ortholog=all#orthologs (16.07.2015)
    Google Scholar
  • 42. Giardina G., Montioli R., Gianni S., Cellini B., Paiardini A., VoltattorniC.B., Cutruzzolà F.: Open conformation of human DOPAdecarboxylase reveals the mechanism of PLP addition to Group IIdecarboxylases. Proc. Natl. Acad. Sci. USA, 2011; 108: 20514-20519
    Google Scholar
  • 43. Gilbert J.A., Bates L.A., Ames M.M.: Elevated aromatic-L-aminoacid decarboxylase in human carcinoid tumors. Biochem. Pharmacol.,1995; 50: 845-850
    Google Scholar
  • 44. Hadjiconstantinou M., Duchemin A.M, Azad A., Neff N.H.: AromaticL-amino acid decarboxylase. W: Biogenic Amines. Pharmacological,neurochemical and molecular aspects in the CNS. Red.: T. Farooqui,A.A. Farooqui. Nova Biomedica Books, New York, 2010, 25-45
    Google Scholar
  • 45. Hadjiconstantinou M., Neff N.H.: Enhancing aromatic L-aminoacid decarboxylase activity: implications for L-DOPA treatment inParkinson’s disease. CNS Neurosci. Ther., 2008; 14: 340-351
    Google Scholar
  • 46. Hadjiconstantinou M., Rossetti Z.L., Wemlinger T.A., Neff N.H.: Dizocilpineenhances striatal tyrosine hydroxylase and aromatic L-aminoacid decarboxylase activity. Eur. J. Pharmacol., 1995; 289: 97-101
    Google Scholar
  • 47. Hadjiconstantinou M., Wemlinger T.A., Sylvia C.P., Hubble J.P.,Neff N.H.: Aromatic L-amino acid decarboxylase activity of mousestriatum is modulated via dopamine receptors. J. Neurochem., 1993;60: 2175-2180
    Google Scholar
  • 48. Hahn S.L., Hahn M., Joh T.H.: Genomic organization of the rataromatic L-amino acid decarboxylase (AADC) locus: partial analysisreveals divergence from the Drosophila dopa decarboxylase (DDC)gene structure. Mamm. Genome, 1991; 1: 145-151
    Google Scholar
  • 49. Han F., Wang W., Chen B., Chen C., Li S., Lu X., Duan J., ZhangY., Zhang Y.A., Guo W., Li G.: Human induced pluripotent stem cell–derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Cytotherapy, 2015;17: 665-679
    Google Scholar
  • 50. Hashimoto S., Ikeno T., Hasegawa J., Nagatsu T., Kuzuya H.: Endogenousinhibitors of DOPA decarboxylase in rat submandibulargland. Arch. Oral Biol., 1980; 25: 195-199
    Google Scholar
  • 51. Hawi Z., Foley D., Kirley A., McCarron M., Fitzgerald M., Gill M.:Dopa decarboxylase gene polymorphisms and attention deficit hyperactivitydisorder (ADHD): no evidence for association in the Irishpopulation. Mol. Psychiatry, 2001; 6: 420-424
    Google Scholar
  • 52. Hermanson E., Joseph B., Castro D., Lindqvist E., Aarnisalo P.,Wallén A., Benoit G., Hengerer B., Olson L., Perlmann T.: Nurr1 regulatesdopamine synthesis and storage in MN9D dopamine cells.Exp. Cell Res., 2003; 288: 324-334
    Google Scholar
  • 53. Hirsh J., Davidson N.: Isolation and characterization of the dopadecarboxylase gene of Drosophila melanogaster. Mol. Cell. Biol., 1981;1: 475-485
    Google Scholar
  • 54. Hitchins M.P., Bentley L., Monk D., Beechey C., Peters J., KelseyG., Ishino F., Preece M.A., Stanier P., Moore G.E.: DDC and COBL, flankingthe imprinted GRB10 gene on 7p12, are biallelically expressed.Mamm. Genome, 2002; 13: 686-691
    Google Scholar
  • 55. Hodgetts R.B., O’Keefe S.L.: Dopa decarboxylase: a model gene–enzyme system for studying development, behavior, and systematics.Annu. Rev. Entomol., 2006; 51: 259-284
    Google Scholar
  • 56. Hu Y., Ippolito J.E., Garabedian E.M., Humphrey P.A., GordonJ.I.: Molecular characterization of a metastatic neuroendocrine cellcancer arising in the prostates of transgenic mice. J. Biol. Chem.,2002; 277: 44462-44474
    Google Scholar
  • 57. Hwu W.L., Muramatsu S., Tseng S.H., Tzen K.Y., Lee N.C., ChienY.H., Snyder R.O., Byrne B.J., Tai C.H., Wu R.M.: Gene therapy foraromatic L-amino acid decarboxylase deficiency. Sci. Transl. Med.,2012; 4: 134ra61
    Google Scholar
  • 58. Hyland K., Clayton P.T.: Aromatic amino acid decarboxylase deficiencyin twins. J. Inherit. Metab. Dis., 1990; 13: 301-304
    Google Scholar
  • 59. Hyland K., Clayton P.T.: Aromatic L-amino acid decarboxylasedeficiency: diagnostic methodology. Clin. Chem., 1992; 38: 2405-2410
    Google Scholar
  • 60. Ichinose H., Kurosawa Y., Titani K., Fujita K., Nagatsu T.: Isolationand characterization of a cDNA clone encoding human aromaticL-amino acid decarboxylase. Biochem. Biophys. Res. Commun.,1989; 164: 1024-1030
    Google Scholar
  • 61. Ichinose H., Sumi-Ichinose C., Ohye T., Hagino Y., Fujita K., NagatsuT.: Tissue-specific alternative splicing of the first exon generatestwo types of mRNAs in human aromatic L-amino acid decarboxylase.Biochemistry, 1992; 31: 11546-11550
    Google Scholar
  • 62. Isaac J., Berndt T.J., Chinnow S.L. Tyce G.M., Dousa T.P., KnoxF.G.: Dopamine enhances the phosphaturic response to parathyroidhormone in phosphate-deprived rats. J. Am. Soc. Nephrol., 1992;2: 1423-1429
    Google Scholar
  • 63. Ishikawa S., Taira T., Niki T., Takahashi-Niki K., Maita C., MaitaH., Ariga H., Iguchi-Ariga S.M.: Oxidative status of DJ-1-dependentactivation of dopamine synthesis through interaction of tyrosinehydroxylase and 4-dihydroxy-L-phenylalanine (L-DOPA) decarboxylasewith DJ-1. J. Biol. Chem., 2009; 284: 28832-28844
    Google Scholar
  • 64. Iwata A., Miura S., Kanazawa I., Sawada M., Nukina N.:α-Synuclein forms a complex with transcription factor Elk-1. J. Neurochem.,2001; 77: 239-252
    Google Scholar
  • 65. Johnson W.A., McCormick C.A., Bray S.J., Hirsh J.: A neuron–specific enhancer of the Drosophila dopa decarboxylase gene. GenesDev., 1989; 3: 676-686
    Google Scholar
  • 66. Juorio A. V., Li X.M., Walz W., Paterson I.A.: Decarboxylation ofL-dopa by cultured mouse astrocytes. Brain Res., 1993; 626: 306-309
    Google Scholar
  • 67. Kang U.J., Joh T.H.: Deduced amino acid sequence of bovinearomatic L-amino acid decarboxylase: homology to other decarboxylases.Brain Res. Mol. Brain Res., 1990; 8: 83-87
    Google Scholar
  • 68. Kaźmierczak A., Adamczyk A., Strosznajder J.B.: Udziałα-synukleiny w funkcji układu dopaminergicznego. Postępy Biol.Kom., 2007; 34: 377-390
    Google Scholar
  • 69. Kim D., Kim C.H., Moon J.I., Chung Y.G., Chang M.Y., Han B.S.,Ko S., Yang E., Cha K.Y., Lanza R., Kim K.S.: Generation of human inducedpluripotent stem cells by direct delivery of reprogrammingproteins. Cell Stem Cell, 2009; 4: 472-476
    Google Scholar
  • 70. Kokkinou I., Fragoulis E.G., Vassilacopoulou D.: The U937 macrophage cell line expresses enzymatically active L-Dopa decarboxylase.J. Neuroimmunol., 2009; 216: 51-58
    Google Scholar
  • 71. Kokkinou I., Nikolouzou E., Hatzimanolis A., Fragoulis E.G., VassilacopoulouD.: Expression of enzymatically active L-DOPA decarboxylasein human peripheral leukocytes. Blood Cells Mol. Dis., 2009;42: 92-98
    Google Scholar
  • 72. Krieger M., Coge F., Gros F., Thibault J.: Different mRNAs code fordopa decarboxylase in tissues of neuronal and nonneuronal origin.Proc. Natl. Acad. Sci. USA, 1991; 88: 2161-2165
    Google Scholar
  • 73. Laakso A., Pohjalainen T., Bergman J., Kajander J., HaaparantaM., Solin O., Syvälahti E., Hietala J.: The A1 allele of the human D2dopamine receptor gene is associated with increased activity ofstriatal L-amino acid decarboxylase in healthy subjects. Pharmacogenet.Genomics, 2005; 15: 387-391
    Google Scholar
  • 74. Le Van Thai A., Coste E., Allen J.M., Palmiter R.D., Weber M.J.:Identification of a neuron-specific promoter of human aromatic L–amino acid decarboxylase gene. Brain Res. Mol. Brain Res., 1993;17: 227-238
    Google Scholar
  • 75. Li X.M., Juorio A.V., Paterson I.A., Walz W., Zhu M.Y., BoultonA.A.: Gene expression of aromatic L-amino acid decarboxylase incultured rat glial cells. J. Neurochem., 1992; 59: 1172-1175
    Google Scholar
  • 76. Lim M.S., Chang M.Y., Kim S.M., Yi S.H., Suh-Kim H., Jung S.J.,Kim M.J., Kim J.H., Lee Y.S., Lee S.Y., Kim D.W., Lee S.H., Park C.H.:Generation of dopamine neurons from rodent fibroblasts throughthe expandable neural precursor cell stage. J. Biol. Chem., 2015;290: 17401-17414
    Google Scholar
  • 77. Maneckjee R., Baylin S.B.: Use of radiolabeled monofluoromethyl-Dopa to define the subunit structure of human L-Dopa decarboxylase.Biochemistry, 1983; 22: 6058-6063
    Google Scholar
  • 78. Mappouras D.G., Stiakakis J., Fragoulis E.G.: Purification andcharacterization of L-dopa decarboxylase from human kidney. Mol.Cell. Biochem., 1990; 94: 147-156
    Google Scholar
  • 79. Maras B., Dominici P., Barra D., Bossa F., Voltattorni C.B.: Pigkidney 3,4-dihydroxyphenylalanine (dopa) decarboxylase. Primarystructure and relationships to other amino acid decarboxylases. Eur.J. Biochem., 1991; 201: 385-391
    Google Scholar
  • 80. Matsuda N., Hayashi H., Miyatake S., Kuroiwa T., KagamiyamaH.: Instability of the apo form of aromatic L-amino acid decarboxylasein vivo and in vitro: implications for the involvement of theflexible loop that covers the active site. J. Biochem., 2004; 135: 33-42
    Google Scholar
  • 81. Menheniott T.R., Woodfine K., Schulz R., Wood A.J., Monk D., GiraudA.S., Baldwin H.S., Moore G.E., Oakey R.J.: Genomic imprintingof Dopa decarboxylase in heart and reciprocal allelic expression withneighboring Grb10. Mol. Cell. Biol., 2008; 28: 386-396
    Google Scholar
  • 82. Millevoi S., Thion L., Joseph G., Vossen C., Ghisolfi-Nieto L.,Erard M.: Atypical binding of the neuronal POU protein N-Oct3 tononcanonical DNA targets. Implications for heterodimerization withHNF-3β. Eur. J. Biochem., 2001; 268: 781-791
    Google Scholar
  • 83. Montioli R., Cellini B., Borri Voltattorni C.: Molecular insightsinto the pathogenicity of variants associated with the aromatic aminoacid decarboxylase deficiency. J. Inherit. Metab. Dis., 2011; 34:1213-1224
    Google Scholar
  • 84. Muramatsu S., Fujimoto K., Kato S., Mizukami H., Asari S., IkeguchiK., Kawakami T., Urabe M., Kume A., Sato T., Watanabe E., OzawaK., Nakano I.: A phase I study of aromatic L-amino acid decarboxylasegene therapy for Parkinson’s disease. Mol. Ther., 2010; 18: 1731-1735
    Google Scholar
  • 85. Murawiec S.: Some questions about the essence of delusions inthe light of recent neurobiological findings. Psychiatr. Pol., 2009;43: 403-410
    Google Scholar
  • 86. NCBI. DDC dopa decarboxylase [Homo sapiens (human)]. http://www.ncbi.nlm.nih.gov/gene/1644 (16.07.2015)
    Google Scholar
  • 87. Neff N.H., Wemlinger T.A., Duchemin A.M., HadjiconstantinouM.: Clozapine modulates aromatic L-amino acid decarboxylase activity in mouse striatum. J. Pharmacol. Exp. Ther., 2006; 317: 480-487
    Google Scholar
  • 88. Newman M.B., Bakay R.A.: Therapeutic potentials of humanembryonic stem cells in Parkinson’s disease. Neurotherapeutics,2008; 5: 237-251
    Google Scholar
  • 89. Nishigaki I., Ichinose H., Tamai K., Nagatsu T.: Purification ofaromatic L-amino acid decarboxylase from bovine brain with a monoclonalantibody. Biochem. J., 1988; 252: 331-335
    Google Scholar
  • 90. O’Malley K.L., Harmon S., Moffat M., Uhland-Smith A., WongS.: The human aromatic L-amino acid decarboxylase gene can bealternatively spliced to generate unique protein isoforms. J. Neurochem.,1995; 65: 2409-2416
    Google Scholar
  • 91. Osterova-Golts N., Petrucelli L., Hardy J., Lee J.M., Farer M., WolozinB.: The A53T α-synuclein mutation increases iron-dependentaggregation and toxicity. J. Neurosci., 2000; 20: 6048-6054
    Google Scholar
  • 92. Palfi S., Gurruchaga J.M., Ralph G.S., Lepetit H., Lavisse S., ButteryP.C., Watts C., Miskin J., Kelleher M., Deeley S., Iwamuro H., LefaucheurJ.P., Thiriez C., Fenelon G., Lucas C. i wsp.: Long-term safetyand tolerability of ProSavin, a lentiviral vector-based gene therapyfor Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial.Lancet, 2014; 383: 1138-1146
    Google Scholar
  • 93. Peng X., Tehranian R., Dietrich P., Stefanis L., Perez R.G.: Alpha–synuclein activation of protein phosphatase 2A reduces tyrosinehydroxylase phosphorylation in dopaminergic cells. J. Cell Sci.,2005; 118: 3523-3530
    Google Scholar
  • 94. Perez R.G., Waymire J.C., Lin E., Liu J.J., Guo F., Zigmond M.J.:A role for α-synuclein in the regulation of dopamine biosynthesis.J. Neurosci., 2002; 22: 3090-3099
    Google Scholar
  • 95. Phillips K., Luisi B.: The virtuoso of versatility: POU proteinsthat flex to fit. J. Mol. Biol., 2000; 302: 1023-1039
    Google Scholar
  • 96. Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A.,Dutra A., Pike B., Root H., Rubenstein J., Boyer R., Stenroos E.S., ChandrasekharappaS., Athanassiadou A., Papapetropoulos T., JohnsonW.G. i wsp.: Mutation in the α-synuclein gene identified in familieswith Parkinson›s disease. Science, 1997; 276: 2045-2047
    Google Scholar
  • 97. Pons R., Ford B., Chiriboga C.A., Clayton P.T., Hinton V., HylandK., Sharma R., De Vivo D.C.: Aromatic L-amino acid decarboxylasedeficiency: clinical features, treatment, and prognosis. Neurology,2004; 62: 1058-1065
    Google Scholar
  • 98. Poulikakos P., Vassilacopoulou D., Fragoulis E.G.: L-DOPA decarboxylaseassociation with membranes in mouse brain. Neurochem.Res., 2001; 26: 479-485
    Google Scholar
  • 99. Prickett A.R., Oakey R.J.: A survey of tissue-specific genomicimprinting in mammals. Mol. Genet. Genomics, 2012; 287: 621-630
    Google Scholar
  • 100. Pytka K., Zygmunt M., Filipek B.: Pharmacotherapy of Parkinson’sdisease: progress or regress? Postępy Hig. Med. Dośw., 2013;67: 700-708
    Google Scholar
  • 101. Rahman M.K., Togari A., Kojima K., Takahashi K., Nagatsu T.:Presence of endogenous inhibitor of aromatic L-amino acid decarboxylasein monkey serum. Mol. Cell. Biochem., 1984; 63: 53-58
    Google Scholar
  • 102. Raynal J.F., Dugast C., Le Van Thaï A., Weber M.J.: Winged helixhepatocyte nuclear factor 3 and POU-domain protein brn-2/Noct- 3 bind overlapping sites on the neuronal promoter of humanaromatic L-amino acid decarboxylase gene. Brain Res. Mol. BrainRes., 1998; 56: 227-237
    Google Scholar
  • 103. Reith J., Benkelfat C., Sherwin A., Yasuhara Y., Kuwabara H.,Andermann F., Bachneff S., Cumming P., Diksic M., Dyve S.E., EtienneP., Evans A.C., Lal S., Shevell M., Savard G., Wong D.F., ChouinardG., Gjedde A.: Elevated dopa decarboxylase activity in living brainof patients with psychosis. Proc. Natl. Acad. Sci. USA, 1994; 91:11651-11654
    Google Scholar
  • 104. Ren J., Zhang Y., Jin H., Yu J., Zhou Y., Wu F., Zhang W.: Novelinhibitors of human DOPA decarboxylase extracted from Euonymusglabra Roxb. ACS Chem. Biol., 2014; 9: 897-903
    Google Scholar
  • 105. Rhee Y.H., Ko J.Y., Chang M.Y., Yi S.H., Kim D., Kim C.H., ShimJ.W., Jo A.Y., Kim B.W., Lee H., Lee S.H., Suh W., Park C.H., Koh H.C.,Lee Y.S., Lanza R., Kim K.S., Lee S.H.: Protein-based human iPS cellsefficiently generate functional dopamine neurons and can treata rat model of Parkinson disease. J. Clin. Invest., 2011; 121: 2326-2335
    Google Scholar
  • 106. Saracchi E., Fermi S., Brighina L.: Emerging candidate biomarkersfor Parkinson’s disease: a review. Aging Dis., 2013; 5: 27-34
    Google Scholar
  • 107. Shin S.Y., Fauman E.B., Petersen A.K., Krumsiek J., Santos R.,Huang J., Arnold M., Erte I., Forgetta V., Yang T.P., Walter K., MenniC., Chen L., Vasquez L., Valdes A.M. i wsp.: An atlas of genetic influenceson human blood metabolites. Nat. Genet., 2014; 46: 543-550
    Google Scholar
  • 108. Shirota K., Fujisawa H.: Purification and characterization of aromaticL-amino acid decarboxylase from rat kidney and monoclonalantibody to the enzyme. J. Neurochem., 1988; 51: 426-434
    Google Scholar
  • 109. Soldner F., Hockemeyer D., Beard C., Gao Q., Bell G.W., Cook E.G.,Hargus G., Blak A., Cooper O., Mitalipova M., Isacson O., Jaenisch R.:Parkinson’s disease patient-derived induced pluripotent stem cellsfree of viral reprogramming factors. Cell, 2009; 136: 964-977
    Google Scholar
  • 110. Sumi-Ichinose C., Ichinose H., Takahashi E., Hori T., Nagatsu T.:Molecular cloning of genomic DNA and chromosomal assignmentof the gene for human aromatic L-amino acid decarboxylase, theenzyme for catecholamine and serotonin biosynthesis. Biochemistry,1992; 31: 2229-2238
    Google Scholar
  • 111. Takahashi K., Yamanaka S.: Induced pluripotent stem cells inmedicine and biology. Development, 2013; 140: 2457-2461
    Google Scholar
  • 112. Taketoshi M., Horio Y., Imamura I., Tanaka T., Fukui H., WadaH.: Molecular cloning of guinea-pig aromatic-L-amino acid decarboxylasecDNA. Biochem. Biophys. Res. Commun., 1990; 170: 1229-1235
    Google Scholar
  • 113. Tanaka T., Horio Y., Taketoshi M., Imamura I., Ando-YamamotoM., Kangawa K., Matsuo H., Kuroda M., Wada H.: Molecular cloningand sequencing of a cDNA of rat dopa decarboxylase: partial aminoacid homologies with other enzymes synthesizing catecholamines.Proc. Natl. Acad. Sci. USA, 1989; 86: 8142-8146
    Google Scholar
  • 114. Tay S.K., Wang F.S., Lin J.B.: Aromatic L-amino acid decarboxylasedeficiency: perspectives on diagnosis and management. Pediatr.Health Med. Ther., 2013; 4: 89-99
    Google Scholar
  • 115. Tehranian R., Montoya S.E., Van Laar A.D., Hastings T.G., PerezR.G.: Alpha-synuclein inhibits aromatic amino acid decarboxylaseactivity in dopaminergic cells. J. Neurochem., 2006; 99: 1188-1196
    Google Scholar
  • 116. Vassilacopoulou D., Sideris D.C., Vassiliou A.G., Fragoulis E.G..:Identification and characterization of a novel form of the humanL-dopa decarboxylase mRNA. Neurochem. Res., 2004; 29: 1817-1823
    Google Scholar
  • 117. Vassiliou A.G., Fragoulis E.G., Vassilacopoulou D.: Detection,purification and identification of an endogenous inhibitor of L-Dopadecarboxylase activity from human placenta. Neurochem. Res.,2009; 34: 1089-1100
    Google Scholar
  • 118. Vassiliou A.G., Vassilacopoulou D., Fragoulis E.G.: Purificationof an endogenous inhibitor of L-Dopa decarboxylase activity fromhuman serum. Neurochem. Res., 2005; 30: 641-649
    Google Scholar
  • 119. Vassort C., Rivière M., Bruneau G., Gros F., Thibault J., Levan G.,Szpirer J., Szpirer C.: Assignment of the rat genes coding for dopadecarboxylase (DDC) and glutamic acid decarboxylases (GAD1 andGAD2). Mamm. Genome, 1993; 4: 202-206
    Google Scholar
  • 120. Wafa L.A., Cheng H., Rao M.A., Nelson C.C., Cox M., Hirst M.,Sadowski I., Rennie P.S.: Isolation and identification of L-dopa decarboxylaseas a protein that binds to and enhances transcriptionalactivity of the androgen receptor using the repressed transactivatoryeast two-hybrid system. Biochem. J., 2003; 375: 373-383
    Google Scholar
  • 121. Wang D., Gao G.: State-of-the-art human gene therapy: partII. Gene therapy strategies and clinical applications. Discov. Med.,2014; 18: 151-161
    Google Scholar
  • 122. Waymire J.C., Haycock J.W.: Lack of regulation of aromatic L–amino acid decarboxylase in intact bovine chromaffin cells. J. Neurochem.,2002; 81: 589-593
    Google Scholar
  • 123. Wernig M., Zhao J.P., Pruszak J., Hedlund E., Fu D., Soldner F.,Broccoli V., Constantine-Paton M., Isacson O., Jaenisch R.: Neuronsderived from reprogrammed fibroblasts functionally integrate intothe fetal brain and improve symptoms of rats with Parkinson’s disease.Proc. Natl. Acad. Sci. USA, 2008; 105: 5856-5861
    Google Scholar
  • 124. Woźniak M., Koziołkiewicz M.: Enzymy zależne od fosforanupirydoksalu – charakterystyka i zastosowanie w biotechnologii. Biotechnologia,2005; 4: 63-81
    Google Scholar
  • 125. Young E.A., Duchemin A.M., Neff N.H., Hadjiconstantinou M.:Parallel modulation of striatal dopamine synthetic enzymes by secondmessenger pathways. Eur. J. Pharmacol., 1998; 357: 15-23
    Google Scholar
  • 126. Young E.A., Neff N.H., Hadjiconstantinou M.: Evidence for cyclicAMP-mediated increase of aromatic L-amino acid decarboxylaseactivity in the striatum and midbrain. J. Neurochem., 1993; 60:2331-2333
    Google Scholar
  • 127. Zhong N., Kim C.Y., Rizzu P., Geula C., Porter D.R., Pothos E.N.,Squitieri F., Heutink P., Xu J.: DJ-1 transcriptionally up-regulatesthe human tyrosine hydroxylase by inhibiting the sumoylation ofpyrimidine tract-binding protein-associated splicing factor. J. Biol.Chem., 2006; 281: 20940-20948
    Google Scholar
  • 128. Zhu M.Y., Juorio A.V.: Aromatic L-amino acid decarboxylase:biological characterization and functional role. Gen. Pharmacol.,1995; 26: 681-696
    Google Scholar
  • 129. Zhu M.Y., Juorio A.V., Paterson I.A., Boulton A.A.: Regulationof striatal aromatic L-amino acid decarboxylase: effects of blockadeor activation of dopamine receptors. Eur. J. Pharmacol., 1993;238: 157-164
    Google Scholar
  • 130. Zhu M.Y., Juorio A.V., Paterson I.A., Boulton A.A.: Regulationof aromatic L-amino acid decarboxylase in rat striatal synaptosomes:effects of dopamine receptor agonists and antagonists. Br. J.Pharmacol., 1994; 112: 23-30
    Google Scholar

Pełna treść artykułu

Przejdź do treści