Nowe strategie terapeutyczne choroby Alzheimera

ARTYKUŁ PRZEGLĄDOWY

Nowe strategie terapeutyczne choroby Alzheimera

Dominika Nowak 1 , Wojciech Słupski 1 , Maria Rutkowska 1

1. Katedra i Zakład Farmakologii, Wydział Lekarski, Uniwersytet Medyczny we Wrocławiu

Opublikowany: 2021-06-21
DOI: 10.5604/01.3001.0014.9532
GICID: 01.3001.0014.9532
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2021; 75 : 474-490

 

Abstrakt

Choroba Alzheimera (AD, Alzheimer’s disease) opisywana jako przewlekłe i nieodwracalne schorzenie neurodegeneracyjne pozostaje najczęstszą przyczyną demencji. Ze względu na obserwowane od dłuższego czasu zjawisko starzenia się populacji, nieuleczalność AD stała się narastającym problem medycyny XXI w. Obecne metody leczenia mają wyłącznie charakter objawowy, zapewniają minimalne, czasowe usprawnienie funkcji poznawczych pacjentów. W pracy przedstawiono najnowsze kierunki poszukiwań skutecznej farmakoterapii zdolnej do zapobieżenia lub zahamowania progresji AD. Ze względu na to, iż nie jest znana dokładna patogeneza choroby Alzheimera główne strategie terapeutyczne opierają się jedynie na hipotezach: kaskady amyloidowej, białka tau, stresu oksydacyjnego, neurozapalenia oraz tych związanych z dysfunkcją układu cholinergicznego, jak również glutaminianergicznego. Większość związków obecnie testowanych w badaniach klinicznych nakierowana jest na patologiczny amyloid β (Aβ), będący narzędziem sprawczym neurodegeneracji, według opisywanej dotychczas najszerzej teorii kaskady amyloidowej. Z toksycznym Aβ próbuje się walczyć za pośrednictwem: immunoterapii (szczepionki, przeciwciała monoklonalne), związków hamujących jego powstanie: inhibitorów/modulatorów γ-sekretazy i inhibitorów β-sekretazy. Immunoterapię próbuje się wykorzystać również do nasilenia klirensu hiperfosforylowanego białka tau, którego obecność jest nieodzowną cechą choroby Alzheimera. Oprócz przedstawicieli immunoterapii, przedmiotem prac badawczych stały się również związki o działaniu przeciwzapalnym, metabolicznym i neuroprotekcyjnym. W fazę badań klinicznych zostały wprowadzone ponadto związki działające objawowo, które wyrównując deficyty cholinergiczne, noradrenergiczne i glutaminianergiczne poprawiają funkcje poznawcze.

Przypisy

  • 1. Aducanumab. https://www.alzforum.org/therapeutics/aducanumab (03.03.2020)
    Google Scholar
  • 2. Alam J., Blackburn K., Patrick D.: Neflamapimod: Clinical phase2b-ready oral small molecule inhibitor of p38α to reverse synapticdysfunction in early Alzheimer’s disease. J. Prev. Alzheimers Dis.,2017; 4: 273–278
    Google Scholar
  • 3. Amirrad F., Bousoik E., Shamloo K., Al-Shiyab H., Nguyen V.H., MontazeriAliabadi H.: Alzheimer’s disease: Dawn of a new era? J. Pharm.Pharm. Sci., 2017; 20: 184–225
    Google Scholar
  • 4. Arndt J.W., Qian F., Smith B.A., Quan C., Kilambi K.P., Bush M.W.,Walz T., Pepinsky R.B., Bussière T., Hamann S., Cameron T.O., WeinrebP.H.: Structural and kinetic basis for the selectivity of aducanumab foraggregated forms of amyloid-β. Sci. Rep., 2018; 8: 6412
    Google Scholar
  • 5. Axon announces positive results from phase II ADAMANT trial forAADvac1 in Alzheimer’s disease. https://www.prnewswire.com/newsreleases/axon-announces-positive-results-from-phase-ii-adamanttrial-for-aadvac1-in-alzheimers-disease-300914509.html (03.03.2020)
    Google Scholar
  • 6. Bachstetter A.D., Xing B., de Almeida L., Dimayuga E.R., WattersonD.M., Van Eldik L.J.: Microglial p38α MAPK is a key regulator of proinflammatorycytokine up-regulation induced by toll-like receptor(TLR) ligands or beta-amyloid (Aβ). J. Neuroinflammation, 2011; 8: 79
    Google Scholar
  • 7. Bakota L., Brandt R.: Tau biology and tau-directed therapies forAlzheimer’s disease. Drugs, 2016; 76: 301–313
    Google Scholar
  • 8. Baranowska U., Wiśniewska R.J.: Receptor nikotynowy α7-nAChi jego znaczenie w funkcjonowaniu pamięci oraz wybranych chorobachośrodkowego układu nerwowego. Postępy Hig. Med. Dośw., 2017;71: 633–648
    Google Scholar
  • 9. Bearer E.L., Wu C.: Herpes simplex virus, Alzheimer’s disease anda possible role for Rab GTPases. Front. Cell Dev. Biol., 2019; 7: 134
    Google Scholar
  • 10. Boese A.C., Hamblin M.H., Lee J.P.: Neural stem cell therapy forneurovascular injury in Alzheimer’s disease. Exp. Neurol., 2020; 324:113112
    Google Scholar
  • 11. Buee L.: Dementia therapy targeting tau. Adv. Exp. Med. Biol.,2019; 1184: 407–416
    Google Scholar
  • 12. Bursavich M.G., Harrison B.A., Blain J.F.: Gamma secretase modulators:New Alzheimer’s drugs on the horizon? J. Med. Chem., 2016;59: 7389–7409
    Google Scholar
  • 13. Caraci F., Leggio G.M., Salomone S., Drago F.: New drugs in psychiatry:Focus on new pharmacological targets. F1000Res., 2017; 6: 397
    Google Scholar
  • 14. Cebers G., Alexander R.C., Haeberlein S.B., Han D., Goldwater R.,Ereshefsky L., Olsson T., Ye N., Rosen L., Russell M., Maltby J., EketjällS., Kugler A.R.: AZD3293: Pharmacokinetic and pharmacodynamiceffects in healthy subjects and patients with Alzheimer’s disease. J.Alzheimers Dis., 2017; 55: 1039–1053
    Google Scholar
  • 15. Crenezumab. https://www.alzforum.org/therapeutics/crenezumab(03.03.2020)
    Google Scholar
  • 16. Cummings J., Lee G., Ritter A., Sabbagh M., Zhong K.: Alzheimer’sdisease drug development pipeline: 2019. Alzheimers Dement., 2019;5: 272–293
    Google Scholar
  • 17. Cummings J.L., Tong G., Ballard C.: Treatment combinations forAlzheimer’s disease: Current and future pharmacotherapy options. J.Alzheimers Dis., 2019; 67: 779–794
    Google Scholar
  • 18. Degterev A., Ofengeim D., Yuan J.: Targeting RIPK1 for the treatmentof human diseases. Proc. Natl. Acad. Sci. USA, 2019; 116: 9714–9722
    Google Scholar
  • 19. DeVos S.L., Miller R.L., Schoch K.M., Holmes B.B., Kebodeaux C.S.,Wegener A.J., Chen G., Shen T., Tran H., Nichols B., Zanardi T.A., KordasiewiczH.B., Swayze E.E., Bennett C.F., Diamond M.I. i wsp.: Taureduction prevents neuronal loss and reverses pathological tau depositionand seeding in mice with tauopathy. Sci. Transl. Med., 2017;9: eaag0481
    Google Scholar
  • 20. Dominy S.S., Lynch C., Ermini F., Benedyk M., Marczyk A., KonradiA., Nguyen M., Haditsch U., Raha D., Griffin C., Holsinger L.J., Arastu-Kapur S., Kaba S., Lee A., Ryder M.I. i wsp.: Porphyromonas gingivalisin Alzheimer’s disease brains: Evidence for disease causation andtreatment with small-molecule inhibitors. Sci. Adv., 2019; 5: eaau3333
    Google Scholar
  • 21. Dong Y., Li X., Cheng J., Hou L.: Drug development for Alzheimer’sdisease: Microglia induced neuroinflammation as a target? Int. J. Mol.Sci., 2019; 20: 558
    Google Scholar
  • 22. Egan M.F., Kost J., Voss T., Mukai Y., Aisen P.S., Cummings J.L., TariotP.N., Vellas B., van Dyck C.H., Boada M., Zhang Y., Li W., Furtek C., MahoneyE., Harper Mozley L. i wsp.: Randomized trial of verubecestat forprodromal Alzheimer’s disease. N. Engl. J. Med., 2019; 380: 1408–1420
    Google Scholar
  • 23. Elayta. https://www.alzforum.org/therapeutics/elayta(03.03.2020)
    Google Scholar
  • 24. Elenbecestat. https://www.alzforum.org/therapeutics/elenbecestat(03.03.2020)
    Google Scholar
  • 25. Farlow M.R., Andreasen N., Riviere M.E., Vostiar I., Vitaliti A.,Sovago J., Caputo A., Winblad B., Graf A.: Long-term treatment withactive Aβ immunotherapy with CAD106 in mild Alzheimer’s disease.Alzheimers Res. Ther., 2015; 7: 23
    Google Scholar
  • 26. Femminella G.D., Frangou E., Love S.B., Busza G., Holmes C., RitchieC., Lawrence R., McFarlane B., Tadros G., Ridha B.H., Bannister C.,Walker Z., Archer H., Coulthard E., Underwood B.R. i wsp.: Evaluatingthe effects of the novel GLP-1 analogue liraglutide in Alzheimer’s disease:Study protocol for a randomised controlled trial (ELAD study).Trials, 2019; 20: 191
    Google Scholar
  • 27. Gantenerumab. https://www.alzforum.org/therapeutics/gantenerumab(03.03.2020)
    Google Scholar
  • 28. Gaweł M., Potulska-Chromik A.: Choroby neurodegeneracyjne:Choroba Alzheimera i Parkinsona. Postępy Nauk Med., 2015; 7: 468–476
    Google Scholar
  • 29. Ge M., Zhang Y., Hao Q., Zhao Y., Dong B.: Effects of mesenchymalstem cells transplantation on cognitive deficits in animal models ofAlzheimer’s disease: A systematic review and meta-analysis. BrainBehav., 2018; 8: e00982
    Google Scholar
  • 30. George T.P.: Nicotinic receptor mechanisms in neuropsychiatricdisorders: Therapeutic implications. Prim. Psychiatry, 2010; 17: 35–41
    Google Scholar
  • 31. Ghosh A.K., Cárdenas E.L., Osswald H.L.: The design, development,and evaluation of BACE1 inhibitors for the treatment of Alzheimer’sdisease. W: Alzheimer’s Disease II. Topics in Medicinal Chemistry, vol24, red.: M. Wolfe. Springer International Publishing, Cham 2016, 27–85
    Google Scholar
  • 32. Godyń J., Jończyk J., Panek D., Malawska B.: Therapeutic strategiesfor Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016;68: 127–138
    Google Scholar
  • 33. Gratuze M., Leyns C.E.G., Holtzman D.M.: New insights into therole of TREM2 in Alzheimer’s disease. Mol. Neurodegener., 2018; 13: 66
    Google Scholar
  • 34. Hampel H., Mesulam M.M., Cuello A.C., Farlow M.R., Giacobini E.,Grossberg G.T., Khachaturian A.S., Vergallo A., Cavedo E., Snyder P.J.,Khachaturian Z.S.: The cholinergic system in the pathophysiologyand treatment of Alzheimer’s disease. Brain, 2018; 141: 1917–1933
    Google Scholar
  • 35. Hull M., Sadowsky C., Arai H., Le Prince Leterme G., Holstein A.,Booth K., Peng Y., Yoshiyama T., Suzuki H., Ketter N., Liu E., Ryan J.M.:Long-term extensions of randomized vaccination trials of ACC-001and QS-21 in mild to moderate Alzheimer’s disease. Curr. AlzheimerRes., 2017; 14: 696–708
    Google Scholar
  • 36. Hung S.Y., Fu W.M.: Drug candidates in clinical trials for Alzheimer’sdisease. J. Biomed. Sci., 2017; 24: 47
    Google Scholar
  • 37. Jadhav S., Avila J., Schöll M., Kovacs G.G., Kövari E., Skrabana R.,Evans L.D., Kontsekova E., Malawska B., de Silva R., Buee L., Zilka N.:A walk through tau therapeutic strategies. Acta Neuropathol. Commun.,2019; 7: 22
    Google Scholar
  • 38. Kowalski K., Mulak A.: Brain-gut-microbiota axis in Alzheimer’sdisease. J. Neurogastroenterol. Motil., 2019; 25: 48–60
    Google Scholar
  • 39. Krstic D., Knuesel I.: Deciphering the mechanism underlying lateonsetAlzheimer disease. Nat. Rev. Neurol., 2013; 9: 25–34
    Google Scholar
  • 40. Lacosta A.M., Pascual-Lucas M., Pesini P., Casabona D., Pérez-GrijalbaV., Marcos-Campos I., Sarasa L., Canudas J., Badi H., Monleón I.,San-José I., Munuera J., Rodríguez-Gómez O., Abdelnour C., LafuenteA. i wsp.: Safety, tolerability and immunogenicity of an active anti-Aβ40 vaccine (ABvac40) in patients with Alzheimer’s disease: A randomised,double-blind, placebo-controlled, phase I trial. AlzheimersRes. Ther., 2018; 10: 12
    Google Scholar
  • 41. Lee J.K., Kim N.J.: Recent advances in the inhibition of p38 MAPKas a potential strategy for the treatment of Alzheimer’s disease. Molecules,2017; 22: 1287–1310
    Google Scholar
  • 42. Lopez Lopez C., Caputo A., Liu F., Riviere M.E., Rouzade-DominguezM.L., Thomas R.G., Langbaum J.B., Lenz R., Reiman E.M., Graf A., TariotP.N.: The Alzheimer’s Prevention Initiative Generation Program:Evaluating CNP520 efficacy in the prevention of Alzheimer’s disease.J. Prev. Alzheimers Dis., 2017; 4: 242–246
    Google Scholar
  • 43. Maia M.A., Sousa E.: BACE-1 and γ-secretase as therapeutic targetsfor Alzheimer’s disease. Pharmaceuticals, 2019; 12: E41
    Google Scholar
  • 44. Marszałek M.: Choroba Alzheimera a produkty degradacji białkaAPP. Formowanie i różnorodność form fibrylujących peptydów –wybrane aspekty. Postępy Hig. Med. Dośw., 2016; 70: 787–796
    Google Scholar
  • 45. Marszałek M.: Cukrzyca typu 2 a choroba Alzheimera – jednaczy dwie choroby? Mechanizmy asocjacji. Postępy Hig. Med. Dośw.,2013; 67: 653–671
    Google Scholar
  • 46. Medina M.: An overview on the clinical development of tau-basedtherapeutics. Int. J. Mol. Sci., 2018; 19: 1160
    Google Scholar
  • 47. Novak P., Schmidt R., Kontsekova E., Kovacech B., Smolek T., KatinaS., Fialova L., Prcina M., Parrak V., Dal-Bianco P., Brunner M., StaffenW., Rainer M., Ondrus M., Ropele S. i wsp.: FUNDAMANT: An interventional72-week phase 1 follow-up study of AADvac1, an active immunotherapyagainst tau protein pathology in Alzheimer’s disease.Alzheimers Res. Ther., 2018; 10: 108
    Google Scholar
  • 48. Okamoto M., Gray J.D., Larson C.S., Kazim S.F., Soya H., McEwenB.S., Pereira A.C.: Riluzole reduces amyloid beta pathology, improvesmemory, and restores gene expression changes in a transgenic mousemodel of early-onset Alzheimer’s disease. Transl. Psychiatry, 2018;8: 153
    Google Scholar
  • 49. Panza F., Lozupone M., Watling M., Imbimbo B.P.: Do BACE inhibitorfailures in Alzheimer patients challenge the amyloid hypothesisof the disease? Expert Rev. Neurother., 2019; 19: 599–602
    Google Scholar
  • 50. Pasinetti G.M., Wang J., Ho L., Zhao W., Dubner L.: Roles of resveratroland other grape-derived polyphenols in Alzheimer’s disease preventionand treatment. Biochim. Biophys. Acta, 2015; 1852: 1202–1208
    Google Scholar
  • 51. Payesko J.: GRF6019 Shows Positive Phase 2 Results in Mild to ModerateAlzheimer Disease. https://www.neurologylive.com/clinicalfocus/grf6019-shows-positive-phase-2-results-in-mild-to-moderatealzheimer-disease (03.03.2020)
    Google Scholar
  • 52. Petrov A.M., Lam M., Mast N., Moon J., Li Y., Maxfield E., PikulevaI.A.: CYP46A1 Activation by efavirenz leads to behavioral improvementwithout significant changes in amyloid plaque load in the brainof 5XFAD mice. Neurotherapeutics, 2019; 16: 710–724
    Google Scholar
  • 53. Safieh M., Korczyn A.D., Michaelson D.M.: ApoE4: An emergingtherapeutic target for Alzheimer’s disease. BMC Med., 2019; 17: 64
    Google Scholar
  • 54. Sanabria-Castro A., Alvarado-Echeverría I., Monge-Bonilla C.:Molecular pathogenesis of Alzheimer’s disease: An update. Ann. Neurosci.,2017; 24: 46–54
    Google Scholar
  • 55. Shaikh S., Rizvi S.M., Shakil S., Riyaz S., Biswas D., Jahan R.: Forxiga(dapagliflozin): Plausible role in the treatment of diabetes-associatedneurological disorders. Biotechnol. Appl. Biochem., 2016; 63: 145–150
    Google Scholar
  • 56. Siopi E., Llufriu-Dabén G., Cho A.H., Vidal-Lletjós S., Plotkine M.,Marchand-Leroux C., Jafarian-Tehrani M.: Etazolate, an α-secretaseactivator, reduces neuroinflammation and offers persistent neuroprotectionfollowing traumatic brain injury in mice. Neuropharmacology,2013; 67: 183–192
    Google Scholar
  • 57. Smith A.: Positive results for UB-311 Alzheimer’s vaccine. http://www.pharmatimes.com/news/positive_results_for_ub-311_alzheimers_vaccine_1275579 (03.03.2020)
    Google Scholar
  • 58. Solanezumab. https://www.alzforum.org/therapeutics/solanezumab(03.03.2020)
    Google Scholar
  • 59. The New Chinese Alzheimer’s Drug (GV-971) Making its Wayto Global Trials: Material Science or Marketing?. https://www.trialsitenews.com/the-new-chinese-alzheimers-drug-gv-971-makingits-way-to-global-trials-material-science-or-marketing/ (25.05.2020)
    Google Scholar
  • 60. TPI 287. https://www.alzforum.org/therapeutics/tpi-287(03.03.2020)
    Google Scholar
  • 61. Traneurocin Phase 2A Trial Results Show Improvements for PeopleWith Mild Cognitive Impairment. https://practicalneurology.com/index.php/news/traneurocin-phase-2a-trial-results-show-improvements-for-people-with-mild-cognitive-impairment (03.03.2020)
    Google Scholar
  • 62. Umibecestat. https://www.alzforum.org/therapeutics/umibecestat(03.03.2020)
    Google Scholar
  • 63. Vellas B., Coley N., Ousset P.J., Berrut G., Dartigues J.F., Dubois B.,Grandjean H., Pasquier F., Piette F., Robert P., Touchon J., Garnier P.,Mathiex-Fortunet H., Andrieu S., GuidAge Study Group: Long-termuse of standardised ginkgo biloba extract for the prevention of Alzheimer’sdisease (GuidAge): A randomised placebo-controlled trial.Lancet Neurol., 2012; 11: 851–859
    Google Scholar
  • 64. Verma S., Kumar A., Tripathi T., Kumar A.: Muscarinic and nicotinicacetylcholine receptor agonists: Current scenario in Alzheimer’sdisease therapy. J. Pharm. Pharmacol., 2018; 70: 985–993
    Google Scholar
  • 65. Wang X., Sun G., Feng T., Zhang J., Huang X., Wang T., Xie Z., ChuX., Yang J., Wang H., Chang S., Gong Y., Ruan L., Zhang G., Yan S. i wsp.:Sodium oligomannate therapeutically remodels gut microbiota andsuppresses gut bacterial amino acids-shaped neuroinflammation toinhibit Alzheimer’s disease progression. Cell Res., 2019; 29: 787–803
    Google Scholar
  • 66. Wisniewski T., Drummond E.: Developing therapeutic vaccinesagainst Alzheimer’s disease. Expert Rev. Vaccines, 2016; 15: 401–415
    Google Scholar
  • 67. Wojsiat J., Zoltowska K.M., Laskowska-Kaszub K., Wojda U.: Oxidant/antioxidant imbalance in Alzheimer’s disease: Therapeutic anddiagnostic prospects. Oxid. Med. Cell. Longev., 2018; 2018: 6435861
    Google Scholar
  • 68. Xicota L., Rodriguez-Morato J., Dierssen M., de la Torre R.: Potentialrole of (-)-epigallocatechin-3-gallate (EGCG) in the secondaryprevention of Alzheimer disease. Curr. Drug Targets, 2017; 18: 174–195
    Google Scholar
  • 69. Zhang C., Griciuc A., Hudry E., Wan Y., Quinti L., Ward J., Forte A.M.,Shen X., Ran C., Elmaleh D.R., Tanzi R.E.: Cromolyn reduces levels ofthe Alzheimer’s disease-associated amyloid β-protein by promotingmicroglial phagocytosis. Sci. Rep., 2018; 8: 1144
    Google Scholar
  • 70. Zhang Y., Li P., Feng J., Wu M.: Dysfunction of NMDA receptors inAlzheimer’s disease. Neurol. Sci., 2016; 37: 1039–1047
    Google Scholar
  • 71. Zhao Y., Zhao B.: Oxidative stress and the pathogenesis of Alzheimer’sdisease. Oxid. Med. Cell. Longev., 2013; 2013: 316523
    Google Scholar

Pełna treść artykułu

Przejdź do treści