Perspektywy zastosowania interleukiny 15 w terapii przeciwnowotworowej

ARTYKUŁ PRZEGLĄDOWY

Perspektywy zastosowania interleukiny 15 w terapii przeciwnowotworowej

Katarzyna Węgierek 1 , Elżbieta Pajtasz-Piasecka 1

1. Laboratorium Doświadczalnej Terapii Przeciwnowotworowej, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu

Opublikowany: 2019-12-31
DOI: 10.5604/01.3001.0013.7194
GICID: 01.3001.0013.7194
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2019; 73 : 850-864

 

Abstrakt

Interleukina 15 (IL-15) odgrywa znaczącą rolę w zachowaniu homeostazy komórek limfoidalnych, obejmującej utrzymanie szerokiego repertuaru komórek naiwnych T, B i NK, eliminacji komórek efektorowych i długotrwałego przeżycia komórek pamięci. Jest niezbędnym czynnikiem sprawczym w generowaniu komórek pamięci T CD8+. Ponadto wybiórczo sprzyja nie tylko przetrwaniu i proliferacji, lecz także funkcji efektorowej swoistych antygenowo cytotoksycznych limfocytów T, nawet w obecności regulatorowych komórek T. Interleukina 15 może zatem modulować zarówno supresję immunologiczną, jak i promować aktywację immunologiczną. Wszystkie uzyskane dane na temat biologii i funkcji IL-15 dostarczają informacji niezbędnych do zaprojektowania sposobów jej zastosowania w walce z nowotworami litymi i rozrostowymi krwi oraz czynią ją obiecującą opcją terapeutyczną pod warunkiem świadomego wykorzystania jej potencjału. W artykule dokonano przeglądu danych dotyczących zależności między biologicznymi właściwościami IL-15 i jej kompleksu IL-15/IL-15Rα a ich potencjałem przeciwnowotworowym oraz oceniono możliwości zastosowania tych cząsteczek w terapii przeciwnowotworowej w świetle ostatnich doniesień.

Przypisy

  • 1. Akdis M., Aab A., Altunbulakli C., Azkur K., Costa R.A., CrameriR., Duan S., Eiwegger T., Eljaszewicz A., Ferstl R., Frei R., Garbani M.,Globinska A., Hess L., Huitema C. i wsp.: Interleukins (from IL-1 toIL-38), interferons, transforming growth factor β, and TNF-α: Receptors,functions, and roles in diseases. J. Allergy Clin. Immunol.,2016; 138: 984–1010
    Google Scholar
  • 2. Ali A.K., Nandagopal N., Lee S.H.: IL-15-PI3K-AKT-mTOR: A criticalpathway in the life journey of natural killer cells. Front. Immunol.,2015; 6: 355
    Google Scholar
  • 3. Alleva D.G., Kaser S.B., Monroy M.A., Fenton M.J., Beller D.I.: IL- 15 functions as a potent autocrine regulator of macrophage proinflammatorycytokine production: evidence for differential receptorsubunit utilization associated with stimulation or inhibition. J. Immunol.,1997; 159: 2941–2951
    Google Scholar
  • 4. Alonso-Arias R., Moro-García M.A., Vidal-Castiñeira J.R., Solano-Jaurrieta J.J., Suárez-García F.M., Coto E., López-Larrea C.: IL-15preferentially enhances functional properties and antigen-specificresponses of CD4+CD28null compared to CD4+CD28+ T cells. AgingCell, 2011; 10: 844–852
    Google Scholar
  • 5. Armitage R.J., Macduff B.M., Eisenman J., Paxton R., GrabsteinK.H.: IL-15 has stimulatory activity for the induction of B cell proliferationand differentiation. J. Immunol., 1995; 154: 483–490
    Google Scholar
  • 6. Badolato R., Ponzi A.N., Millesimo M., Notarangelo L.D., Musso T.:Interleukin-15 (IL-15) induces IL-8 and monocyte chemotactic protein 1 production in human monocytes. Blood, 1997; 90: 2804–2809
    Google Scholar
  • 7. Balkwill F.R., Capasso M., Hagemann T.: The tumor microenvironmentat a glance. J. Cell. Sci., 2012; 125: 5591–5596
    Google Scholar
  • 8. Becker T.C., Wherry E.J., Boone D., Murali-Krishna K., Antia R., MaA., Ahmed R.: Interleukin 15 is required for proliferative renewal ofvirus-specific memory CD8 T cells. J. Exp. Med., 2002; 195: 1541–1548
    Google Scholar
  • 9. Ben Ahmed M., Belhadj Hmida N., Moes N., Buyse S., AbdeladhimM., Louzir H., Cerf-Bensussan N.: IL-15 renders conventional lymphocytesresistant to suppressive functions of regulatory T cellsthrough activation of the phosphatidylinositol 3-kinase pathway. J.Immunol., 2009; 182: 6763–6770
    Google Scholar
  • 10. Bergamaschi C., Bear J., Rosati M., Beach R.K., Alicea C., SowderR., Chertova E., Rosenberg S.A., Felber B.K., Pavlakis G.N.: CirculatingIL-15 exists as heterodimeric complex with soluble IL-15Rα inhuman and mouse serum. Blood, 2012; 120: e1–e8
    Google Scholar
  • 11. Bessard A., Solé V., Bouchaud G., Quéméner A., Jacques Y.: Highantitumor activity of RLI, an interleukin-15 (IL-15)-IL-15 receptor αfusion protein, in metastatic melanoma and colorectal cancer. Mol.Cancer Ther., 2009; 8: 2736–2745
    Google Scholar
  • 12. Boyman O., Létourneau S., Krieg C., Sprent J.: Homeostatic proliferationand survival of naïve and memory T cells. Eur. J. Immunol.,2009; 39: 2088–2094
    Google Scholar
  • 13. Budagian V., Bulanova E., Paus R., Bulfone-Paus S.: IL-15/IL-15receptor biology: a guided tour through an expanding universe.Cytokine Growth Factor Rev., 2006; 17: 259–280
    Google Scholar
  • 14. Castillo E.F., Schluns K.S.: Regulating the immune system viaIL-15 transpresentation. Cytokine, 2012; 59: 479–490 15 Cooley S., He F., Bachanova V., Vercellotti G.M., DeFor T.E., CurtsingerJ.M., Robertson P., Grzywacz B., Conlon K.C., Waldmann T.A.,McKenna D.H., Blazar B.R., Weisdorf D.J., Miller J.S.: First-in-humantrial of rhIL-15 and haploidentical natural killer cell therapy foradvanced acute myeloid leukemia. Blood Adv., 2019; 3: 1970–1980
    Google Scholar
  • 15. expression and the role of this cytokine in NK cell differentiationand host response to intracellular pathogens. Annu. Rev. Immunol.,1999; 17: 19–49
    Google Scholar
  • 16. Coventry B.J.: Therapeutic vaccination immunomodulation:forming the basis of all cancer immunotherapy. Ther. Adv. VaccinesImmunother., 2019; 7: 2515135519862234
    Google Scholar
  • 17. Desbois M., Le Vu P., Coutzac C., Marcheteau E., Béal C., TermeM., Gey A., Morisseau S., Teppaz G., Boselli L., Jacques Y., BéchardD., Tartour E., Cassard L., Chaput N.: IL-15 trans-signaling with thesuperagonist RLI promotes effector/memory CD8+ T cell responsesand enhances antitumor activity of PD-1 antagonists. J. Immunol.,2016; 197: 168–178 18 Di Sabatino A., Calarota S.A., Vidali F., Macdonald T.T., CorazzaG.R.: Role of IL-15 in immune-mediated and infectious diseases. CytokineGrowth Factor Rev., 2011; 22: 19–33
    Google Scholar
  • 18. induces CD25 and a functional high-affinity IL-2 receptor on humancytokine-induced memory-like natural killer cells. Biol. BloodMarrow Transplant., 2014; 20: 463–473
    Google Scholar
  • 19. Fabbi M., Ferrini S.: Dual roles of IL-15 in cancer biology. J. CytokineBiol., 2016; 1: 103
    Google Scholar
  • 20. Fantini M., David J.M., Wong H.C., Annunziata C.M., Arlen P.M.,Tsang K.Y.: An IL-15 superagonist, ALT-803, enhances antibody–dependent cell-mediated cytotoxicity elicited by the monoclonalantibody NEO-201 against human carcinoma cells. Cancer Biother.Radiopharm., 2019; 34: 147–159
    Google Scholar
  • 21. Feau S., Facchinetti V., Granucci F., Citterio S., Jarrossay D., SeresiniS., Protti M.P., Lanzavecchia A., Ricciardi-Castagnoli P.: Dendriticcell-derived IL-2 production is regulated by IL-15 in humans and inmice. Blood, 2005; 105: 697–702
    Google Scholar
  • 22. Fehniger T.A., Caligiuri M.A.: Interleukin 15: biology and relevanceto human disease. Blood, 2001; 97: 14–32
    Google Scholar
  • 23. Furuya H., Chan O.T.M., Pagano I., Zhu C., Kim N., Peres R., HokutanK., Alter S., Rhode P., Rosser C.J.: Effectiveness of two differentdose administration regimens of an IL-15 superagonist complex(ALT-803) in an orthotopic bladder cancer mouse model. J. Transl.Med., 2019; 17: 29
    Google Scholar
  • 24. Gehart H., Kumpf S., Ittner A., Ricci R.: MAPK signalling in cellularmetabolism: stress or wellness? EMBO Rep., 2010; 11: 834–840
    Google Scholar
  • 25. Geissmann F., Manz M.G., Jung S., Sieweke M.H., Merad M., LeyK.: Development of monocytes, macrophages, and dendritic cells.Science, 2010; 327: 656–661
    Google Scholar
  • 26. Girard D., Paquet M.E., Paquin R., Beaulieu A.D.: Differential effectsof interleukin-15 (IL-15) and IL-2 on human neutrophils: modulationof phagocytosis, cytoskeleton rearrangement, gene expression,and apoptosis by IL-15. Blood, 1996; 88: 3176–3184
    Google Scholar
  • 27. Grabstein K.H., Eisenman J., Shanebeck K., Rauch C., SrinivasanS., Fung V., Beers C., Richardson J., Schoenborn M.A., Ahdieh M.:Cloning of a T cell growth factor that interacts with the beta chainof the interleukin-2 receptor. Science, 1994; 264: 965-968
    Google Scholar
  • 28. Hlatky L., Hahnfeldt P.: Beyond the cancer cell: progression-leveldeterminants highlight the multiscale nature of carcinogenesisrisk. Cancer Res., 2014; 74: 659–664
    Google Scholar
  • 29. Hu Q., Ye X., Qu X., Cui D., Zhang L., Xu Z., Wan H., Zhang L., TaoW.: Discovery of a novel IL-15 based protein with improved developabilityand efficacy for cancer immunotherapy. Sci. Rep., 2018; 8: 7675
    Google Scholar
  • 30. Jabri B., Abadie V.: IL-15 functions as a danger signal to regulatetissue-resident T cells and tissue destruction. Nat. Rev. Immunol.,2015; 15: 771–783
    Google Scholar
  • 31. Jakobisiak M., Golab J., Lasek W.: Interleukin 15 as a promisingcandidate for tumor immunotherapy. Cytokine Growth Factor Rev.,2011; 22: 99–108
    Google Scholar
  • 32. Jochems C., Tritsch S.R., Knudson K.M., Gameiro S.R., RumfieldC.S., Pellom S.T., Morillon Y.M., Newman R., Marcus W., Szeto C., RabizadehS., Wong H.C., Soon-Shiong P., Schlom J.: The multi-functionalityof N-809, a novel fusion protein encompassing anti-PD-L1 and the IL- 15 superagonist fusion complex. Oncoimmunology, 2018; 8: e1532764
    Google Scholar
  • 33. Johansson M., Denardo D.G., Coussens L.M.: Polarized immuneresponses differentially regulate cancer development. Immunol.Rev., 2008; 222: 145–154
    Google Scholar
  • 34. Katz M., Amit I., Yarden Y.: Regulation of MAPKs by growth factorsand receptor tyrosine kinases. Biochim. Biophys. Acta, 2007;1773: 1161–1176
    Google Scholar
  • 35. Kennedy M.K., Glaccum M., Brown S.N., Butz E.A., Viney J.L.,Embers M., Matsuki N., Charrier K., Sedger L., Willis C.R., Brasel K.,Morrissey P.J., Stocking K., Schuh J.C., Joyce S. i wsp.: Reversible defectsin natural killer and memory CD8 T cell lineages in interleukin15-deficient mice. J. Exp. Med., 2000; 191: 771–780
    Google Scholar
  • 36. Kicielińska J., Pajtasz-Piasecka E.: Rola IL-10 w modulowaniuodpowiedzi odpornościowej w warunkach prawidłowych oraz w środowiskunowotworu. Postępy Hig. Med. Dośw., 2014; 68: 879–892
    Google Scholar
  • 37. Knudson K.M., Hicks K.C., Alter S., Schlom J., Gameiro S.R.: Mechanismsinvolved in IL-15 superagonist enhancement of anti-PD-L1therapy. J. Immunother. Cancer, 2019; 7: 82
    Google Scholar
  • 38. Kowalsky S.J., Liu Z., Feist M., Berkey S.E., Ma C., RavindranathanR., Dai E., Roy E.J., Guo Z.S., Bartlett D.L.: Superagonist IL-15-armedoncolytic virus elicits potent antitumor immunity and therapy thatare enhanced with PD-1 blockade. Mol. Ther., 2018; 26: 2476–2486
    Google Scholar
  • 39. Lake D., Corrêa S.A., Müller J.: Negative feedback regulation ofthe ERK1/2 MAPK pathway. Cell. Mol. Life Sci., 2016; 73: 4397–4413
    Google Scholar
  • 40. Leong J.W., Chase J.M., Romee R., Schneider S.E., Sullivan R.P.,Cooper M.A., Fehniger T.A.: Preactivation with IL-12, IL-15, and IL-
    Google Scholar
  • 41. Mandal A., Viswanathan C.: Natural killer cells: In health anddisease. Hematol. Oncol. Stem Cell Ther., 2015; 8: 47–55
    Google Scholar
  • 42. Mattei F., Schiavoni G., Belardelli F., Tough D.F.: IL-15 is expressedby dendritic cells in response to type I IFN, double-strandedRNA, or lipopolysaccharide and promotes dendritic cell activation.J. Immunol., 2001; 167: 1179–1187
    Google Scholar
  • 43. McDonald P.P., Russo M.P., Ferrini S., Cassatella M.A.: Interleukin- 15 (IL-15) induces NF-κB activation and IL-8 production in humanneutrophils. Blood, 1998; 92: 4828-4835
    Google Scholar
  • 44. Mellman I.: Dendritic cells: master regulators of the immuneresponse. Cancer Immunol. Res., 2013; 1: 145–149
    Google Scholar
  • 45. Mishra A., Sullivan L., Caligiuri M.A.: Molecular pathways: interleukin- 15 signaling in health and in cancer. Clin. Cancer Res.,2014; 20: 2044–2050
    Google Scholar
  • 46. Mortier E., Quéméner A., Vusio P., Lorenzen I., Boublik Y., GrötzingerJ., Plet A., Jacques Y.: Soluble interleukin-15 receptor α (IL-15Rα)-sushi as a selective and potent agonist of IL-15 action throughIL-15Rβ/γ. Hyperagonist IL-15 IL-15Rα fusion proteins. J. Biol.Chem., 2006; 281: 1612–1619
    Google Scholar
  • 47. Munger W., DeJoy S.Q., Jeyaseelan R.Sr., Torley L.W., GrabsteinK.H., Eisenmann J., Paxton R., Cox T., Wick M.M., Kerwar S.S.: Studiesevaluating the antitumor activity and toxicity of interleukin-15,a new T cell growth factor: comparison with interleukin-2. Cell. Immunol.,1995; 165: 289–293
    Google Scholar
  • 48. Nandagopal N., Ali A.K., Komal A.K., Lee S.H.: The critical role ofIL-15-PI3K-mTOR pathway in natural killer cell effector functions.Front. Immunol., 2014; 5: 187
    Google Scholar
  • 49. Ohteki T., Suzue K., Maki C., Ota T., Koyasu S.: Critical role ofIL-15-IL-15R for antigen-presenting cell functions in the innate immuneresponse. Nat. Immunol., 2001; 2: 1138–1143
    Google Scholar
  • 50. Pahl J., Cerwenka A.: Tricking the balance: NK cells in anti-cancerimmunity. Immunobiology, 2017; 222: 11–20
    Google Scholar
  • 51. Pelletier M., Ratthé C., Girard D.: Mechanisms involved in interleukin-15-induced suppression of human neutrophil apoptosis: roleof the anti-apoptotic Mcl-1 protein and several kinases includingJanus kinase-2, p38 mitogen-activated protein kinase and extracellularsignal-regulated kinases-1/2. FEBS Lett., 2002; 532: 164–170
    Google Scholar
  • 52. Perera P.Y., Lichy J.H., Waldmann T.A., Perera L.P.: The role ofinterleukin-15 in inflammation and immune responses to infection:implications for its therapeutic use. Microbes Infect., 2012;14: 247–261
    Google Scholar
  • 53. Perna S.K., De Angelis B., Pagliara D., Hasan S.T., Zhang L., MahendravadaA., Heslop H.E., Brenner M.K., Rooney C.M., Dotti G.,Savoldo B.: Interleukin 15 provides relief to CTLs from regulatory Tcell-mediated inhibition: implications for adoptive T cell-based therapiesfor lymphoma. Clin. Cancer Res., 2013; 19: 106–117
    Google Scholar
  • 54. Pulliam S.R., Uzhachenko R.V., Adunyah S.E., Shanker A.: Commongamma chain cytokines in combinatorial immune strategiesagainst cancer. Immunol. Lett., 2016; 169: 61–72
    Google Scholar
  • 55. Ratthé C., Girard D.: Interleukin-15 enhances human neutrophilphagocytosis by a Syk-dependent mechanism: importance of the IL-15Rα chain. J. Leukoc. Biol., 2004; 76: 162–168
    Google Scholar
  • 56. Regamey N., Obregon C., Ferrari-Lacraz S., van Leer C., ChansonM., Nicod L.P., Geiser T.: Airway epithelial IL-15 transforms monocytesinto dendritic cells. Am. J. Respir. Cell Mol. Biol., 2007; 37: 75–84
    Google Scholar
  • 57. Robinson T.O., Schluns K.S.: The potential and promise of IL-15in immuno-oncogenic therapies. Immunol. Lett., 2017; 190: 159–168
    Google Scholar
  • 58. Roma-Rodrigues C., Mendes R., Baptista P.V., Fernandes A.R.:Targeting tumor microenvironment for cancer therapy. Int. J. Mol.Sci., 2019; 20: E840
    Google Scholar
  • 59. Romee R., Cooley S., Berrien-Elliott M.M., Westervelt P., VernerisM.R., Wagner J.E., Weisdorf D.J., Blazar B.R., Ustun C., DeFor T.E.,Vivek S., Peck L., DiPersio J.F., Cashen A.F., Kyllo R. i wsp.: First-in-humanphase 1 clinical study of the IL-15 superagonist complex ALT- 803 to treat relapse after transplantation. Blood, 2018; 131: 2515–2527
    Google Scholar
  • 60. Saikh K.U., Kissner T.L., Nystrom S., Ruthel G., Ulrich R.G.: Interleukin- 15 increases vaccine efficacy through a mechanism linked todendritic cell maturation and enhanced antibody titers. Clin. VaccineImmunol., 2008; 15: 131–137
    Google Scholar
  • 61. Santana Carrero R.M., Beceren-Braun F., Rivas S.C., Hegde S.M.,Gangadharan A., Plote D., Pham G., Anthony S.M., Schluns K.S.: IL- 15 is a component of the inflammatory milieu in the tumor microenvironmentpromoting antitumor responses. Proc. Natl. Acad. Sci.USA, 2019; 116: 599–608
    Google Scholar
  • 62. Saw C.L., Wu Q., Kong A.N.: Anti-cancer and potential chemopreventiveactions of ginseng by activating Nrf2 (NFE2L2) anti-oxidativestress/anti-inflammatory pathways. Chin. Med., 2010; 5: 37
    Google Scholar
  • 63. Schluns K.S., Williams K., Ma A., Zheng X.X., Lefrançois L.: Cuttingedge: requirement for IL-15 in the generation of primary andmemory antigen-specific CD8 T cells. J. Immunol., 2002; 168: 4827–4831
    Google Scholar
  • 64. Shi Y., Dincheva-Vogel L., Ayemoba C.E., Fung J.P., BergamaschiC., Pavlakis G.N., Farzaneh F., Gaensler K.M.: IL-15/IL-15Rα/CD80–expressing AML cell vaccines eradicate minimal residual diseasein leukemic mice. Blood Adv., 2018; 2: 3177–3192
    Google Scholar
  • 65. Sim G.C., Radvanyi L.: The IL-2 cytokine family in cancer immunotherapy.Cytokine Growth Factor Rev., 2014; 25: 377–390
    Google Scholar
  • 66. Skov S., Bonyhadi M., Odum N., Ledbetter J.A.: IL-2 and IL-15regulate CD154 expression on activated CD4 T cells. J. Immunol.,2000; 164: 3500–3505
    Google Scholar
  • 67. Szczygieł A., Pajtasz-Piasecka E.: Między biologią a medycyną:perspektywy wykorzystania komórek dendrytycznych w terapiiprzeciwnowotworowej. Postępy Hig. Med. Dośw., 2017; 71: 921–941
    Google Scholar
  • 68. Szydłowski M., Jabłońska E., Juszczyński P.: Rola ścieżki sygnałowejPI3K-AKT w ontogenezie limfocytów B i patogenezie nowotworówB-komórkowych. Część I. Hematologia, 2013; 4: 103–113
    Google Scholar
  • 69. Tang F., Zhao L.T., Jiang Y., Ba de N., Cui L.X., He W.: Activity ofrecombinant human interleukin-15 against tumor recurrence andmetastasis in mice. Cell. Mol. Immunol., 2008; 5: 189–196
    Google Scholar
  • 70. Treffers L.W., Hiemstra I.H., Kuijpers T.W., van den Berg T.K., MatlungH.L.: Neutrophils in cancer. Immunol. Rev., 2016; 273: 312–328
    Google Scholar
  • 71. Van Beek J.J., Martens A.W., Bakdash G., de Vries I.J.: Innate lymphoidcells in tumor immunity. Biomedicines, 2016; 4: E7
    Google Scholar
  • 72. Van den Bergh J.M., Smits E.L., Versteven M., De Reu H., BernemanZ.N., Van Tendeloo V.F., Lion E.: Characterization of interleukin-15-transpresenting dendritic cells for clinical use. J. Immunol.Res., 2017; 2017: 1975902
    Google Scholar
  • 73. Van den Bergh J., Willemen Y., Lion E., Van Acker H., De Reu H.,Anguille S., Goossens H., Berneman Z., Van Tendeloo V., Smits E.:Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineeredhuman dendritic cells boosts antitumoral natural killer cellactivity. Oncotarget, 2015; 6: 44123–44133
    Google Scholar
  • 74. van Leeuwen E.M., Sprent J., Surh C.D.: Generation and maintenanceof memory CD4+ T Cells. Curr. Opin. Immunol., 2009; 21: 167–172
    Google Scholar
  • 75. Waldmann T.A., Tagaya Y.: The multifaceted regulation of interleukin-
    Google Scholar
  • 76. Wang M., Zhao J., Zhang L., Wei F., Lian Y., Wu Y., Gong Z., ZhangS., Zhou J., Cao K., Li X., Xiong W., Li G., Zeng Z., Guo C.: Role of tumormicroenvironment in tumorigenesis. J. Cancer, 2017; 8: 761–773
    Google Scholar
  • 77. Wang W., Jin J., Dai F., Long Z., Liu X., Cai H., Zhou Y., Chen Z., HuangH.: Interleukin-15 suppresses gastric cancer liver metastases byenhancing natural killer cell activity in a murine model. Oncol. Lett.,2018; 16: 4839–4846
    Google Scholar
  • 78. Wong H.C., Jeng E.K., Rhode P.R.: The IL-15-based superagonistALT-803 promotes the antigen-independent conversion of memoryCD8+ T cells into innate-like effector cells with antitumor activity.Oncoimmunology, 2013; 2: e26442
    Google Scholar
  • 79. Wu T.S., Lee J.M., Lai Y.G., Hsu J.C., Tsai C.Y., Lee Y.H., Liao N.S.:Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15receptor α-chain. J. Immunol., 2002; 168: 705–712
    Google Scholar
  • 80. Wu Y., Tian Z., Wei H.: Developmental and functional controlof natural killer cells by cytokines. Front. Immunol., 2017; 8: 930
    Google Scholar
  • 81. Xiao R., Mansour A.G., Huang W., Chrislip L.A., Wilkins R.K.,Queen N.J., Youssef Y., Mao H.C., Caligiuri M.A., Cao L.: Adipocytes:A novel target for IL–15/IL-15Rα cancer gene therapy. Mol. Ther.,2019; 27: 922–932
    Google Scholar
  • 82. Zhang X., Sun S., Hwang I., Tough D.F., Sprent J.: Potent andselective stimulation of memory-phenotype CD8+ T cells in vivo byIL-15. Immunity, 1998; 8: 591–599
    Google Scholar
  • 83. Zhao M., Luo M., Xie Y., Jiang H., Cagliero C., Li N., Ye H.,Wu M., Hao S., Sun T., Yang H., Zhang M., Lin T., Lu H., Zhu J.:Development of a recombinant human IL-15·sIL-15Rα/Fc superagonistwith improved half-life and its antitumor activity aloneor in combination with PD-1 blockade in mouse model. Biomed.Pharmacother., 2019; 112: 108677
    Google Scholar
  • 84. Zhu X., Marcus W.D., Xu W., Lee H.I., Han K., Egan J.O., YovandichJ.L., Rhode P.R., Wong H.C.: Novel human interleukin-15 agonists. J.Immunol., 2009; 183: 3598–3607
    Google Scholar

Pełna treść artykułu

Skip to content