Potencjalne kliniczne zastosowanie cząsteczek miRNA w diagnostyce raka prostaty

ARTYKUŁ PRZEGLĄDOWY

Potencjalne kliniczne zastosowanie cząsteczek miRNA w diagnostyce raka prostaty

Paweł Porzycki 1 

1. Oddział Urologii Szpitala Miejskiego, Rzeszów

Opublikowany: 2021-06-29
DOI: 10.5604/01.3001.0015.0030
GICID: 01.3001.0015.0030
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2021; 75 : 491-501

 

Abstrakt

Rak gruczołu krokowego (PCa) jest najczęstszym rodzajem nowotworu wśród mężczyzn w Europie i dotyczy to niemal całego świata. Zalecenia dotyczące badań przesiewowych oraz rozpoznania opierają się na pomiarach antygenu swoistego prostaty (PSA) i badaniu gruczołu krokowego palcem przez odbytnicę (DRE). Obie metody diagnostyczne najczęściej wskazują na konieczność wykonania biopsji prostaty. Ograniczona specyfika testu PSA powoduje jednak potrzebę opracowania nowych i lepszych narzędzi diagnostycznych. W ciągu ostatnich kilku lat, nowe podejście diagnostyczne, zapewniają biomarkery molekularne, które jako alternatywa PSA, zostały wprowadzone do użytku klinicznego. Nowoczesne biomarkery umożliwiają wykorzystywanie ich nie tylko jako nieinwazyjne narzędzia diagnostyczne, ale także zapewniają śledzenie zmian na każdym etapie choroby oraz ocenę agresywności guza i monitorowanie procesu terapeutycznego. Najbardziej obiecującą grupą są markery molekularne, wśród których dużą nadzieję wiąże się z wykorzystaniem pozakomórkowych cząstek mikroRNA (miRNA, miR). miRNA tworzą klasę małych o długości około 22 nukleotydów, niekodujących cząsteczek RNA, które biorą udział w potranskrypcyjnej regulacji ekspresji licznych genów. W artykule przedstawiono aktualną wiedzę dotyczącą roli miRNA w PCa, w tym dane dotyczące szlaku sygnałowego receptora androgenowego (AR signaling), cyklu komórkowego, procesu przejścia nabłonkowo-mezenchymalnego (EMT), rakowych komórek macierzystych (CSC), a nawet rolę miRNA jako narzędzia terapeutycznego PCa. Znalezienie lepszych biomarkerów PCa, na bazie miRNA, zastępujących obecny pomiar PSA, jest bardzo potrzebne w nowoczesnej praktyce onkologicznej.

Przypisy

  • 1. Aghdam S.G., Ebrazeh M., Hemmatzadeh M., Seyfizadeh N., ShabgahA.G., Azizi G., Ebrahimi N., Babaie F., Mohammadi H.: The role ofmicroRNAs in prostate cancer migration, invasion and metastasis. J.Cell. Physiol., 2019; 234: 9927–9942
    Google Scholar
  • 2. Alford A.V., Brito J.M., Yadav K.K., Yadav S.S., Tewari A.K., RenzulliJ.: The use of biomarkers in prostate cancer screening and treatment.Rev. Urol., 2017; 19: 221–234
    Google Scholar
  • 3. Bayraktar R., Van Roosbroeck K., Calin G.A.: Cell-to-cell communication:MicroRNAs as hormones. Mol. Oncol., 2017; 11: 1673–1686
    Google Scholar
  • 4. Boerrigter E., Groen L.N., Van Erp N.P., Verhaegh G.W., SchalkenJ.A.: Clinical utility of emerging biomarkers in prostate cancer liquidbiopsies. Expert Rev. Mol. Diagn., 2020; 20: 219–230
    Google Scholar
  • 5. Bonci D., Coppola V., Musumeci M., Addario A., Giuffrida R., MemeoL., D’Urso L., Pagliuca A., Biffoni M., Labbaye C., Bartucci M., Muto G.,Peschle C., De Maria R.: The miR-15a-miR-16-1 cluster controls prostatecancer by targeting multiple oncogenic activities. Nat. Med.,2008; 14: 1271–1277
    Google Scholar
  • 6. Bonci D., Coppola V., Patrizii M., Addario A., Cannistraci A., FrancescangeliF., Pecci R., Muto G., Collura D., Bedini R., Zeuner A., ValtieriM., Sentinelli S., Benassi M.S., Gallucci M. i wsp.: A microRNA code forprostate cancer metastasis. Oncogene, 2016; 35: 1180–1192
    Google Scholar
  • 7. Bucay N., Bhagirath D., Sekhon K., Yang T., Fukuhara S., MajidS., Shahryari V., Tabatabai Z., Greene K.L., Hashimoto Y., Shiina M.,Yamamura S., Tanaka Y., Deng G., Dahiya R., Saini S.: A novel micro-RNA regulator of prostate cancer epithelial-mesenchymal transition.Cell Death Differ., 2017; 24: 1263–1274
    Google Scholar
  • 8. Chen D.Q., Yu C., Zhang X.F., Liu Z.F., Wang R., Jiang M., Chen H.,Yan F., Tao M., Chen L.B., Zhu H., Feng J.F.: HDAC3-mediated silencingof miR-451 decreases chemosensitivity of patients with metastaticcastration-resistant prostate cancer by targeting NEDD9. Ther. Adv.Med. Oncol., 2018; 10: 1758835918783132
    Google Scholar
  • 9. Chen L., Cao H., Feng Y.: MiR-199a suppresses prostate cancer paclitaxelresistance by targeting YES1. World J. Urol., 2018; 36: 357–365
    Google Scholar
  • 10. Cochetti G., Rossi de Vermandois J.A., Maulà V., Giulietti M., CecatiM., Del Zingaro M., Cagnani R., Suvieri C., Paladini A., Mearini E.: Roleof miRNAs in prostate cancer: Do we really know everything? Urol.Oncol., 2020; 38: 623–635
    Google Scholar
  • 11. Colden M., Dar A.A., Saini S., Dahiya P.V., Shahryari V., YamamuraS., Tanaka Y., Stein G., Dahiya R., Majid S.: MicroRNA-466 inhibitstumor growth and bone metastasis in prostate cancer by directregulation of osteogenic transcription factor RUNX2. Cell Death Dis.,2018; 8: e2572
    Google Scholar
  • 12. Dong Q., Meng P., Wang T., Qin W., Qin W., Wang F., Yuan J., ChenZ., Yang A., Wang H.: MicroRNA let-7a inhibits proliferation of humanprostate cancer cells in vitro and in vivo by targeting E2F2 and CCND2.PLoS One, 2010; 5: e10147
    Google Scholar
  • 13. Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M.,Piñeros M., Znaor A., Bray F.: Estimating the global cancer incidenceand mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer.,2019; 144: 1941–1953
    Google Scholar
  • 14. Filella X., Foj L.: miRNAs as novel biomarkers in the managementof prostate cancer. Clin. Chem. Lab. Med., 2017; 55: 715–736
    Google Scholar
  • 15. Fu X., Meng Z., Liang W., Tian Y., Wang X., Han W., Lou G., WangX., Lou F., Yen Y., Yu H., Jove R., Huang W.: miR-26 enhances miRNAbiogenesis by targeting Lin28B and Zcchc11 to suppress tumor growthand metastasis. Oncogene, 2014; 33: 4296–4306
    Google Scholar
  • 16. Galardi S., Mercatelli N., Giorda E., Massalini S., Frajese G.V., CiafrèS.A., Farace M.G.: miR-221 and miR-222 expression affects the proliferationpotential of human prostate carcinoma cell lines by targetingp27Kip1. J. Biol. Chem., 2007; 282: 23716–23724
    Google Scholar
  • 17. Goto Y., Kojima S., Nishikawa R., Enokida H., Chiyomaru T., KinoshitaT., Nakagawa M., Naya Y., Ichikawa T., Seki N.: The microRNA-23b/27b/24-1 cluster is a disease progression marker and tumor suppressorin prostate cancer. Oncotarget, 2014; 5: 7748–7759
    Google Scholar
  • 18. Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., FarshidG., Vadas M.A., Khew-Goodall Y., Goodall G.J.: The miR–200 family andmiR-205 regulate epithelial to mesenchymal transition by targetingZEB1 and SIP1. Nat. Cell Biol., 2008; 10: 593–601
    Google Scholar
  • 19. Gu H., Liu M., Ding C., Wang X., Wang R., Wu X., Fan R.: HypoxiaresponsivemiR-124 and miR-144 reduce hypoxia-induced autophagyand enhance radiosensitivity of prostate cancer cells via suppressingPIM1. Cancer Med., 2016; 5: 1174-1182
    Google Scholar
  • 20. Hao P., Kang B., Yao G., Hao W., Ma F.: MicroRNA-211 suppressesprostate cancer proliferation by targeting SPARC. Oncol. Lett., 2018;15: 4323–4329
    Google Scholar
  • 21. Hsieh I.S., Chang K.C., Tsai Y.T., Ke J.Y., Lu P.J., Lee K.H., Yeh S.D.,Hong T.M., Chen Y.L.: MicroRNA-320 suppresses the stem cell-likecharacteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis, 2013; 34: 530–538
    Google Scholar
  • 22. Hu B., Jin X., Wang J.: MicroRNA-212 targets mitogen-activatedprotein kinase 1 to inhibit proliferation and invasion of prostate cancercells. Oncol. Res., 2018; 26: 1093–1102
    Google Scholar
  • 23. Kojima S., Enokida H., Yoshino H., Itesako T., Chiyomaru T., KinoshitaT., Fuse M., Nishikawa R., Goto Y., Naya Y., Nakagawa M., SekiN.: The tumor-suppressive microRNA-143/145 cluster inhibits cellmigration and invasion by targeting GOLM1 in prostate cancer. J.Hum. Genet., 2014; 59: 78–87
    Google Scholar
  • 24. Lin H.M., Nikolic I., Yang J., Castillo L., Deng N., Chan C.L., YeungN.K., Dodson E., Elsworth B., Spielman C., Lee B.Y., Boyer Z., SimpsonK.L., Daly R.J., Horvath L.G., Swarbrick A.: MicroRNAs as potentialtherapeutics to enhance chemosensitivity in advanced prostate cancer.Sci. Rep., 2018; 8: 7820
    Google Scholar
  • 25. Lin P.C., Chiu Y.L., Banerjee S., Park K., Mosquera J.M., GiannopoulouE., Alves P., Tewari A.K., Gerstein M.B., Beltran H., Melnick A.M., ElementoO., Demichelis F., Rubin M.A.: Epigenetic repression of miR-31disrupts androgen receptor homeostasis and contributes to prostatecancer progression. Cancer Res., 2013; 73: 1232–1244
    Google Scholar
  • 26. Liu C., Kelnar K., Liu B., Chen X., Calhoun-Davis T., Li H., PatrawalaL., Yan H., Jeter C., Honorio S., Wiggins J.F., Bader A.G., Fagin R., BrownD., Tang D.G.: The microRNA miR-34a inhibits prostate cancer stemcells and metastasis by directly repressing CD44. Nat. Med., 2011;17: 211–215
    Google Scholar
  • 27. Liu C., Liu R, Zhang D., Deng Q., Liu B., Chao H.P., Rycaj K., TakataY., Lin K., Lu Y., Zhong Y., Krolewski J., Shen J., Tang D.G.: MicroRNA-141suppresses prostate cancer stem cells and metastasis by targeting acohort of pro-metastasis genes. Nat. Commun., 2017; 8: 14270
    Google Scholar
  • 28. Liu R.S., Olkhow-Mitsel E., Jeyapala R., Zhao F., Commisso K., KlotzL., Loblaw A., Liu S.K., Vesprini D., Flesher N.E., Bapat B.: Assessmentof serum microRNA biomarkers to predict reclassification of prostatecancer in patients on active surveillance. J. Urol., 2018; 199: 1475–1481
    Google Scholar
  • 29. Liu Y.N., Yin J.J., Abou-Kheir W., Hynes P.G., Casey O.M., Fang L., YiM., Stephens R.M., Seng V., Sheppard-Tillman H., Martin P., Kelly K.:Mir-1 and miR-200 inhibit EMT via slug-dependent and tumorigenesisvia slug-independent mechanisms. Oncogene, 2013; 32: 296–306
    Google Scholar
  • 30. Loeb S., Catalona W.J.: The prostate health index: A new test forthe detection of prostate cancer. Ther. Adv. Urol., 2014; 6: 74–77
    Google Scholar
  • 31. Lynch S.M., McKenna M.M., Walsh C.P., McKenna D.J.: miR-24regulates CDKN1B/p27 expression in prostate cancer. Prostate, 2016;76: 637–648
    Google Scholar
  • 32. Majid S., Dar A.A., Saini S., Shahryari V., Arora S., Zaman M.S.,Chang I., Yamamura S., Tanaka Y., Chiyomaru T., Deng G., Dahiya R.:miRNA-34b inhibits prostate cancer through demethylation, activechromatin modifications, and AKT pathways. Clin. Cancer Res., 2013;19: 73–84
    Google Scholar
  • 33. Massillo C., Dalton G.N., Farré P.L., De Luca P., De Siervi A.: Implicationsof microRNA dysregulation in the development of prostatecancer. Reproduction, 2017; 154: R81–R97
    Google Scholar
  • 34. Mihelich B.L., Maranville J.C., Nolley R., Peehl D.M., Nonn L.: Elevatedserum microRNA levels associate with absence of high-gradeprostate cancer in a retrospective cohort. PLoS One, 2015; 10: e0124245
    Google Scholar
  • 35. Miller K.D., Nogueira L., Mariotto A.B., Rowland J.H., Yabroff K.R.,Alfano C.A., Jemal A., Kramer J.L., Siegel R.L.: Cancer treatment andsurvivorship statistics, 2019. CA Cancer J. Clin., 2019; 69: 363–385
    Google Scholar
  • 36. Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosowa-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., AllenA., Lin D.W., Urban N., Drescher C.W., Knudsen B.S., Stirewalt D.L. iwsp.: Circulating microRNAs as stable blood-based markers for cancerdetection. Proc. Natl. Acad. Sci. USA, 2008; 105: 10513–10518
    Google Scholar
  • 37. Ortiz-Quintero B.: Cell-free microRNAs in blood and other bodyfluids, as cancer biomarkers. Cell Prolif., 2016; 49: 281–303
    Google Scholar
  • 38. Porkka K.P., Pfeiffer M.J., Waltering K.K, Vessella R.L., TammelaT.L., Visakorpi T.: MicroRNA expression profiling in prostate cancer.Cancer Res., 2007; 67: 6130–6135
    Google Scholar
  • 39. Porzycki P., Ciszkowicz E., Semik M., Tyrka M.: Combination ofthree miRNA (miR-141, miR-21, and miR-375) as potential diagnostictool for prostate cancer recognition. Int. Urol. Nephrol., 2018; 50:1619–1626
    Google Scholar
  • 40. Rajendiran S., Parwani A.V., Hare R.J., Dasgupta S., Roby R.K.,Vishwanatha J.K.: MicroRNA–940 suppresses prostate cancer migrationand invasion by regulating MEIN1. Mol. Cancer, 2014; 13: 250
    Google Scholar
  • 41. Rodríguez M., Bajo-Santos C., Hessvik N.P, Lorenz S., Fromm B.,Berge V., Sandvig K., Linȇ A., Llorente A.: Identification of non-invasivemiRNAs biomarkers for prostate cancer by deep sequencing analysisof urinary exosomes. Mol. Cancer., 2017; 16: 156
    Google Scholar
  • 42. Ru P., Steele R., Newhall P., Phillips N.J., Toth K., Ray R.B.: miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol. Cancer Ther., 2012; 11:1166–1173
    Google Scholar
  • 43. Selth L.A., Das R., Townley S.L., Coutinho I., Hanson A.R., CenteneraM.M., Stylianou N., Sweeney K., Soekmadji C., Jovanovic L., NelsonC.C., Zoubeidi A., Butler L.M., Goodall G.J., Hollier B.G., Gregory P.A.,Tilley W.D.: A ZEB1-miR-375-YAP1 pathway regulates epithelial plasticityin prostate cancer. Oncogene, 2017; 36: 24–34
    Google Scholar
  • 44. Shi X.B., Xue L., Ma A.H., Tepper C.G., Gandour-Edwards R., KungH.J., de Vere-White R.W.: Tumor suppressive miR-124 targets androgenreceptor and inhibits proliferation of prostate cancer cells. Oncogene,2013; 32: 4130–4138
    Google Scholar
  • 45. Shi X.H., Li X., Zhang H., He R.Z., Zhao Y., Zhou M., Pan S.T., ZhaoC.L., Feng Y.C., Wang M., Guo X.J., Qin R.Y.: A five microRNA signaturefor survival prognosis in pancreatic adenocarcinoma based on TCGAdata. Sci. Rep., 2018; 8: 7638
    Google Scholar
  • 46. Stuopelyte K., Daniunaite K., Bakavicius A., Lazutka J.R., JankeviciusF., Jarmalaite S.: The utility of urine-circulating miRNAs fordetection of prostate cancer. Br. J. Cancer, 2016; 115: 707–715
    Google Scholar
  • 47. Sun Q., Weng D., Li K., Li S., Bai X., Fang C., Luo D., Wu P., Chen G.,Wei J.: MicroRNA-139-5P inhibits human prostate cancer cell proliferationby targeting Notch1. Oncol. Lett., 2018; 16: 793–800
    Google Scholar
  • 48. Tinay I., Tan M., Gui B., Werner L., Kibel A.S., Jia L.: Functionalroles and potential clinical application of miRNA-345-5p in prostatecancer. Prostate, 2018; 78: 927–937
    Google Scholar
  • 49. Tokudome S., Ando R., Koda Y.: Discoveries and application ofprostate specific antigen, and some proposals to optimize prostatecancer screening. Cancer Manag. Res., 2016; 8: 45–47
    Google Scholar
  • 50. Tomlins S.A., Day J.R., Lonigro R.J., Hovelson D.H., Siddiqui J.,Kunju L.P., Dunn R.L., Meyer S., Hodge P., Groskopf J., Wei J.T., ChinnaiyanA.M.: Urine TMPRSS2:ERG plus PCA3 for individualized prostatecancer risk assessment. Eur. Urol., 2016; 70: 45–53
    Google Scholar
  • 51. Van Neste L., Hendriks R.J., Dijkstra S., Trooskens G., Cornel E.B.,Jannink S.A., de Jong H., Hessels D., Smit F.P., Melchers W.J., Leyten G.H.,de Reijke T.M., Vergunst H., Kil P., Knipscheer B.C. i wsp.: Detectionof high-grade prostate cancer using a urinary molecular biomarkerbasedrisk score. Eur. Urol., 2016; 70: 740–748
    Google Scholar
  • 52. Wang M., Yu W., Gao J., Ma W., Frentsch M., Thiel A., Liu M., RahmanN., Qin Z., Li X.: Micro-RNA-487a-3p functions as a new tumorsuppressor in prostate cancer by targeting CCND1. J. Cell Physiol.,2020; 235: 1588–1600
    Google Scholar
  • 53. Wang W., Liu J., Wu Q.: MiR-205 suppresses autophagy and enhancesradiosensitivity of prostate cancer cells by targeting TP53INP1.Eur. Rev. Med. Pharmacol. Sci., 2016; 20: 92–100
    Google Scholar
  • 54. Wei J.T., Feng Z., Partin A.W., Brown E., Thompson I., Sokoll L.,Chan D.W., Lotan Y., Kibel A.S., Busby J.E., Bidair M., Lin D.W., TanejaS.S., Viterbo R., Joon A.Y. i wsp.: Can urinary PCA3 supplement PSAin the early detection of prostate cancer? J. Clin. Oncol., 2014; 32:4066–4073
    Google Scholar
  • 55. Williams L.V., Veliceasa D., Vinokour E., Volpert O.V.: miR-200binhibits prostate cancer EMT, growth and metastasis. PLoS One, 2013;8: e83991
    Google Scholar
  • 56. Xu L., Zhong J., Guo B., Zhu Q., Liang H., Wen N., Yun W., ZhangL.: miR-96 promotes the growth of prostate carcinoma cells by suppressingMTSS1. Tumour Biol., 2016; 37: 12023–12032
    Google Scholar
  • 57. Yang Y., Guo J.X., Shao Z.Q.: miR-21 targets and inhibits tumorsuppressor gene PTEN to promote prostate cancer cell proliferationand invasion: An experimental study. Asian Pac. J. Trop. Med., 2017;10: 87–91
    Google Scholar
  • 58. Yao J., Xu C., Fang Z., Li Y., Liu H., Wang Y., Xu C., Sun Y.: Androgenreceptor regulated microRNA miR-182-5p promotes prostate cancerprogression by targeting the ARRDC3/ITGB4 pathway. Biochem. Biophys.Res. Commun., 2016; 474: 213–219
    Google Scholar
  • 59. Zhang S., Cai J., Xie W., Luo H., Yang F.: miR-202 suppresses prostatecancer growth and metastasis by targeting PIK3CA. Exp. Ther.Med., 2018; 16: 1499–1504
    Google Scholar
  • 60. Zhou Y.J., Yang H.Q., Xia W., Cui L., Xu R.F., Lu H., Xue Z., ZhangB., Tian Z.N., Cao Y.J., Xing Z.Y., Yin S., He X.Z.: Down-regulation ofmiR-605 promotes the proliferation and invasion of prostate cancercells by up-regulating EN2. Life Sci., 2017; 190: 7–14
    Google Scholar
  • 61. Zhu Y., Shao S., Pan H., Cheng Z., Rui X.: MicroRNA-136 inhibitsprostate cancer cell proliferation and invasion by directly targetingmitogen-activated protein kinase 4. Mol. Med. Rep., 2018; 17:4803–4810
    Google Scholar

Pełna treść artykułu

Przejdź do treści