Rola mikrobioty jelitowej w patogenezie chorób neuropsychiatrycznych i neurodegeneracyjnych

ARTYKUŁ PRZEGLĄDOWY

Rola mikrobioty jelitowej w patogenezie chorób neuropsychiatrycznych i neurodegeneracyjnych

Aleksandra Szewczyk 1 , Apolonia Witecka 1 , Anna Kiersztan 1

1. Zakład Regulacji Metabolizmu, Instytut Biochemii, Wydział Biologii, Uniwersytet Warszawski, Warszawa

Opublikowany: 2019-12-31
DOI: 10.5604/01.3001.0013.7326
GICID: 01.3001.0013.7326
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2019; 73 : 865-886

 

Abstrakt

Według obecnych ustaleń liczba mikroorganizmów bytujących w/na naszym ciele nieco przekracza liczbę naszych własnych komórek, a ich głównym miejscem występowania jest jelito grube. Nowe metody badania mikroorganizmów jelitowych (mikrobioty jelitowej) umożliwiają coraz lepsze poznanie ich funkcji metabolicznych, ochronnych oraz strukturalnych jak również złożonych interakcji z organizmem gospodarza. Rozwój mikrobioty jelitowej jest dynamiczny, a jej skład może ulegać zmianom w czasie naszego życia. Na skład mikrobioty może wpływać wiele czynników, m.in.: dieta, stres, wiek, czynniki genetyczne czy antybiotykoterapia. Komunikacja na szlaku mikrobiota-jelita-mózg jest dwukierunkowa i może zachodzić za pośrednictwem dróg: neuronalnych, immunologicznych oraz humoralnych. W artykule skupiono się na elementach osi jelito-mózg umożliwiających kontakt mikrobioty z ośrodkowym układem nerwowym, takich jak: nerw błędny, oś podwzgórze-przysadka-nadnercza (HPA), cytokiny, neuroprzekaźniki, hormony oraz peptydy jelitowe. Przedstawiono mechanizmy za pośrednictwem których mikrobiota wpływa na funkcjonowanie mózgu i które mają wpływ na nasze zachowanie, nastrój oraz procesy poznawcze. Omówiono ponadto rolę zaburzeń w składzie mikrobioty w patogenezie i nasilaniu objawów chorób ośrodkowego układu nerwowego, takich jak: depresja, spektrum zaburzeń autystycznych, schizofrenia, stwardnienie rozsiane, choroby Parkinsona i Alzheimera. Przedstawiono także wyniki badań z zastosowaniem probiotyków, jako potencjalnych środków terapeutycznych w schorzeniach przewodu pokarmowego, a także znajdujących zastosowanie w łagodzeniu objawów wymienionych chorób ośrodkowego układu nerwowego.

Przypisy

  • 1. Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., VersalovicJ.: The placenta harbors a unique microbiome. Sci. Transl.Med., 2014; 6: 237ra65
    Google Scholar
  • 2. Aarts E., Ederveen T.H., Naaijen J., Zwiers M.P., Boekhorst J., TimmermanH.M., Smeekens S.P., Netea M.G., Buitelaar J.K., Franke B.,van Hijum S.A., Arias Vasquez A.: Gut microbiome in ADHD and itsrelation to neural reward anticipation. PLoS One 2017; 12: e0183509
    Google Scholar
  • 3. Agahi A., Hamidi G.A., Daneshvar R., Hamdieh M., Soheili M.,Alinaghipour A., Esmaeili Taba S.M., Salami M.: Does severity of Alzheimer’sdisease contribute to its responsiveness to modifying gutmicrobiota? A double blind clinical trial. Front. Neurol., 2018; 9: 662
    Google Scholar
  • 4. Akbari E., Asemi Z., Daneshvar Kakhaki R., Bahmani F., KouchakiE., Tamtaji O.R., Hamidi G.A., Salami M.: Effect of probiotic supplementationon cognitive function and metabolic status in Alzheimer’sdisease: A randomized, double-blind and controlled trial.Front. Aging Neurosci., 2016; 8: 256
    Google Scholar
  • 5. Anglin R., Surette M., Moayyedi P., Bercik P.: Lost in translation: Thegut microbiota in psychiatric illness. Can. J. Psychiatry, 2015; 60: 460–463
    Google Scholar
  • 6. Azad M.B., Konya T., Maughan H., Guttman D.S., Field C.J., ChariR.S., Sears M.R., Becker A.B., Scott J.A., Kozyrskyj A.L., Child Study Investigators:Gut microbiota of healthy Canadian infants: profiles bymode of delivery and infant diet at 4 months. CMAJ, 2013; 185: 385–394
    Google Scholar
  • 7. Bharwani A., Mian M.F., Foster J.A., Surette M.G., BienenstockJ., Forsythe P.: Structural & functional consequences of chronicpsychosocial stress on the microbiome & host. Psychoneuroendocrinology2016; 63: 217–227
    Google Scholar
  • 8. Bochenek A., Reicher M.: Anatomia człowieka. WydawnictwoLekarskie PZWL, Warszawa 1989
    Google Scholar
  • 9. Bolte E.R.: Autism and Clostridium tetani. Med. Hypotheses.1998; 51: 133–144
    Google Scholar
  • 10. Bonaz B., Bazin T., Pellissier S.: The vagus nerve at the interfaceof the microbiota-gut-brain axis. Front. Neurosci., 2018; 12: 49
    Google Scholar
  • 11. Braak H., de Vos R.A., Bohl J., Del Tredici K.: Gastricα-synuclein immunoreactive inclusions in Meissner’s and Auerbach’splexuses in cases staged for Parkinson’s disease-relatedbrain pathology. Neurosci. Lett., 2006; 396: 67–72
    Google Scholar
  • 12. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., SavignacH.M., Dinan T.G., Bienenstock J., Cryan J.F.: Ingestion of Lactobacillusstrain regulates emotional behavior and central GABAreceptor expression in a mouse via the vagus nerve. Proc. Natl.Acad. Sci. USA, 2011; 108: 16050–16055
    Google Scholar
  • 13. Calvani R., Picca A., Lo Monaco M.R., Landi F., Bernabei R.,Marzetti, E.: Of microbes and minds: A narrative review on thesecond brain aging. Front. Med., 2018; 5: 53
    Google Scholar
  • 14. Carabotti M., Scirocco A., Maselli M.A., Severi C.: The gutbrainaxis: interactions between enteric microbiota, central andenteric nervous systems. Ann. Gastroenterol., 2015; 28: 203–209
    Google Scholar
  • 15. Cattaneo A., Cattane N., Galluzzi S., Provasi S., Lopizzo N., FestariC., Ferrari C., Guerra U.P., Paghera B., Muscio C., Bianchetti A.,Volta G.D., Turla M., Cotelli M.S., Gennuso M. i wsp.: Associationof brain amyloidosis with pro-inflammatory gut bacterial taxaand peripheral inflammation markers in cognitively impairedelderly. Neurobiol. Aging, 2017; 49: 60–68
    Google Scholar
  • 16. Conly J.M., Stein K.: The production of menaquinones (vitaminK2) by intestinal bacteria and their role in maintaining coagulationhomeostasis. Prog. Food Nutr. Sci.,1992; 16: 307–343
    Google Scholar
  • 17. Crowley T., Cryan J.F., Downer E.J., O’Leary O.F.: Inhibiting neuroinflammation:The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav. Immun., 2016; 54: 260–277
    Google Scholar
  • 18. Cryan J.F., Dinan T.G.: Mind-altering microorganisms: the impactof the gut microbiota on brain and behaviour. Nat. Rev. Neurosci.,2012; 13: 701–712
    Google Scholar
  • 19. de J R De-Paula V., Forlenza A.S., Forlenza O.V.: Relevance of gutmicrobiota in cognition, behaviour and Alzheimer’s disease. Pharmacol.Res., 2018; 136: 29–34
    Google Scholar
  • 20. Desbonnet L., Garrett L., Clarke G., Kiely B., Cryan J.F., Dinan T.G.:Effects of the probiotic Bifidobacterium infantis in the maternalseparation model of depression. Neuroscience 2010; 170: 1179–1188
    Google Scholar
  • 21. Dinan T.G., Cryan J.F.: Melancholic microbes: a link between gut microbiotaand depression? Neurogastroenterol. Motil., 2013; 25: 713–719
    Google Scholar
  • 22. Ding H.T., Taur Y., Walkup J.T.: Gut microbiota and autism: Keyconcepts and findings. J. Autism Dev. Disord., 2017; 47: 480–489
    Google Scholar
  • 23. Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M.,Hidalgo G., Fierer N., Knight R.: Delivery mode shapes the acquisitionand structure of the initial microbiota across multiple body habitatsin newborns. Proc. Natl. Acad. Sci. USA, 2010; 107: 11971–11975
    Google Scholar
  • 24. El Aidy S., Dinan T.G., Cryan J.F.: Immune modulation of thebrain-gut-microbe axis. Front. Microbiol., 2014; 5: 146
    Google Scholar
  • 25. Evrensel A., Ceylan M.E.: The gut-brain axis: The missing linkin depression. Clin. Psychopharmacol. Neurosci., 2015; 13: 239–244
    Google Scholar
  • 26. Farzi A., Fröhlich E.E., Holzer P.: Gut microbiota and the neuroendocrinesystem. Neurotherapeutics, 2018; 15: 5–22
    Google Scholar
  • 27. Fasano A., Bove F., Gabrielli M., Petracca M., Zocco M.A., RagazzoniE., Barbaro F., Piano C., Fortuna S., Tortora A., Di Giacopo R.,Campanale M., Gigante G., Lauritano E.C., Navarra P. i wsp.: The roleof small intestinal bacterial overgrowth in Parkinson’s disease. Mov.Disord., 2013; 28: 1241–1249
    Google Scholar
  • 28. Foster J.A., Rinaman L., Cryan J.F.: Stress & the gut-brain axis:Regulation by the microbiome. Neurobiol. Stress, 2017; 7: 124–136
    Google Scholar
  • 29. Ghaisas S., Maher J., Kanthasamy A.: Gut microbiome in healthand disease: Linking the microbiome-gut-brain axis and environmentalfactors in the pathogenesis of systemic and neurodegenerativediseases. Pharmacol. Ther., 2016; 158: 52–62
    Google Scholar
  • 30. Gong S., Miao Y.L., Jiao G.Z., Sun M.J., Li H., Lin J., Luo M.J., TanJ.H.: Dynamics and correlation of serum cortisol and corticosteroneunder different physiological or stressful conditions in mice. PLoSOne 2015; 10: e0117503
    Google Scholar
  • 31. Greenberg J.A., Bell S.J., Guan Y., Yu Y.H.: Folic acid supplementationand pregnancy: more than just neural tube defect prevention.Rev. Obstet. Gynecol., 2011; 4: 52–59
    Google Scholar
  • 32. Hakansson A., Molin G.: Gut microbiota and inflammation. Nutrients,2011; 3: 637–682
    Google Scholar
  • 33. Holmqvist S., Chutna O., Bousset L., Aldrin-Kirk P., Li W.,Björklund T., Wang Z.Y., Roybon L., Melki R., Li J.Y.: Direct evidenceof Parkinson pathology spread from the gastrointestinal tract to thebrain in rats. Acta Neuropathol., 2014; 128: 805–820
    Google Scholar
  • 34. Holzer P., Farzi A.: Neuropeptides and the microbiota-gut-brainaxis. Adv. Exp. Med. Biol., 2014; 817: 195–219
    Google Scholar
  • 35. Hosseini E., Grootaert C., Verstraete W., Van de Wiele T.: Propionateas a health-promoting microbial metabolite in the human gut.Nutr. Rev., 2011; 69: 245–258
    Google Scholar
  • 36. Hu X., Wang T., Jin F.: Alzheimer’s disease and gut microbiota.Sci. China Life Sci., 2016; 59: 1006–1023
    Google Scholar
  • 37. Jiang H., Ling Z., Zhang Y., Mao H., Ma Z., Yin Y., Wang W., TangW., Tan Z., Shi J., Li L., Ruan B.: Altered fecal microbiota compositionin patients with major depressive disorder. Brain Behav. Immun.,2015; 48: 186–194
    Google Scholar
  • 38. Karl J.P., Meydani M., Barnett J.B., Vanegas S.M., Barger K., Fu X.,Goldin B., Kane A., Rasmussen H., Vangay P., Knights D., JonnalagaddaS.S., Saltzman E., Roberts S.B., Meydani S.N., Booth S.L.: Fecal concentrationsof bacterially derived vitamin K forms are associated withgut microbiota composition but not plasma or fecal cytokine concentrationsin healthy adults. Am. J. Clin. Nutr., 2017; 106: 1052–1061
    Google Scholar
  • 39. Kelly J.R., Borre Y., O’ Brien C., Patterson E., El Aidy S., DeaneJ., Kennedy P.J., Beers, S., Scott K., Moloney G., Hoban A.E., Scott L.,Fitzgerald P., Ross P., Stanton C. i wsp.: Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes inthe rat. J. Psychiatr. Res., 2016; 82: 109–118
    Google Scholar
  • 40. Kiejna A., Piotrowski P., Adamowski T.: Schizofrenia. Perspektywaspołeczna. Sytuacja w Polsce. Polskie Towarzystwo Psychiatryczne.http://docplayer.pl/7017585-Schizofrenia-perspektywa-spolecznasytuacja-w-polsce.html (12.10.2018)
    Google Scholar
  • 41. König J., Wells J., Cani P.D., García-Ródenas C.L., MacDonald T., MercenierA., Whyte J., Troost F., Brummer R.J.: Human intestinal barrierfunction in health and disease. Clin. Transl. Gastroenterol., 2016; 7: e196
    Google Scholar
  • 42. Lach G., Schellekens H., Dinan T.G., Cryan, J.F.: Anxiety, depression,and the microbiome: A role for gut peptides. Neurotherapeutics,2018; 15: 36–59
    Google Scholar
  • 43. Larroya-García A., Navas-Carrillo D., Orenes-Piñero E.: Impact ofgut microbiota on neurological diseases: Diet composition and noveltreatments. Crit. Rev. Food Sci. Nutr., 2018 (w druku)
    Google Scholar
  • 44. Lastya A., Saraswati M.R., Suastika K.: The low level of glucagonlikepeptide-1 (glp-1) is a risk factor of type 2 diabetes mellitus. BMCRes. Notes, 2014; 7: 849
    Google Scholar
  • 45. Lawley T.D., Walker A.W.: Intestinal colonization resistance. Immunology,2013; 138: 1–11
    Google Scholar
  • 46. LeBlanc J.G., Milani C., de Giori G.S., Sesma F., van Sinderen D.,Ventura M.: Bacteria as vitamin suppliers to their host: a gut microbiotaperspective. Curr. Opin. Biotechnol., 2013; 24: 160–168
    Google Scholar
  • 47. Lin S.H., Lee L.T., Yang Y.K.: Serotonin and mental disorders:a concise review on molecular neuroimaging evidence. Clin. Psychopharmacol.Neurosci., 2014; 12: 196–202
    Google Scholar
  • 48. Magnúsdóttir S., Ravcheev D., de Crécy-Lagard V., Thiele I.: Systematicgenome assessment of B-vitamin biosynthesis suggests cooperationamong gut microbes. Front. Genet., 2015; 6: 148
    Google Scholar
  • 49. Malek H., Ebadzadeh M.M., Safabakhsh R., Razavi A., ZaringhalamJ.: Dynamics of the HPA axis and inflammatory cytokines: Insightsfrom mathematical modeling. Comput. Biol. Med., 2015; 67: 1–12
    Google Scholar
  • 50. Malinova T.S., Dijkstra C.D., de Vries H.E.: Serotonin: A mediatorof the gut-brain axis in multiple sclerosis. Mult. Scler., 2018; 24:1144–1150
    Google Scholar
  • 51. Maqsood R., Stone T.W.: The gut-brain axis, BDNF, NMDA and CNSdisorders. Neurochem. Res., 2016; 41: 2819–2835
    Google Scholar
  • 52. Marietta E., Horwath I., Taneja V.: Microbiome, immunomodulation,and the neuronal system. Neurotherapeutics, 2018; 15: 23–30
    Google Scholar
  • 53. Mazzoli R., Pessione E.: The neuro-endocrinological role of microbialglutamate and GABA signaling. Front. Microbiol., 2016; 7: 1934
    Google Scholar
  • 54. Messaoudi M., Violle N., Bisson J.F., Desor D., Javelot H., RougeotC.: Beneficial psychological effects of a probiotic formulation (Lactobacillushelveticus R0052 and Bifidobacterium longum R0175) inhealthy human volunteers. Gut Microbes, 2011; 2: 256–261
    Google Scholar
  • 55. Mittal R., Debs L.H., Patel A.P., Nguyen D., Patel K., O’Connor G.,Grati M., Mittal J., Yan D., Eshraghi A.A., Deo S.K., Daunert S., Liu X.Z.:Neurotransmitters: The critical modulators regulating gut-brain axis.J. Cell Physiol., 2017; 232: 2359–2372
    Google Scholar
  • 56. Montiel-Castro A.J., González-Cervantes R.M., Bravo-RuisecoG., Pacheco-López G.: The microbiota-gut-brain axis: neurobehavioralcorrelates, health and sociality. Front. Integr. Neurosci.,2013; 7: 70
    Google Scholar
  • 57. Nadkarni P., Chepurny O.G., Holz G.G.: Regulation of glucosehomeostasis by GLP-1. Prog. Mol. Biol. Transl. Sci., 2014; 121: 23-65
    Google Scholar
  • 58. Ochoa-Repáraz J., Kasper L.H.: The influence of gut-derivedCD39 regulatory T cells in CNS demyelinating disease. Transl.Res., 2017; 179: 126–138
    Google Scholar
  • 59. Pai R., Kang G.: Microbes in the gut: a digestable account ofhost-symbiont interactions. Indian J. Med. Res., 2008; 128: 587–594
    Google Scholar
  • 60. Parashar A., Udayabanu M.: Gut microbiota: Implications inParkinson’sdisease. Parkinsonism Relat. Disord., 2017; 38: 1–7
    Google Scholar
  • 61. Pistollato F., Sumalla Cano S., Elio I., Masias Vergara M., GiampieriF., Battino M.: Role of gut microbiota and nutrients in amyloid formationand pathogenesis of Alzheimer disease. Nutr. Rev., 2016; 74: 624–634
    Google Scholar
  • 62. Prince M., Wimo A., Guerchet M., Ali G.C., Wu Y.T., Prina M.:World Alzheimer Report 2015: The Global Impact of Dementia.Alzheimer’sDisease International (London). https://www.alz.co.uk/ research/world-report-2015 (12.10.2018)
    Google Scholar
  • 63. Ramakrishna B.S.: Role of the gut microbiota in human nutritionand metabolism. J. Gastroenterol. Hepatol., 2013; 4: 9–17
    Google Scholar
  • 64. Rea K., Dinan T.G., Cryan J.F.: The microbiome: A key regulatorof stress and neuroinflammation. Neurobiol. Stress, 2016; 284: 9–17
    Google Scholar
  • 65. Róg T.: Stwardnienie rozsiane. https://neurologia.mp.pl/choroby/151119,stwardnienie-rozsiane (13.10.2018)
    Google Scholar
  • 66. Sandler R.H., Finegold S.M., Bolte E.R., Buchanan C.P., MaxwellA.P., Väisänen M.L., Nelson M.N., Wexler H.M.: Short-term benefitfrom oral vancomycin treatment of regressive-onset autism. J. ChildNeurol., 2000; 15: 429–435
    Google Scholar
  • 67. Scheperjans F., Aho V., Pereira P.A., Koskinen K., Paulin L.,Pekkonen E., Haapaniemi E., Kaakkola S., Eerola-Rautio J., Pohja M.i wsp.: Gut microbiota are related to Parkinson’s disease and clinicalphenotype. Mov. Disord., 2015, 30: 350–358
    Google Scholar
  • 68. Sender R., Fuchs S., Milo R.: Revised estimates for the number ofhuman and bacteria cells in the body. PLoS Biol., 2016; 14: e1002533
    Google Scholar
  • 69. Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K.,Abrouk M., Farahnik B., Nakamura M., Zhu T.H., Bhutani T., Liao W.:Influence of diet on the gut microbiome and implications for humanhealth. J. Transl. Med., 2017; 15: 73
    Google Scholar
  • 70. Skatenborg N., Di Giovangiulio M., Boeckxstaens G. E., MatteoliG.: The versatile role of the vagus nerve in the gastrointestinal tract.Eur. Med. J. Gastroenterol., 2013; 1: 106–114
    Google Scholar
  • 71. Spencer S., Kalivas P.W.: Glutamate transport: A new bench tobedside mechanism for treating drug abuse. Int. J. Neuropsychopharmacol.,2017; 20: 797–812
    Google Scholar
  • 72. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., HayekJ., Jousson O., Leoncini S., Renzi D., Calabrò A., De Filippo C.: Newevidences on the altered gut microbiota in autism spectrum disorders.Microbiome, 2017; 5: 24
    Google Scholar
  • 73. Sudo N.: Role of microbiome in regulating the HPA axis andits relevance to allergy. Chem. Immunol. Allergy, 2012; 98: 163–175
    Google Scholar
  • 74. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X.N., KuboC., Koga Y.: Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J.Physiol., 2004; 558: 263–275
    Google Scholar
  • 75. Tanaka M., Nakayama J.: Development of the gut microbiota in infancyand its impact on health in later life. Allergol. Int., 2017; 66: 515–522
    Google Scholar
  • 76. Ulluwishewa D., Anderson R.C., McNabb W.C., Moughan P.J.,Wells J.M., Roy N.C.: Regulation of tight junction permeability by intestinalbacteria and dietary components. J. Nutr., 2011; 141: 769–776
    Google Scholar
  • 77. Walther B., Karl J.P., Booth S.L., Boyaval P.: Menaquinones,bacteria,and the food supply: the relevance of dairy and fermentedfood products to vitamin K requirements. Adv. Nutr.,2013; 4: 463–473
    Google Scholar
  • 78. Wang Y., Kasper L.H.: The role of microbiome in central nervoussystem disorders. Brain Behav. Immun., 2014; 38: 1–12
    Google Scholar
  • 79. Wen H.Y., Su S.T., Yuan Z.Y., Wang X.Y., Wang G.Z.: Impact ofearly-life antibiotic use on gut microbiota of infants. J. Microb. Biochem.Technol., 2017; 9: 227–231
    Google Scholar
  • 80. WHO: Depression. http://www.who.int/news-room/factsheets/detail/depression (06.10. 2018)
    Google Scholar
  • 81. Winter G., Hart R.A., Charlesworth R.P.G., Sharpley C.F.: Gut microbiomeand depression: what we know and what we need to know.Rev. Neurosci., 2018; 29: 629–643
    Google Scholar
  • 82. Yarandi S.S., Peterson D.A., Treisman G.J., Moran T.H., PasrichaP.J.: Modulatory effects of gut microbiota on the central nervoussystem: How gut could play a role in neuropsychiatric health anddiseases. J. Neurogastroenterol. Motil., 2016; 22: 201–212
    Google Scholar
  • 83. Zhao Y., Jaber V., Lukiw W.J.: Secretory products of the humanGI tract microbiome and their potential impact on Alzheimer’s disease(AD): Detection of lipopolysaccharide (LPS) in AD hippocampus.Front. Cell Infect. Microbiol., 2017; 7: 318
    Google Scholar
  • 84. Zheng P., Zeng B., Zhou C., Liu M., Fang Z., Xu X., Zeng L., ChenJ., Fan S., Du X., Zhang X., Yang D., Yang Y., Meng H., Li W., MelgiriN.D., Licinio J., Wei H., Xie P.: Gut microbiome remodeling inducesdepressive-like behaviors through a pathway mediated by the host’smetabolism. Mol. Psychiatry 2016; 21: 786–796
    Google Scholar
  • 85. Zhou Y., Danbolt N.C.: Glutamate as a neurotransmitter in thehealthy brain. J. Neural. Transm., 2014; 121: 799–817
    Google Scholar

Pełna treść artykułu

Skip to content