Rola witaminy D3 w szlakach sygnałowych – potencjalne właściwości przeciwnowotworowe kalcytriolu i jego analogów

ARTYKUŁ PRZEGLĄDOWY

Rola witaminy D3 w szlakach sygnałowych – potencjalne właściwości przeciwnowotworowe kalcytriolu i jego analogów

Olga Wiecheć 1

1. Zakład Biofizyki, Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński, Kraków

Opublikowany: 2019-12-31
DOI: 10.5604/01.3001.0013.7864
GICID: 01.3001.0013.7864
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2019; 73 : 920-936

 

Abstrakt

Witamina D, przez wiele lat od jej odkrycia, była łączona przede wszystkim z procesami metabolicznymi układu kostno-szkieletowego. Rozwój badań w tej dziedzinie stworzył jednak nowe możliwości wykorzystania tego związku. Obecnie, wiele prac wskazuje na jej znaczenie w zapobieganiu i zwalczaniu wielu schorzeń, w tym chorób nowotworowych. Niedobór natomiast jest łączony z większą podatnością na zachorowania i gorszym rokowaniem w leczeniu, zwłaszcza chorób nowotworowych. Kalcytriol, czyli aktywna postać witaminy D (1,25(OH)2D3) oraz różne jej pochodne wykazują wiele aktywności, w tym o charakterze przeciwnowotworowym. Liczne badania wskazały, że aktywna postać witaminy D3 może działać antyproliferacyjnie w komórkach nowotworowych przez zahamowanie cyklu komórkowego, indukcję różnicowania, nasilanie apoptozy i wzmacnianie autofagii. Niezwykle ważne są także możliwości zmniejszania inwazyjności nowotworów przez wpływ na angiogenezę, adhezję i kontaktowe hamowanie wzrostu, a także migrację komórek nowotworowych. Zwłaszcza w nowotworach, których komórki wykazują ekspresję receptorów VDR, sugeruje się przeciwnowotworową rolę witaminy D3. Wiele komórek rakowych nie tylko przejawia ekspresję receptora VDR, ale także dochodzi w nich do lokalnej regulacji metabolizmu 1,25(OH)2D3, dzięki ekspresji hydroksylaz CYP27B1 i CYP24A. W wielu przeprowadzonych badaniach z zastosowaniem witaminy D3 wykazano, że kalcytriol i jego analogi wpływają na komórki nowotworowe, dzięki czemu mogą odgrywać ważne role w terapiach przeciwnowotworowych. Ze względu na szeroki plejotropizm działania kalcytriolu i jego pochodnych oraz rozwój badań nad tym problemem, w pracy przedstawiono wpływ aktywnych postaci witaminy D na niektóre szlaki sygnałowe i na regulację wybranych białek w różnych nowotworach.

Przypisy

  • 1. Aguilera O., Pena C., Garcia J.M., Larriba M.J., Ordonez-Moran P.,Navarro D., Barbachano A., Lopez de Silanes I., Ballestar E., FragaM.F., Esteller M., Gamallo C., Bonilla F., Gonzalez-Sancho J.M., MunozA.: The Wnt antagonist DICKKOPF-1 gene is induced by 1α,25-dihydroxyvitamin D3 associated to the differentiation of humancolon cancer cells. Carcinogenesis, 2007; 28: 1877–1884
    Google Scholar
  • 2. Anderson M.G., Nakane M., Ruan X., Kroeger P.E., Wu-Wong J.R.:Expression of VDR and CYP24A1 mRNA in human tumors. CancerChemother. Pharmacol., 2006; 57: 234–240
    Google Scholar
  • 3. Annalora A.J., Goodin D.B., Hong W.X., Zhang Q., Johnson E.F., StoutC.D.: Crystal structure of CYP24A1, a mitochondrial cytochrome P450involved in Vitamin D metabolism. J. Mol. Biol., 2010; 396: 441–451
    Google Scholar
  • 4. Artaza J.N., Sirad F., Ferrini M.G., Norris K.C.: 1,25(OH)2vitaminD3 inhibits cell proliferation by promoting cell cycle arrest withoutinducing apoptosis and modifies cell morphology of mesenchymalmultipotent cells. J. Steroid Biochem. Mol. Biol., 2010; 119: 73–83
    Google Scholar
  • 5. Autier P., Gandini S.: Vitamin D supplementation and total mortality:a meta-analysis of randomized controlled trials. Arch. Intern.Med., 2007; 167: 1730–1737
    Google Scholar
  • 6. Avila E., García-Becerra R., Rodríguez-Rasgado J.A., Díaz L., Ordaz-Rosado D., Zügel U., Steinmeyer A., Barrera D., Halhali A., LarreaF., Camacho J.: Calcitriol down-regulates human ether à go-go 1potassium channel expression in cervical cancer cells. AnticancerRes., 2010; 30: 2667–2672
    Google Scholar
  • 7. Banakar M.C., Paramasivan S.K., Chattopadhyay M.B., Datta S., ChakrabortyP., Chatterjee M., Kannan K., Thygarajan E.: 1α, 25-dihydroxyvitaminD3 prevents DNA damage and restores antioxidant enzymesin rat hepatocarcinogenesis induced by diethylnitrosamine and promotedby phenobarbital. World J. Gastroenterol., 2004; 10: 1268–1275
    Google Scholar
  • 8. Bao B.Y., Ting H.J., Hsu J.W., Lee Y.F.: Protective role of 1α, 25-dihydroxyvitaminD3 against oxidative stress in nonmalignant humanprostate epithelial cells. Int. J. Cancer, 2008; 122: 2699–2706
    Google Scholar
  • 9. Bao B.Y., Yao J., Lee Y.F.: 1α, 25-dihydroxyvitamin D3 suppressesinterleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis,2006; 27: 1883–1893
    Google Scholar
  • 10. Bao Y., Ng K., Wolpin B.M., Michaud D.S., Giovannucci E., FuchsC.S.: Predicted vitamin D status and pancreatic cancer risk in twoprospective cohort studies. Br. J. Cancer, 2010; 102: 1422–1427
    Google Scholar
  • 11. Bareis P., Bises G., Bischof M.G., Cross H.S., Peterlik M.: 25-Hydroxy-vitamin D metabolism in human colon cancer cells during tumorprogression. Biochem. Biophys. Res. Commun., 2001; 285: 1012–1017
    Google Scholar
  • 12. Berlanga-Taylor A.J., Knight J.C.: An integrated approach to defininggenetic and environmental determinants for major clinicaloutcomes involving vitamin D. Mol. Diagn. Ther., 2014; 18: 261–272
    Google Scholar
  • 13. Bertone-Johnson E.R., Chen W.Y., Holick M.F., Hollis B.W., ColditzG.A., Willett W.C., Hankinson S.E.: Plasma 25-hydroxyvitamin D and1,25-dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol.Biomarkers Prev., 2005; 14: 1991–1997
    Google Scholar
  • 14. Bessler H., Djaldetti M.: 1α,25-dihydroxyvitamin D3 modulatesthe interaction between immune and colon cancer cells. Biomed.Pharmacother., 2012; 66: 428–432
    Google Scholar
  • 15. Bikle D.D.: Vitamin D metabolism, mechanism of action, andclinical applications. Chem. Biol., 2014; 21: 319–329
    Google Scholar
  • 16. Bikle D.D., Elalieh H., Welsh J., Oh D., Cleaver J., Teichert A.:Protective role of vitamin D signaling in skin cancer formation. J.Steroid Biochem. Mol. Biol., 2013; 136: 271–279
    Google Scholar
  • 17. Brożyna A.A., Jóźwicki W., Janjetovic Z., Slominski A.T.: Expressionof the vitamin D–activating enzyme 1α-hydroxylase (CYP27B1) decreasesduring melanoma progression. Hum. Pathol., 2013; 44: 374–387
    Google Scholar
  • 18. Brożyna A.A., Józwicki W., Jochymski C., Slominski A.T.: Decreasedexpression of CYP27B1 correlates with the increased aggressivenessof ovarian carcinomas. Oncol. Rep., 2015; 33: 599–606
    Google Scholar
  • 19. Brożyna A.A., Jóźwicki W., Slominski A.T.: Decreased VDR expressionin cutaneous melanomas as marker of tumor progression: Newdata and analyses. Anticancer Res., 2014; 34: 2735–2744
    Google Scholar
  • 20. Burns E.M., Elmets C.A., Yusuf N.: Vitamin D and skin cancer.Photochem. Photobiol., 2015; 91: 201–209
    Google Scholar
  • 21. Buttigliero C., Monagheddu C., Petroni P., Saini A., Dogliotti L.,Ciccone G., Berruti A.: Prognostic role of vitamin D status and efficacyof vitamin D supplementation in cancer patients: A systematicreview. Oncologist, 2011; 16: 1215–1227
    Google Scholar
  • 22. Caligo M.A., Cipollini G., Petrini M., Valentini P., Bevilacqua G.:Down regulation of NM23.H1, NM23.H2 and c-myc genes duringdifferentiation induced by 1,25 dihydroxyvitamin D3. Leuk. Res.,1996; 20: 161–167
    Google Scholar
  • 23. Cazares-Ordonez V., Gonzalez-Duarte R.J., Diaz L., Ishizawa M.,Uno S., Ortiz V., Ordonez-Sanchez M.L., Makishima M., Larrea F.,Avila E.: A cis-acting element in the promoter of human ether a go–go 1 potassium channel gene mediates repression by calcitriol inhuman cervical cancer cells. Biochem. Cell Biol., 2015; 93: 94–101
    Google Scholar
  • 24. Chen T.C., Holick M.F.: Vitamin D and prostate cancer preventionand treatment. Trends Endocrinol. Metab., 2003; 14: 423–430
    Google Scholar
  • 25. Chen Y., Zhang J., Ge X., Du J., Deb D.K., Li Y.C.: Vitamin D receptorinhibits nuclear factor κB activation by interacting with IκBkinase β protein. J. Biol. Chem., 2013; 288: 19450–19458
    Google Scholar
  • 26. Christakos S., Dhawan P., Verstuyf A., Verlinden L., CarmelietG.: Vitamin D: Metabolism, molecular mechanism of action, andpleiotropic effects. Physiol. Rev., 2016; 96: 365–408
    Google Scholar
  • 27. Colston K., Colston M.J., Feldman D.: 1,25-dihydroxevitamin D3and malignant melanoma: the presence of receptors and inhibitionof cell growth in culture. Endocrinology, 1981; 108: 1083–1086
    Google Scholar
  • 28. Colston K.W., James S.Y., Ofori-Kuragu E.A., Binderup L., GrantA.G.: Vitamin D receptors and anti-proliferative effects of vitaminD derivatives in human pancreatic carcinoma cells in vivo and invitro. Br. J. Cancer, 1997; 76: 1017–1020
    Google Scholar
  • 29. Deeb K.K., Trump D.L., Johnson C.S.: Vitamin D signalling pathwaysin cancer: Potential for anticancer therapeutics. Nat. Rev.Cancer, 2007; 7: 684–700
    Google Scholar
  • 30. Díaz L., Díaz-Muñoz M., García-Gaytán A.C., Méndez I.: Mechanisticeffects of calcitriol in cancer biology. Nutrients, 2015; 7: 5020–5050
    Google Scholar
  • 31. Didonato J.A., Mercurio F., Karin M.: NF-kB and the link betweeninflammation and cancer. Immunol. Rev., 2012; 246: 379–400
    Google Scholar
  • 32. Doroudi M., Schwartz Z., Boyan B.D.: Phospholipase A2 activatingprotein is required for 1α,25-dihydroxyvitamin D3 dependentrapid activation of protein kinase C via Pdia3. J. Steroid Biochem.Mol. Biol., 2012; 132: 48–56
    Google Scholar
  • 33. Ferrer-Mayorga G., Larriba M.J., Crespo P., Muñoz A.: Mechanismsof action of vitamin D in colon cancer. J. Steroid Biochem. Mol.Biol., 2019; 185: 1–6
    Google Scholar
  • 34. Field S., Elliott F., Randerson-Moor J., Kukalizch K., Barrett J.H.,Bishop D.T., Newton-Bishop J.A.: Do vitamin A serum levels moderateoutcome or the protective effect of vitamin D on outcome frommalignant melanoma? Clin. Nutr., 2013; 32: 1012–1016
    Google Scholar
  • 35. Fleet J.C.: Molecular actions of vitamin D contributing to cancerprevention. Mol. Aspects Med., 2008; 29: 388-396
    Google Scholar
  • 36. Fleet J.C., DeSmet M., Johnson R., Li Y.: Vitamin D and cancer:a review of molecular mechanisms. Biochem. J., 2012; 441: 61–76
    Google Scholar
  • 37. García-Becerra R., Díaz L., Camacho J., Barrera D., Ordaz-RosadoD., Morales A., Ortiz C.S., Avila E., Bargallo E., Arrecillas M., HalhaliA., Larrea F.: Calcitriol inhibits ether-à go-go potassium channelexpression and cell proliferation in human breast cancer cells. Exp.Cell Res., 2010; 316: 433–442
    Google Scholar
  • 38. García-Quiroz J., García-Becerra R., Santos-Martínez N., BarreraD., Ordaz-Rosado D., Avila E., Halhali A., Villanueva O., Ibarra-SánchezM.J., Esparza-López J., Gamboa-Domínguez A., Camacho J., Larrea F.,Díaz L.: In vivo dual targeting of the oncogenic ether-à-go-go-1 potassiumchannel by calcitriol and astemizole results in enhanced antineoplasticeffects in breast tumors. BMC Cancer, 2014; 14: 745–754
    Google Scholar
  • 39. Garland C.F., Gorham E.D., Mohr S.B., Grant W.B., GiovannucciE.L., Lipkin M., Newmark H., Holick M.F., Garland F.C.: Vitamin D andprevention of breast cancer: Pooled analysis. J. Steroid Biochem. Mol.Biol., 2007; 103: 708–711
    Google Scholar
  • 40. Goodwin P.J., Ennis M., Pritchard K.I., Koo J., Hood N.: Prognosticeffects of 25-hydroxyvitamin D levels in early breast cancer. J. Clin.Oncol., 2009; 27: 3757–3763
    Google Scholar
  • 41. Gorham E.D., Garland C.F., Garland F.C., Grant W.B., Mohr S.B.,Lipkin M., Newmark H.L., Giovannucci E., Wei M., Holick M.F.: VitaminD and prevention of colorectal cancer. J. Steroid Biochem. Mol.Biol., 2005; 97: 179–194
    Google Scholar
  • 42. Guzey M., Kitada S., Reed J.C.: Apoptosis induction by 1α,25-dihydroxyvitamin D3 in prostate cancer. Mol. Cancer Ther., 2002;1: 667–677
    Google Scholar
  • 43. Hager G., Kornfehl J., Knerer B., Weigel G., Formanek M.: Molecularanalysis of p21 promoter activity isolated from squamous carcinomacell lines of the head and neck under the influence of 1,25(OH)2vitamin D3 and its analogs. Acta Otolaryngol., 2004; 124: 90–96
    Google Scholar
  • 44. Haussler M.R., Whitfield G.K., Haussler C.A., Hsieh J.C., ThompsonP.D., Selznick S.H., Dominguez C.E., Jurutka P.W.: The nuclearvitamin D receptor: Biological and molecular regulatory propertiesrevealed. J. Bone Miner. Res., 1998; 13: 325–349
    Google Scholar
  • 45. Henry H.L.: Regulation of vitamin D metabolism. Best Pract. Res.Clin. Endocrinol. Metab., 2011; 25: 531–541
    Google Scholar
  • 46. Hmama Z., Nandan D., Sly L., Knutson K.L., Herrera-Velit P.,Reiner N.E.: 1α,25-Dihydroxyvitamin D3-induced myeloid cell differentiationis regulated by a vitamin D receptor-phosphatidylinositol3-kinase signaling complex. J. Exp. Med., 1999; 190: 1583–1594
    Google Scholar
  • 47. Holick M.F.: Vitamin D: A millenium perspective. J. Cell. Biochem.,2003; 88: 296–307
    Google Scholar
  • 48. Holick M.F.: Vitamin D deficiency. N. Engl. J. Med., 2007; 357: 266–281
    Google Scholar
  • 49. Hossein-Nezhad A., Holick M.F.: Vitamin D for health: A globalperspective. Mayo Clin. Proc., 2013; 88: 720–755
    Google Scholar
  • 50. Huynh H., Pollak M., Zhang J.C.: Regulation of insulin-like growthfactor (IGF) II and IGF binding protein 3 autocrine loop in humanPC-3 prostate cancer cells by vitamin D metabolite 1,25(OH)2D3 andits analog EB1089. Int. J. Oncol., 1998; 13: 137–143
    Google Scholar
  • 51. Hybertson B.M., Gao B., Bose S.K., McCord J.M.: Oxidative stressin health and disease: The therapeutic potential of Nrf2 activation.Mol. Aspects Med., 2011; 32: 234–246
    Google Scholar
  • 52. Ingraham B.A., Bragdon B., Nohe A.: Molecular basis of the potentialof vitamin D to prevent cancer. Curr. Med. Res. Opin., 2008; 24: 139–149
    Google Scholar
  • 53. James S.Y., Mackay A.G., Colston K.W.: Effects of 1,25 dihydroxyvitaminD3 and its analogues on induction of apoptosis in breastcancer cells. J. Steroid Biochem. Mol. Biol., 1996; 58: 395–401
    Google Scholar
  • 54. Janjetovic Z., Brozyna A.A., Tuckey R.C., Kim T.K., Nguyen M.N.,Jozwicki W., Pfeffer S.R., Pfeffer L.M., Slominski A.T.: High basal NF-κB activity in nonpigmented melanoma cells is associated with anenhanced sensitivity to vitamin D3 derivatives. Br. J. Cancer, 2011;105: 1874–1884
    Google Scholar
  • 55. Jensen S.S., Madsen M.W., Lukas J., Binderup L., Bartek J.: Inhibitoryeffects of 1α,25-dihydroxyvitamin D3 on the G1-S phase-controllingmachinery. Mol. Endocrinol., 2001; 15: 1370–1380
    Google Scholar
  • 56. Jiang F., Bao J., Li P., Nicosia S.V., Bai W.: Induction of ovarian cancercell apoptosis by 1,25-dihydroxyvitamin D3 through the down–regulation of telomerase. J. Biol. Chem., 2004; 279: 53213–53221
    Google Scholar
  • 57. Jóźwicki W., Brożyna A., Siekiera J., Slominski A.: Expression ofvitamin D receptor (VDR) positively correlates with survival of urothelialbladder cancer patients. Int. J. Mol. Sci., 2015; 16: 24369–24386
    Google Scholar
  • 58. Kizildag S., Ates H., Kizildag S.: Treatment of K562 cells with1,25-dihydroxyvitamin D3 induces distinct alterations in the expressionof apoptosis-related genes BCL2, BAX, BCLXL, and p21. Ann.Hematol., 2010; 89: 1–7
    Google Scholar
  • 59. Köstner K., Denzer N., Müller C.S., Klein R., Tilgen W., ReichrathJ.: The relevance of vitamin D receptor (VDR) gene polymorphismsfor cancer: A review of the literature. Anticancer Res., 2009;29: 3511–3536
    Google Scholar
  • 60. Kovalenko P.L., Zhang Z., Cui M., Clinton S.K., Fleet J.C.: 1,25dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostateepithelial cell line, RWPE1. BMC Genomics, 2010; 11: 26–40
    Google Scholar
  • 61. Krishnan A. V., Feldman D.: Molecular pathways mediating the anti–inflammatory effects of calcitriol: Implications for prostate cancer chemopreventionand treatment. Endocr. Relat. Cancer, 2010; 17: R19–R38
    Google Scholar
  • 62. Krishnan A. V., Moreno J., Nonn L., Malloy P., Swami S., PengL., Peehl D.M., Feldman D.: Novel pathways that contribute to theanti-proliferative and chemopreventive activities of calcitriol inprostate cancer. J. Steroid Biochem. Mol. Biol., 2007; 103: 694–702
    Google Scholar
  • 63. Lai Y.H., Fang T.C.: The pleiotropic effect of vitamin D. ISRN Nephrol.,2013; 2013: 898125
    Google Scholar
  • 64. Lambert J.R., Kelly J.A., Shim M., Huffer W.E., Nordeen S.K., BaekS.J., Eling T.E., Lucia M.S.: Prostate derived factor in human prostatecancer cells: Gene induction by vitamin D via a p53-dependentmechanism and inhibition of prostate cancer cell growth. J. Cell.Physiol., 2006; 208: 566–574
    Google Scholar
  • 65. Larriba M.J., González-Sancho J.M., Barbáchano A., Niell N.,Ferrer-Mayorga G., Muñoz A.: Vitamin D is a multilevel repressor ofWnt/β-catenin signaling in cancer cells. Cancers, 2013; 5: 1242–1260
    Google Scholar
  • 66. Larriba M.J., González-Sancho J.M., Bonilla F., Muñoz A.: Interactionof vitamin D with membrane-based signaling pathways. Front.Physiol., 2014; 5: 60–70
    Google Scholar
  • 67. Lehmann B., Meurer M.: Vitamin D metabolism. Dermatol. Ther.,2010; 23: 2–12
    Google Scholar
  • 68. Li P., Li C., Zhao X., Zhang X., Nicosia S. V., Bai W.: p27Kip1 Stabilizationand G1 arrest by 1,25-dihydroxyvitamin D3 in ovarian cancercells mediated through down-regulation of cyclin E/cyclin-dependentkinase 2 and Skp1-cullin-F-box protein/Skp2 ubiquitin ligase.J. Biol. Chem., 2004; 279: 25260–25267
    Google Scholar
  • 69. Li Z., Jia Z., Gao Y., Xie D., Wei D., Cui J., Mishra L., Huang S.,Zhang Y., Xie K.: Activation of vitamin D receptor signaling downregulatesthe expression of nuclear FOXM1 protein and suppressespancreatic cancer cell stemness. Clin. Cancer Res., 2015; 21: 844–853
    Google Scholar
  • 70. Lieberman D.A. Prindiville S., Weiss D.G., Willett W.: Risk factorsfor advanced colonic neoplasia and hyperplastic polyps in asymptomaticindividuals. JAMA, 2003; 290: 2959–2967
    Google Scholar
  • 71. Liu M., Lee M.H., Cohen M., Bommakanti M., Freedman L.P.:Transcriptional activation of the Cdk inhibitor p21 by vitamin D3leads to the induced differentiation of the myelomonocytic cell lineU937. Genes Dev., 1996; 10: 142–153
    Google Scholar
  • 72. Liu Y., Wang X., Sun X., Lu S., Liu S.: Vitamin intake and pancreaticcancer risk reduction: A meta-analysis of observational studies.Medicine, 2018; 97: e0114–e0121
    Google Scholar
  • 73. Ma Y., Hu Q., Luo W., Pratt R.N., Glenn S.T., Liu S., Trump D.L.,Johnson C.S.: 1α,25(OH)2D3 differentially regulates miRNA expressionin human bladder cancer cells. J. Steroid Biochem. Mol. Biol.,2015; 148: 166–171
    Google Scholar
  • 74. Mantell D.J., Owens P.E., Bundred N.J., Mawer E.B., Canfield A.E.:1α,25-Dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo.Circ. Res., 2000; 87: 214–220
    Google Scholar
  • 75. Moreno J., Krishnan A. V., Swami S., Nonn L., Peehl D.M., FeldmanD.: Regulation of prostaglandin metabolism by calcitriol attenuatesgrowth stimulation in prostate cancer cells. Cancer Res.,2005; 65: 7917–7925
    Google Scholar
  • 76. Muto A., Kizaki M., Yamato K., Kawai Y., Kamata-Matsushita M.,Ueno H., Ohguchi M., Nishihara T., Koeffler H.P., Ikeda Y.: 1,25-DihydroxyvitaminD3 induces differentiation of a retinoic acid-resistantacute promyelocytic leukemia cell line (UF-1) associatedwith expression of p21 WAF1/CIP1 and p27 KIP1. Blood, 1999; 93: 2225–2233
    Google Scholar
  • 77. Nakagawa K., Kawaura A., Kato S., Takeda E., Okano T.: 1α,25-Dihydroxyvitamin D3 is a preventive factor in the metastasis of lungcancer. Carcinogenesis, 2005; 26: 429–440
    Google Scholar
  • 78. Noyola-Martínez N., Díaz L., Avila E., Halhali A., Larrea F., BarreraD.: Calcitriol downregulates TNF-α and IL-6 expression in culturedplacental cells from preeclamptic women. Cytokine, 2013;61: 245–250
    Google Scholar
  • 79. Pálmer H.G., González-Sancho J.M., Espada J., Berciano M.T.,Puig I., Baulida J., Quintanilla M., Cano A., de Herreros A.G., LafargaM., Muñoz A.: Vitamin D3 promotes the differentiation of coloncarcinoma cells by the induction of E-cadherin and the inhibitionof β-catenin signaling. J. Cell Biol., 2001; 154: 369–387
    Google Scholar
  • 80. Pálmer H.G., Larriba M.J., García J.M., Ordóñez-Morán P., PeñaC., Peiró S., Puig I., Rodríguez R., De La Fuente R., Bernad A., PollánM., Bonilla F., Gamallo C., García De Herreros A., Muñoz A.: The transcriptionfactor SNAIL represses vitamin D receptor expression andresponsiveness in human colon cancer. Nat. Med., 2004; 10: 917–919
    Google Scholar
  • 81. Pálmer H.G., Sánchez-carbayo M., Ordóñez-morán P., LarribaM.J., Cordon-Cardo C., Munoz A.: Genetic signatures of differentiationinduced by 1α,25-dihydroxyvitamin D3 in human colon cancercells. Cancer Res., 2003; 63: 7799–7806
    Google Scholar
  • 82. Peehl D.M., Shinghal R., Nonn L., Seto E., Krishnan A. V., BrooksJ.D., Feldman D.: Molecular activity of 1,25-dihydroxyvitaminD3 in primary cultures of human prostatic epithelial cells revealedby cDNA microarray analysis. J. Steroid Biochem. Mol. Biol., 2004;92: 131–141
    Google Scholar
  • 83. Prosser D.E., Jones G.: Enzymes involved in the activation andinactivation of vitamin D. Trends Biochem. Sci., 2004; 29: 664–673
    Google Scholar
  • 84. Prüfer K., Racz A., Lin G.C., Barsony J.: Dimerization with retinoidX receptors promotes nuclear localization and subnuclear targetingof vitamin D receptors. J. Biol. Chem., 2000; 275: 41114–41123
    Google Scholar
  • 85. Reichrath J., Lehmann B., Carlberg C., Varani J., Zouboulis C.C.:Vitamins as hormones. Horm. Metab. Res., 2007; 39: 71–84
    Google Scholar
  • 86. Rohan J.N., Weigel N.L.: 1α,25-Dihydroxyvitamin D3 reducesc-myc expression, inhibiting proliferation and causing G1 accumulationin C4-2 prostate cancer cells. Endocrinology, 2009; 150:2046–2054
    Google Scholar
  • 87. Saramäki A., Banwell C.M., Campbell M.J., Carlberg C.: Regulationof the human p21waf1/cip1 gene promoter via multiple binding sites forp53 and the vitamin D3 receptor. Nucleic Acids Res., 2006; 34: 543–554
    Google Scholar
  • 88. Sawada N., Inoue M., Iwasaki M., Yamaji T., Shimazu T., SasazukiS., Tsugane S.: Plasma 25-hydroxy vitamin D and subsequent prostatecancer risk in a nested case-control study in Japan: The JPHCstudy. Eur. J. Clin. Nutr., 2017; 71: 132–136
    Google Scholar
  • 89. Schwartz G.G., Eads D., Rao A., Cramer S.D., Willingham M.C.,Chen T.C., Jamieson D.P., Wang L., Burnstein K.L., Holick M.F., KoumenisC.: Pancreatic cancer cells express 25-hydroxyvitamin D-1α-hydroxylase and their proliferation is inhibited by the prohormone25-hydroxyvitamin D3. Carcinogenesis, 2004; 25: 1015–1026
    Google Scholar
  • 90. Schwartz G.G., Whitlatch L.W., Chen T.C., Lokeshwar B.L., Holick M.F.:Human prostate cells synthesize 1,25-dihydroxyvitamin D3 from 25-hydroxyvitaminD3. Cancer Epidemiol. Biomarkers Prev., 1998; 7: 391–395
    Google Scholar
  • 91. Scott M.G., Gronowski A.M., Reid I.R., Holick M.F., Thadhani R.,Phinney K.: Vitamin D: The more we know, the less we know. Clin.Chem., 2015; 61: 462–465
    Google Scholar
  • 92. Shabahang M., Buras R.R., Davoodi F., Schumaker L.M., NautaR.J., Evans S.R.: 1,25-Dihydroxyvitamin D3 receptor as a marker ofhuman colon carcinoma cell line differentiation and growth inhibition.Cancer Res., 1993; 53: 3712–3718
    Google Scholar
  • 93. Sherr C.J., Roberts J.M.: Inhibitors of mammalian G1 cyclin-dependentkinases. Genes Dev., 1995; 9: 1149–1163
    Google Scholar
  • 94. Simboli-Campbell M., Narvaez C.J., Tenniswood M., Welsh J.:1,25-Dihydroxyvitamin D3 induces morphological and biochemicalmarkers of apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem.Mol. Biol., 1996; 58: 367–376
    Google Scholar
  • 95. Skowronski R.J., Peehl D.M., Feldman D.: Vitamin D and prostatecancer: 1,25 dihydroxyvitamin D3 receptors and actions in humanprostate cancer cell lines. Endocrinology, 1993; 132: 1952–1960
    Google Scholar
  • 96. Slominski A.T., Brozyna A., Jozwicki W., Tuckey R.C.: Vitamin Das an adjuvant in melanoma therapy. Melanoma Manag., 2015; 2: 1–4
    Google Scholar
  • 97. Slominski A.T., Brożyna A.A., Zmijewski M.A., Jóźwicki W., JettenA.M., Mason R.S., Tuckey R.C., Elmets C.A.: Vitamin D signaling andmelanoma: role of vitamin D and its receptors in melanoma progressionand management. Lab. Investig., 2017; 97: 706–724
    Google Scholar
  • 98. Slominski A.T., Kim T.K., Hobrath J. V., Oak A.S., Tang E.K., TieuE.W., Li W., Tuckey R.C., Jetten A.M.: Endogenously produced nonclassicalvitamin D hydroxy-metabolites act as “biased” agonists onVDR and inverse agonists on RORα and RORγ. J. Steroid Biochem.Mol. Biol., 2017; 173: 42–56
    Google Scholar
  • 99. Slominski A.T., Kim T.K., Li W., Postlethwaite A., Tieu E.W., TangE.K., Tuckey R.C.: Detection of novel CYP11A1-derived secosteroidsin the human epidermis and serum and pig adrenal gland. Sci. Rep.,2015; 5: 14875–14886
    Google Scholar
  • 100. Slominski A.T., Kim T.K., Shehabi H.Z., Semak I., Tang E.K.,Nguyen M.N., Benson H.A., Korik E., Janjetovic Z., Chen J., Yates C.R.,Postlethwaite A., Li W., Tuckey R.C.: In vivo evidence for a novel pathwayof vitamin D3 metabolism initiated by P450scc and modified byCYP27B1. FASEB J., 2012; 26: 3901–3915
    Google Scholar
  • 101. Slominski A.T., Kim T.K., Takeda Y., Janjetovic Z., Broz˙yna A.A.,Skobowiat C., Wang J., Postlethwaite A., Li W., Tuckey R.C., JettenA.M.: RORα and ROR γ are expressed in human skin and serve as receptorsfor endogenously produced noncalcemic 20-hydroxy- and20,23-dihydroxyvitamin D. FASEB J., 2014; 28: 2775–2789
    Google Scholar
  • 102. Slominski A.T., Li W., Kim T.K., Semak I., Wang J., Zjawiony J.K.,Tuckey R.C.: Novel activities of CYP11A1 and their potential physiologicalsignificance. J. Steroid Biochem. Mol. Biol., 2015; 151: 25–37
    Google Scholar
  • 103. So J.Y., Smolarek A.K., Salerno D.M., Maehr H., Uskokovic M.,Liu F., Suh N.: Targeting CD44-STAT3 signaling by gemini vitaminD analog leads to inhibition of invasion in basal-like breast cancer.PLoS One, 2013; 8: e54020–e54029
    Google Scholar
  • 104. Sone T., Kerner S., Pike J.W.: Vitamin D receptor interactionwith specific DNA. Association as a 1,25-dihydroxyvitamin D3-modulatedheterodimer. J. Biol. Chem., 1991; 266: 23296–23305
    Google Scholar
  • 105. Stolzenberg-Solomon R.Z., Vieth R., Azad A., Pietinen P., TaylorP.R., Virtamo J., Albanes D.: A prospective nested case-controlstudy of vitamin D status and pancreatic cancer risk in male smokers.Cancer Res., 2006; 66: 10213–10219
    Google Scholar
  • 106. Szyszka P., Zmijewski M.A., Slominski A.T.: New vitamin D analogsas potential therapeutics in melanoma. Expert Rev. AnticancerTher., 2012; 12: 585–599
    Google Scholar
  • 107. Tang E.K., Chen J., Janjetovic Z., Tieu E.W., Slominski A.T., LiW., Tuckey R.C.: Hydroxylation of CYP11A1-derived products of vitaminD3 metabolism by human and Mouse CYP27B1. Drug Metab.Dispos., 2013; 41: 1112–1124
    Google Scholar
  • 108. Tavera-Mendoza L., Wang T.T., Lallemant B., Zhang R., Nagai Y.,Bourdeau V., Ramirez-Calderon M., Desbarats J., Mader S., White J.H.:Convergence of vitamin D and retinoic acid signalling at a commonhormone response element. EMBO Rep., 2006; 7: 180–185
    Google Scholar
  • 109. Tieu E.W., Li W., Chen J., Kim T.K., Ma D., Slominski A.T., TuckeyR.C.: Metabolism of 20-hydroxyvitamin D3 and 20,23-dihydroxyvitaminD3 by rat and human CYP24A1. J. Steroid Biochem. Mol. Biol.,2015; 149: 153–165
    Google Scholar
  • 110. Toner C.D., Davis C.D., Milner J.A.: The vitamin D and cancerconundrum: Aiming at a moving target. J. Am. Diet. Assoc., 2010;110: 1492–1500
    Google Scholar
  • 111. Tong W.M., Hofer H., Ellinger A., Peterlik M., Cross H.S.: Mechanismof antimitogenic action of vitamin D in human colon carcinomacells: relevance for suppression of epidermal growth factor-stimulatedcell growth. Oncol. Res., 1999; 11: 77–84
    Google Scholar
  • 112. Townsend K., Banwell C.M., Guy M., Colston K.W., Mansi J.L.,Stewart P.M., Campbell M.J., Hewison M.: Autocrine metabolism ofvitamin D in normal and malignant breast tissue. Clin. Cancer Res.,2005; 11: 3579–3586
    Google Scholar
  • 113. Wacker M., Holick M.F.: Sunlight and vitamin D. A global perspectivefor health. Dermatoendocrinol., 2013; 5: 51–108
    Google Scholar
  • 114. Wagner N., Wagner K.D., Schley G., Badiali L., Theres H., ScholzH.: 1,25-Dihydroxyvitamin D3-induced apoptosis of retinoblastomacells is associated with reciprocal changes of Bcl-2 and bax. Exp.Eye Res., 2003; 77: 1–9
    Google Scholar
  • 115. Wang Q.M., Jones J.B., Studzinski G.P.: Cyclin-dependent kinaseinhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitaminD3 in HL60 cells. Cancer Res., 1996; 56: 264–267
    Google Scholar
  • 116. Wasiewicz T., Szyszka P., Cichorek M., Janjetovic Z., Tuckey R.,Slominski A., Zmijewski M.: Antitumor effects of vitamin D analogson hamster and mouse melanoma cell lines in relation to melaninpigmentation. Int. J. Mol. Sci., 2015; 16: 6645–6667
    Google Scholar
  • 117. Wierzbicka J., Piotrowska A., Żmijewski M.A.: The renaissanceof vitamin D. Acta Biochim. Pol., 2014; 61: 679–686
    Google Scholar
  • 118. Yamada O., Ozaki K., Nakatake M., Akiyama M., Kawauchi K.,Matsuoka R.: Multistep regulation of telomerase during differentiationof HL60 cells. J. Leukoc. Biol., 2008; 83: 1240–1248
    Google Scholar
  • 119. Ylikomi T., Laaksi I., Lou Y.R., Martikainen P., Miettinen S., PennanenP., Purmonen S., Syvälä H., Vienonen A., Tuohimaam P.: Antiproliferativeaction of vitamin D. Vitam. Horm., 2002; 64: 357–406
    Google Scholar
  • 120. Zhang X., Nicosia S.V., Bai W.: Vitamin D receptor is a noveldrug target for ovarian cancer treatment. Curr. Cancer Drug Targets,2006; 6: 229–244
    Google Scholar

Pełna treść artykułu

Skip to content