Ścieżki aktywacji i polaryzacji makrofagów

GLOSA LUB KOMENTARZ PRAWNICZY

Ścieżki aktywacji i polaryzacji makrofagów

Ulana Juhas 1 , Monika Ryba-Stanisławowska 1 , Patryk Szargiej 1 , Jolanta Myśliwska 1

1. Department of Immunology, Medical University of Gdańsk

Opublikowany: 2015-04-22
DOI: 10.5604/17322693.1150133
GICID: 01.3001.0009.6524
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2015; 69 : 496-502

 

Abstrakt

Przypisy

  • 1. Alikhan M.A., Ricardo S.D.: Mononuclear phagocyte system inkidney disease and repair. Nephrology, 2013; 18: 81-91
    Google Scholar
  • 2. Ambarus C.A., Krausz S., van Eijk M., Hamann J., Radstake T.R.,Reedquist K.A., Tak P.P., Baeten D.L.: Systematic validation of specificphenotypic markers for in vitro polarized human macrophages.J. Immunol. Methods, 2012; 375: 196-206
    Google Scholar
  • 3. Anderson K.L., Nelson S.L., Perkin H.B Smith K.A., Klemsz M.J.,Torbett B.E.: PU.1 is a lineage-specific regulator of tyrosine phosphataseCD45. J. Biol. Chem., 2001; 276: 7637-7642
    Google Scholar
  • 4. Baker R.G., Hayden M.S., Ghosh S.: NF-κB, inflammation and metabolicdisease. Cell Metab., 2011; 13: 11-22
    Google Scholar
  • 5. Banerjee S., Cui H., Xie N., Tan Z., Yang S., Icyuz M., ThannickalV.J., Abraham E., Liu G.: miR-125a-5p regulates differential activationof macrophages and inflammation. J. Biol. Chem., 2013; 288:35428-35436
    Google Scholar
  • 6. Bannon P., Wood S., Restivo T., Campbell L., Hardman M.J., MaceK.A.: Diabetes induces stable intrinsic changes to myeloid cells thatcontribute to chronic inflammation during wound healing in mice.Dis. Model. Mech., 2013; 6: 1434-1447
    Google Scholar
  • 7. Barros M.H.M, Hauck F., Dreyer J.H., Kempkes B., Niedobitek G.:Macrophage polarisation: an immunohistochemical approach foridentifying M1 and M2 macrophages. PLoS One, 2013; 8: e80908
    Google Scholar
  • 8. Bouhlel M.A., Derudas B., Rigamonti E., Dièvart R., Brozek J.,Haulon S., Zawadzki C., Jude B., Torpier G., Marx N., Staels B., Chinetti-GbaguidiG.: PPARγ activation primes human monocytes intoalternative M2 macrophages with anti-inflammatory properties.Cell Metab., 2007; 6: 137-143
    Google Scholar
  • 9. Cai D.H., Wang D., Keefer J., Yeamans C., Hensley K., FriedmanA.D.: C/EBPα:AP-1 leucine zipper heterodimers bind novel DNA elements,activate the PU.1 promoter and direct monocyte lineagecommitment more potently than C/EBPα homodimers or AP-1. Oncogene,2008; 27: 2772-2779
    Google Scholar
  • 10. Cassetta L., Cassol E., Poli G.: Macrophage polarization in healthand disease. ScientificWorldJournal, 2011; 11: 2391-2402
    Google Scholar
  • 11. Celada A., Borràs F.E., Soler C., Lloberas J., Klemsz M., van BeverenC., McKercher S., Maki R.A.: The transcription factor PU.1 isinvolved in macrophage proliferation. J. Exp. Med., 1996; 184: 61-69
    Google Scholar
  • 12. Chen Z.Y., Shie J., Tseng C.: Up-regulation of gut-enriched kruppel-likefactor by interferon-g in human colon carcinoma cells. FEBSLett., 2000; 477: 67-72
    Google Scholar
  • 13. Contreras I., Gómez M.A., Nguyen O., Shio M.T., McMaster R.W.,Olivier M.: Leishmania-induced inactivation of the macrophage transcriptionfactor AP-1 is mediated by the parasite metalloproteaseGP63. PLoS Pathog., 2010; 6: e1001148
    Google Scholar
  • 14. Dushkin M.I.: Macrophage/foam cell is an attribute of inflammation:mechanisms of formation and functional role. Biochemistry,2012; 77: 327-338
    Google Scholar
  • 15. Espinoza-Jiménez A., Peón A.N., Terrazas L.I.: Alternatively activatedmacrophages in types 1 and 2 diabetes. Mediators Inflamm.,2012; 2012: 815953
    Google Scholar
  • 16. Fadini G.P., Cappellari R., Mazzucato M., Agostini C., de KreutzenbergS.V., Avogaro A.: Monocyte–macrophage polarization balancein pre-diabetic. Acta Diabetol., 2013; 50: 977-982
    Google Scholar
  • 17. Fahy R.J., Doseff A.I., Wewers M.D.: Spontaneous human monocyteapoptosis utilizes a caspase-3-dependent pathway that isblocked by endotoxin and is independent of caspase-1. J. Immunol.,1999; 163: 1755-1762
    Google Scholar
  • 18. Feinberg M.W., Cao Z., Wara A.K., Lebedeva M.A., SenbanerjeeS., Jain M.K.: Kruppel-like factor 4 is a mediator of proinflammatorysignaling in macrophages. J. Biol. Chem., 2005; 280:38247-38258
    Google Scholar
  • 19. Galli S.J., Borregaard N., Wynn T.A.: Phenotypic and functionalplasticity of cells of innate immunity: macrophages, mast cells andneutrophils. Nat. Immunol., 2011; 12: 1035-1044
    Google Scholar
  • 20. Ghisletti S., Barozzi I., Mietton F., Polletti S., De Santa F., VenturiniE., Gregory L., Lonie L., Chew A., Wei C.L., Ragoussis J., NatoliG.: Identification and characterization of enhancers controlling theinflammatory gene expression program in macrophages. Immunity.,2010; 32: 317-328
    Google Scholar
  • 21. Gordon S., Taylor P.R.: Monocyte and macrophage heterogeneity.Nat. Rev. Immunol., 2005; 5: 953-964
    Google Scholar
  • 22. Hayden M.S., Ghosh S.: Shared principles in NF-κB signaling.Cell, 2008; 132: 344-362
    Google Scholar
  • 23. Hu X., Chen J., Wang L., Ivashkiv L.B.: Crosstalk among Jak-STAT,Toll-like receptor, and ITAM-dependent pathways in macrophageactivation. J. Leukoc. Biol., 2007; 82: 237-243
    Google Scholar
  • 24. Huang J.T., Welch J.S., Ricote M., Binder C.J., Willson T.M., KellyC., Witztum J.L., Funk C.D., Conrad D., Glass C.K.: Interleukin-4-dependentproduction of PPAR-γ ligands in macrophages by 12/15-lipoxygenase.Nature, 1999; 400: 378-382
    Google Scholar
  • 25. Hull R.P., Srivastava P.K., D›Souza Z., Atanur S.S., Mechta-GrigoriouF., Game L., Petretto E., Cook H.T., Aitman T.J., BehmoarasJ.: Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-1β synthesisin macrophages. BMC Genomics, 2013; 14: 92
    Google Scholar
  • 26. Ivashkiv L.B.: Inflammatory signaling in macrophages: transitionsfrom acute to tolerant and alternative activation states. Eur.J. Immunol., 2011; 41: 2477-2481
    Google Scholar
  • 27. Karpurapu M., Wang X., Deng J., Park H., Xiao L., Sadikot R.T.,Frey R.S., Maus U.A., Park G.Y., Scott E.W., Christman J.W.: FunctionalPU.1 in macrophages has a pivotal role in NF-κB activation andneutrophilic lung inflammation during endotoxemia. Blood, 2011;118: 5255-5266
    Google Scholar
  • 28. Kernbauer E., Maier V., Stoiber D., Strobl B., SchneckenleithnerC., Sexl V., Reichart U., Reizis B., Kalinke U., Jamieson A., Müller M.,Decker T.: Conditional Stat1 ablation reveals the importance of interferonsignaling for immunity to Listeria monocytogenes infection.PLoS Pathog., 2012; 8: e1002763
    Google Scholar
  • 29. Kittan N.A., Allen R.M., Dhaliwal A., Cavassani K.A., Schaller M.,Gallagher K.A., Carson W.F. 4th, Mukherjee S., Grembecka J., CierpickiT., Jarai G., Westwick J., Kunkel S.L., Hogaboam C.M.: Cytokineinduced phenotypic and epigenetic signatures are key to establishingspecific macrophage phenotypes. PLoS One, 2013; 8: e78045
    Google Scholar
  • 30. Krausgruber T., Blazek K., Smallie T., Alzabin S., Lockstone H.,Sahgal N., Hussell T., Feldmann M., Udalova I.A.: IRF5 promotes inflammatorymacrophage polarization and TH1-TH17 responses. Nat.Immunol., 2011; 12: 231-238
    Google Scholar
  • 31. Lawrence T., Natoli G.: Transcriptional regulation of macrophagepolarization: enabling diversity with identity. Nat. Rev. Immunol.,2011; 11: 750-761
    Google Scholar
  • 32. Lehtonen A., Veckman V., Nikula T., Lahesmaa R., Kinnunen L.,Matikainen S., Julkunen I.: Differential expression of IFN regulatoryfactor 4 gene in human monocyte-derived dendritic cells and macrophages.J. Immunol., 2005; 175: 6570-6579
    Google Scholar
  • 33. Liao X., Sharma N., Kapadia F., Zhou G., Lu Y., Hong H., ParuchuriK., Mahabeleshwar G.H., Dalmas E., Venteclef N., Flask C.A., KimJ., Doreian B.W., Lu K.Q., Kaestner K.H., Hamik A., Clément K., JainM.K.: Krüppel-like factor 4 regulates macrophage polarization. J.Clin. Invest., 2011; 12: 2736-2749
    Google Scholar
  • 34. Liu Y., Nonnemacher M.R., Wigdahl B.: CCAAT/enhancer-bindingproteins and the pathogenesis of retrovirus infection. FutureMicrobiol., 2009; 4: 299-321
    Google Scholar
  • 35. Lloberas J., Soler C., Celada A.: The key role of PU.1/SPI-1 inB cells, myeloid cells and macrophages. Immunol. Today, 1999;20: 184-189
    Google Scholar
  • 36. Locati M., Mantovani A., Sica A.: Macrophage activation andpolarization as an adaptive component of innate immunity. Adv.Immunol., 2013; 120: 163-184
    Google Scholar
  • 37. Mancino A., Lawrence T.: Nuclear factor-κB and tumor-associatedmacrophages. Clin. Cancer Res., 2010; 16: 784-789
    Google Scholar
  • 38. Murray P.J., Wynn T.A.: Protective and pathogenic functions ofmacrophage subsets. Nat. Rev. Immunol., 2011; 11: 723-737
    Google Scholar
  • 39. Natoli G., Ghisletti S., Barozzi I.: The genomic landscapes ofinflammation. Genes Dev., 2011; 25: 101-106
    Google Scholar
  • 40. Nazimek K., Bryniarski K.: Aktywność biologiczna makrofagóww zdrowiu i chorobie. Postępy Hig. Med. Dośw., 2012; 66: 507-520
    Google Scholar
  • 41. Negishi H., Ohba Y., Yanai H., Takaoka A., Honma K., Yui K.,Matsuyama T., Taniguchi T., Honda K.: Negative regulation of Toll–like-receptor signaling by IRF-4. Proc. Natl. Acad. Sci. USA, 2005;102: 15989-15994
    Google Scholar
  • 42. Nishiyama C., Nishiyama M., Ito T., Masaki S., Masuoka N.,Yamane H., Kitamura T., Ogawa H., Okumura K.: Functional analysisof PU.1 domains in monocyte-specific gene regulation. FEBSLett., 2004; 561: 63-68
    Google Scholar
  • 43. Noti J.D., Johnson A.K., Dillon J.D.: The leukocyte integrin geneCD11d is repressed by gut-enriched Kruppel-like factor 4 in myeloidcells. J. Biol. Chem., 2005; 280: 3449-3457
    Google Scholar
  • 44. Nucera S., Biziato D., De Palma M.: The interplay betweenmacrophages and angiogenesis in development, tissue injury andregeneration. Int. J. Dev. Biol., 2011; 55: 495-503
    Google Scholar
  • 45. Odegaard J.I., Ricardo-Gonzalez R.R., Goforth M.H., Morel C.R.,Subramanian V., Mukundan L., Red Eagle A., Vats D., BrombacherF., Ferrante A.W., Chawla A.: Macrophage-specific PPARg controlsalternative activation and improves insulin resistance. Nature,2007; 447: 1116-1120
    Google Scholar
  • 46. Ohmori Y., Hamilton T.A.: IL-4-induced STAT6 suppresses IFN-γ-stimulated STAT1-dependent transcription in mouse macrophages.J. Immunol., 1997; 159: 5474-5482
    Google Scholar
  • 47. Pang W.J., Lin L.G., Xiong Y., Wei N., Wang Y., Shen Q.W., YangG.S.: Knockdown of PU.1 AS lncRNA inhibits adipogenesis throughenhancing PU.1 mRNA translation. J. Cell. Biochem., 2013;114: 2500-2512
    Google Scholar
  • 48. Parihar A., Eubank T.D., Doseff A.I.: Monocytes and macrophagesregulate immunity through dynamic networks of survival andcell death. J. Innate Immun., 2010; 2: 204-215
    Google Scholar
  • 49. Parsa R., Andresen P., Gillett A., Mia S., Zhang X.M., Mayans S.,Holmberg D., Harris R.A.: Adoptive transfer of immunomodulatoryM2 macrophages prevents type 1 diabetes in NOD mice. Diabetes,2012; 61: 2881-2892
    Google Scholar
  • 50. Pascual G., Fong A.L., Ogawa S., Gamliel A., Li A.C., Perissi V.,Rose D.W., Willson T.M., Rosenfeld M.G., Glass C.K.: A SUMOylation–dependent pathway mediates transrepression of inflammatoryresponse genes by PPAR-γ. Nature, 2005; 437: 759-763
    Google Scholar
  • 51. Rauch I., Müller M., Decker T.: The regulation of inflammationby interferons and their STATs. JAKSTAT, 2013; 2: e23820
    Google Scholar
  • 52. Rey-Giraud F., Hafner M., Ries C.H.: In vitro generation of monocyte-derivedmacrophages under serum-free conditions improvestheir tumor promoting functions. PLoS One, 2012; 7: e42656
    Google Scholar
  • 53. Ricardo S.D., van Goor H., Eddy A.A.: Macrophage diversity inrenal injury and repair. J. Clin. Invest. 2008; 118: 3522-3530
    Google Scholar
  • 54. Rosenbauer F., Owens B.M., Yu L., Tumang J.R., Steidl U., KutokJ.L., Clayton L.K., Wagner K., Scheller M., Iwasaki H., Liu C.,Hackanson B., Akashi K., Leutz A., Rothstein T.L., Plass C., TenenD.G.: Lymphoid cell growth and transformation are suppressed bya key regulatory element of the gene encoding PU.1. Nat. Genet.,2006; 38: 27-37
    Google Scholar
  • 55. Ruffell D., Mourkioti F., Gambardella A., Kirstetter P., LopezR.G., Rosenthal N., Nerlov C.: A CREB-C/EBPβ cascade induces M2macrophage-specific gene expression and promotes muscle injuryrepair. Proc. Natl. Acad. Sci. USA, 2009; 106: 17475-17480
    Google Scholar
  • 56. Satoh T., Takeuchi O., Vandenbon A., Yasuda K., Tanaka Y., KumagaiY., Miyake T., Matsushita K., Okazaki T., Saitoh T., Honma K.,Matsuyama T., Yui K., Tsujimura T., Standley D.M., Nakanishi K.,Nakai K., Akira S.: The Jmjd3-Irf4 axis regulates M2 macrophagepolarization and host responses against helminth infection. Nat.Immunol., 2010; 11: 936-944
    Google Scholar
  • 57. Savitsky D., Tamura T., Yanai H., Taniguchi T.: Regulation ofimmunity and oncogenesis by the IRF transcription factor family.Cancer Immunol. Immunother., 2010; 59: 489-510
    Google Scholar
  • 58. Semple R.K., Chatterjee V.K., O’Rahilly S.: PPARg and humanmetabolic disease. J. Clin. Invest., 2006; 116: 581-589
    Google Scholar
  • 59. Smale S.T.: Seq-ing LPS-induced enhancers. Immunity, 2010;32: 296-298
    Google Scholar
  • 60. Szanto A., Balint B.L., Nagy Z.S., Barta E., Dezso B., Pap A., SzelesL., Poliska S., Oros M., Evans R.M., Barak Y., Schwabe J., Nagy L.:STAT6 transcription factor is a facilitator of the nuclear receptorPPARγ-regulated gene expression in macrophages and dendriticcells. Immunity, 2010; 33: 699-712
    Google Scholar
  • 61. Takaoka A., Yanai H., Kondo S., Duncan G., Negishi H., MizutaniT., Kano S., Honda K., Ohba Y., Mak T.W., Taniguchi T.: Integral roleof IRF-5 in the gene induction programme activated by Toll-likereceptors. Nature, 2005; 434: 243-249
    Google Scholar
  • 62. Takeuch O., Akira S.: Epigenetic control of macrophage polarization.Eur. J. Immunol., 2011; 41: 2490-2493
    Google Scholar
  • 63. Taniguchi T., Ogasawara K., Takaoka A., Tanaka N.: IRF familyof transcription factors as regulators of host defense. Annu. Rev.Immunol., 2001; 19: 623-655
    Google Scholar
  • 64. Taylor P.R., Martinez-Pomares L., Stacey M., Lin H.H., BrownG.D., Gordon S.: Macrophage receptors and immune recognition.Annu. Rev. Immunol., 2005; 23: 901-944
    Google Scholar
  • 65. Tiemessen M.M., Jagger A.L., Evans H.G., van Herwijnen M.J.,John S., Taams L.S.: CD4+CD25+Foxp3+ regulatory T cells inducealternative activation of human monocytes/macrophages. Proc.Natl. Acad. Sci. USA, 2007; 104: 19446-19451
    Google Scholar
  • 66. van Wilgenburg B., Browne C., Vowles J., Cowley S.A.: Efficient,long term production of monocyte-derived macrophages from humanpluripotent stem cells under partly-defined and fully-definedconditions. PLoS One, 2013; 8: e71098
    Google Scholar
  • 67. Wang X.F., Wang H.S., Zhang F., Guo Q., Wang H., Wang K.F.,Zhang G., Bu X.Z., Cai S.H., Du J.: Nodal promotes the generationof M2-like macrophage and downregulates the expression of IL-12.Eur. J. Immunol., 2014; 44: 173-183
    Google Scholar
  • 68. Zhou D., Huang C., Lin Z., Zhan S., Kong L., Fang C., Li J.: Macrophagepolarization and function with emphasis on the evolvingroles of coordinated regulation of cellular signaling pathways. Cell.Signal., 2013; 26: 192-197
    Google Scholar

Pełna treść artykułu

Przejdź do treści