Sestryny jako modulatory procesów starzenia i chorób związanych z wiekiem
Bożena Gabryel 1 , Roksana Duszkiewicz 1Abstrakt
Sestryny to wysoce konserwatywne białka, które regulują wzrost, metabolizm, przeżycie i proliferację komórek w warunkach stresu oksydacyjnego, stresu genotoksycznego, hipoksji czy stresu retikulum endoplazmatycznego. Sestryny wpływają na sygnalizację komórkową przez hamowanie wytwarzania reaktywnych form tlenu, aktywację kinazy białkowej aktywowanej przez AMP (AMPK), hamowanie szlaku mTOR, a działają jako pozytywny regulator autofagii. W związku z tym coraz częściej wskazuje się ich rolę ochronną przed chorobami nowotworowymi, metabolicznymi, sercowo-naczyniowymi i neurodegeneracyjnymi. W artykule scharakteryzowano mechanizmy działania sestryn oraz ich znaczenie w starzeniu się i chorobach związanych z wiekiem. Omówione zostały również najnowsze badania wskazujące na istotne znaczenie fizjologiczne tych białek oraz udział w kluczowych szlakach sygnałowych kontrolujących metabolizm komórkowy i przeżycie w warunkach stresu.
Przypisy
- 1. Averous J., Fonseca B.D., Proud C.G.: Regulation of cyclin D1 expressionby mTORC1 signaling requires eukaryotic initiation factor4E-binding protein 1. Oncogene, 2008; 27: 1106 –1113
Google Scholar - 2. Bae E.J., Xu J., Oh D.Y., Bandyopadhyay G., Lagakos W.S., KeshwaniM., Olefsky J.M.: Liver-specific p70 S6 kinase depletion protectsagainst hepatic steatosis and systemic insulin resistance. J.Biol. Chem., 2012; 287: 18769 –18780
Google Scholar - 3. Bae S.H., Sung S.H., Oh S.Y., Lim J.M., Lee S.K., Park Y.N., LeeH.E., Kang D., Rhee S.G.: Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidativeliver damage. Cell Metab., 2013; 17: 73 –84
Google Scholar - 4. Blokh D., Stambler I.: The application of information theory forthe research of aging and aging-related diseases. Prog. Neurobiol.,2017; 157: 158 –173
Google Scholar - 5. Budanov A.V.: Stress-responsive sestrins link p53 with redoxregulation and mammalian target of rapamycin signaling. Antioxid.Redox Signal., 2011; 15: 1679 –1690
Google Scholar - 6. Budanov A.V., Karin M.: p53 target genes sestrin1 and sestrin2connect genotoxic stress and mTOR signaling. Cell, 2008; 134: 451–460
Google Scholar - 7. Budanov A.V., Kovaleva I., Tokarchuk A., Zheltukhin A.O., DalinaA.A., Lyamzaev K.G., Haidurov A., Chumakov P.M.: Mitochondriallocalization and function of SESN2. FASEB J., 2020; 34: 1
Google Scholar - 8. Budanov A.V., Lee J.H., Karin M.: Stressin’ Sestrins take an agingfight. EMBO Mol. Med., 2010; 2: 388 –400
Google Scholar - 9. Budanov A.V., Shoshani T., Faerman A., Zelin E., Kamer I., KalinskiH., Gorodin S., Fishman A., Chajut A., Einat P., Skaliter R.,Gudkov A.V., Chumakov P.M., Feinstein E.: Identification of a novelstress-responsive gene Hi95 involved in regulation of cell viability.Oncogene, 2002; 21: 6017 –6031
Google Scholar - 10. Buendia I., Michalska P., Navarro E., Gameiro I., Egea J., LeónR.: Nrf2-ARE pathway: An emerging target against oxidative stressand neuroinflammation in neurodegenerative diseases. Pharmacol.Ther., 2016; 157: 84 –104
Google Scholar - 11. Çelik H., Karahan H., Kelicen‐Uğur P.: Effect of atorvastatinon Aβ1-42‐induced alteration of SESN2, SIRT1, LC3II and TPP1protein expressions in neuronal cell cultures. J. Pharm. Pharmacol.,2020; 72: 424 –436
Google Scholar - 12. Chai D., Wang G., Zhou Z., Yang H., Yu Z.: Insulin increasesSestrin 2 content by reducing its degradation through the PI3K/mTOR signaling pathway. Int. J. Endocrinol., 2015; 2015: 505849
Google Scholar - 13. Chan E.Y.: Regulation and function of uncoordinated-51 likekinase proteins. Antioxid. Redox Signal., 2012; 17: 775 –785
Google Scholar - 14. Chen C.C., Jeon S.M., Bhaskar P.T., Nogueira V., SundararajanD., Tonic I., Park Y., Hay N.: FoxOs inhibit mTORC1 and activateAkt by inducing the expression of Sestrin3 and Rictor. Dev. Cell,2010; 18: 592 –604
Google Scholar - 15. Chen H., Wang X., Tong M., Wu D., Wu S., Chen J., Wang X.,Wang X., Kang Y., Tang H., Tang C., Jiang W.: Intermedin suppressespressure overload cardiac hypertrophy through activation of autophagy.PLoS One, 2013; 8: e64757
Google Scholar - 16. Chen K.B., Xuan Y., Shi W.J., Chi F., Xing R., Zeng Y.C.: Sestrin2expression is a favorable prognostic factor in patients with nonsmallcell lung cancer. Am. J. Transl. Res., 2016; 8: 1903 –1909
Google Scholar - 17. Chen S.D., Yang J.L., Lin T.K., Yang D.I.: Emerging roles of sestrinsin neurodegenerative diseases: Counteracting oxidative stressand beyond. J. Clin. Med., 2019; 8: 1001
Google Scholar - 18. Chen Y.R., Zweier J.L.: Cardiac mitochondria and reactive oxygenspecies generation. Circ. Res., 2014; 114: 524 –537
Google Scholar - 19. Chen Y.S., Chen S.D., Wu C.L., Huang S.S., Yang D.I.: Inductionof sestrin2 as an endogenous protective mechanism against amyloidbeta-peptide neurotoxicity in primary cortical culture. Exp.Neurol., 2014; 253: 63 –71
Google Scholar - 20. Cheung P.C., Salt I.P., Davies S.P., Hardie D.G., Carling D.: Characterizationof AMP-activated protein kinase gamma-subunit isoformsand their role in AMP binding. Biochem. J., 2000; 346: 659–669
Google Scholar - 21. Cordani M., Sánchez-Álvarez M., Strippoli R., Bazhin A.V., DonadelliM.: Sestrins at the interface of ROS control and autophagyregulation in health and disease. Oxid. Med. Cell. Longev., 2019;2019: 1283075
Google Scholar - 22. Costanzo-Garvey D.L., Pfluger P.T., Dougherty M.K., Stock J.L.,Boehm M., Chaika O., Fernandez M.R., Fisher K., Kortum R.L., HongE.G., Jun J.Y., Ko H.J., Schreiner A., Volle D.J., Treece T. i wsp.: KSR2is an essential regulator of AMP kinase, energy expenditure, andinsulin sensitivity. Cell Metab., 2009; 10: 366 –378
Google Scholar - 23. Crute B.E., Seefeld K., Gamble J., Kemp B.E., Witters L.A.: Functionaldomains of the α1 catalytic subunit of the AMP-activatedprotein kinase. J. Biol. Chem., 1998; 273: 35347 –35354
Google Scholar - 24. Cuervo A.M., Macian F.: Autophagy and the immune functionin aging. Curr. Opin. Immunol., 2014; 29: 97 –104
Google Scholar - 25. Ding B., Parmigiani A., Yang C., Budanov A.V.: Sestrin2 facilitatesdeath receptor-induced apoptosis in lung adenocarcinomacells through regulation of XIAP degradation. Cell Cycle, 2015;14: 3231 –3241
Google Scholar - 26. Dong B., Xue R., Sun Y., Dong Y., Liu C.: Sestrin 2 attenuates neonatalrat cardiomyocyte hypertrophy induced by phenylephrinevia inhibiting ERK1/2. Mol. Cell Biochem., 2017; 433: 113 –123
Google Scholar - 27. Fan W., Tang Z., Chen D., Moughon D., Ding X., Chen S., ZhuM., Zhong Q.: Keap1 facilitates p62-mediated ubiquitin aggregateclearance via autophagy. Autophagy, 2010; 6: 614 –621
Google Scholar - 28. Finkel T., Holbrook N.J.: Oxidants, oxidative stress and the biologyof ageing. Nature, 2000; 408: 239 –247
Google Scholar - 29. Gabryel B., Kost A., Kasprowska D.: Neuronal autophagy incerebral ischemia – a potential target for neuroprotective strategies?Pharmacol. Rep., 2012; 64: 1 –15
Google Scholar - 30. Gkikas I., Petratou D., Tavernarakis N.: Longevity pathwaysand memory aging. Front Genet., 2014; 5: 155
Google Scholar - 31. Hardie D.G., Ross F.A., Hawley S.A.: AMPK: A nutrient and energysensor that maintains energy homeostasis. Nat. Rev. Mol. CellBiol., 2012; 13: 251 –262
Google Scholar - 32. Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., MiuraY., Iemura S., Natsume T., Takehana K., Yamada N., Guan J.L., OshiroN., Mizushima N.: Nutrient-dependent mTORC1 association withthe ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol.Cell, 2009; 20: 1981 –1991
Google Scholar - 33. Hou Y.S., Guan J.J., Xu H.D., Wu F., Sheng R., Qin Z.H.: Sestrin2protects dopaminergic cells against rotenone toxicity throughAMPK-dependent autophagy activation. Mol. Cell. Biol., 2015; 35: 2740 –2751
Google Scholar - 34. Howell J.J., Manning B.D.: mTOR couples cellular nutrientsensing to organismal metabolic homeostasis. Trends Endocrinol.Metab., 2011; 22: 94 –102
Google Scholar - 35. Hwang H.J., Jung T.W., Choi J.H., Lee H.J., Chung H.S., Seo J.A.,Kim S.G., Kim N.H., Choi K.M., Choi D.S., Baik S.H., Yoo H.J.: Knockdownof sestrin2 increases pro-inflammatory reactions and ERstress in the endothelium via an AMPK dependent mechanism.Biochim. Biophys. Acta, 2017; 1863: 1436 –1444
Google Scholar - 36. Hybertson B.M., Gao B., Bose S.K., McCord J.M.: Oxidative stressin health and disease: The therapeutic potential of Nrf2 activation.Mol. Aspects Med., 2011; 32: 234 –246
Google Scholar - 37. Inoki K., Guan K.L.: Tuberous sclerosis complex, implicationfrom a rare genetic disease to common cancer treatment. Hum.Mol. Genet., 2009; 18: R94 –R100
Google Scholar - 38. Kansanen E., Kuosmanen S.M., Leinonen H., Levonen A.L.: TheKeap1-Nrf2 pathway: Mechanisms of activation and dysregulationin cancer. Redox Biol., 2013; 1: 45 –49
Google Scholar - 39. Karpińska A., Gromadzka G.: Stres oksydacyjny i naturalnemechanizmy antyoksydacyjne – znaczenie w procesie neurodegeneracji.Od mechanizmów molekularnych do strategii terapeutycznych.Postępy Hig. Med. Dośw., 2013; 67: 43 –53
Google Scholar - 40. Kim G.T., Lee S.H., Kim Y.M.: Quercetin regulates sestrin 2-AMPK-mTOR signaling pathway and induces apoptosis via increasedintracellular ROS in HCT116 colon cancer cells. J. Cancer Prev.,2013; 18: 264 –270
Google Scholar - 41. Kim H., An S., Ro S.H., Teixeira F., Park G.J., Kim C., Cho C.S., KimJ.S., Jakob U., Lee J.H., Cho U.S.: Janus-faced Sestrin2 controls ROSand mTOR signalling through two separate functional domains.Nat. Commun., 2015; 6: 10025
Google Scholar - 42. Kim H., Yin K., Falcon D.M., Xue X.: The interaction of Heminand Sestrin2 modulates oxidative stress and colon tumor growth.Toxicol. Appl. Pharmacol., 2019; 374: 77 –85
Google Scholar - 43. Kim J., Kundu M., Viollet B., Guan K.L.: AMPK and mTOR regulateautophagy through direct phosphorylation of Ulk1. Nat. CellBiol., 2011; 13: 132 –141
Google Scholar - 44. Kim M., Sujkowski A., Namkoong S., Gu B., Cobb T., Kim B.,Kowalsky A.H., Cho C.S., Semple I., Ro S.H., Davis C., Brooks S.V.,Karin M., Wessells R.J., Lee J.H.: Sestrins are evolutionarily conservedmediators of exercise benefits. Nat. Commun., 2020; 11: 190
Google Scholar - 45. Kim M.J., Bae S.H., Ryu J.C., Kwon Y., Oh J.H., Kwon J., MoonJ.S., Kim K., Miyawaki A., Lee M.G., Shin J., Kim Y.S., Kim C.H., RyterS.W., Choi A.M. i wsp.: SESN2/sestrin2 suppresses sepsis by inducingmitophagy and inhibiting NLRP3 activation in macrophages.Autophagy, 2016; 12: 1272 –1291
Google Scholar - 46. Kovaleva I.E., Tokarchuk A.V., Zheltukhin A.O., Dalina A.A.,Safronov G.G., Evstafieva A.G., Lyamzaev K.G., Chumakov P.M.,Budanov A.V.: Mitochondrial localization of SESN2. PLoS One,2020; 15: e0226862
Google Scholar - 47. Laplante M., Sabatini D.M.: mTOR signaling at a glance. J. CellSci., 2009; 122: 3589 –3594
Google Scholar - 48. Lee J.H., Budanov A.V., Karin M.: Sestrins orchestrate cellularmetabolism to attenuate aging. Cell Metab., 2013; 18: 792 –801
Google Scholar - 49. Lee J.H., Budanov A.V., Park E.J., Birse R., Kim T.E., Perkins G.A.,Ocorr K., Ellisman M.H., Bodmer R., Bier E., Karin M.: Sestrin as afeedback inhibitor of TOR that prevents age-related pathologies.Science, 2010; 327: 1223 –1228
Google Scholar - 50. Lee J.H., Budanov A.V., Talukdar S., Park E.J., Park H.L., ParkH.W., Bandyopadhyay G., Li N., Aghajan M., Jang I., Wolfe A.M., PerkinsG.A., Ellisman M.H., Bier E., Scadeng M. i wsp.: Maintenanceof metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab.,2012; 16: 311 –321
Google Scholar - 51. Liao H.H., Ruan J.Y., Liu H.J., Liu Y., Feng H., Tang Q.Z.: Sestrinfamily may play important roles in the regulation of cardiac pathophysiology.Int. J. Cardiol., 2016; 202: 183 –184
Google Scholar - 52. Liu G.Y., Sabatini D.M.: mTOR at the nexus of nutrition, growth,ageing and disease. Nat. Rev. Mol. Cell Biol., 2020; 21: 183 –203
Google Scholar - 53. Liu X., Niu Y., Yuan H., Huang J., Fu L.: AMPK binds to Sestrinsand mediates the effect of exercise to increase insulin-sensitivitythrough autophagy. Metabolism, 2015; 64: 658 –665
Google Scholar - 54. López-Otín C., Blasco M.A., Partridge L., Serrano M., KroemerG.: The hallmarks of aging. Cell, 2013; 153: 1194 –1217
Google Scholar - 55. Mamane Y., Petroulakis E., Rong L., Yoshida K., Ler L.W., SonenbergN.: eIF4E – from translation to transformation. Oncogene,2004; 23: 3172 –3179
Google Scholar - 56. Miki Y., Tanji K., Mori F., Utsumi J., Sasaki H., Kakita A., TakahashiH., Wakabayashi K.: Autophagy mediators (FOXO1, SESN3and TSC2) in Lewy body disease and aging. Neurosci. Lett., 2018;684: 35 –41
Google Scholar - 57. Mizushima N.: Autophagy: Process and function. Genes Dev.,2007; 21: 2861 –2873
Google Scholar - 58. Morrison A., Chen L., Wang J., Zhang M., Yang H., Ma Y.,Budanov A., Lee J.H., Karin M., Li J.: Sestrin2 promotes LKB1-mediatedAMPK activation in the ischemic heart. FASEB J., 2015; 29: 408 –417
Google Scholar - 59. Niture S.K., Khatri R., Jaiswal A.K.: Regulation of Nrf2 – an update.Free Radic. Biol. Med., 2014; 66: 36 –44
Google Scholar - 60. Oakhill J.S., Scott J.W., Kemp B.E.: AMPK functions as an adenylatecharge-regulated protein kinase. Trends Endocrinol. Metab.,2012; 23: 125 –132
Google Scholar - 61. Ozcan U., Cao Q., Yilmaz E., Lee A.H., Iwakoshi N.N., OzdelenE., Tuncman G., Görgün C., Glimcher L.H., Hotamisligil G.S.: Endoplasmicreticulum stress links obesity, insulin action, and type 2diabetes. Science, 2004; 306: 457 –461
Google Scholar - 62. Piantadosi C.A., Carraway M.S., Babiker A., Suliman H.B.: Hemeoxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1.Circ. Res., 2008; 103: 1232 –1240
Google Scholar - 63. Pickard L., Palladino G., Okosun J.: Follicular lymphoma genomics.Leuk. Lymphoma, 2020; 61: 2313 –2323
Google Scholar - 64. Polewska J.: Autofagia – mechanizm molekularny, apoptoza inowotwory. Postępy Hig. Med. Dośw., 2012; 66: 921 –936
Google Scholar - 65. Quan N., Wang L., Chen X., Luckett C., Cates C., Rousselle T.,Zheng Y., Li J.: Sestrin2 prevents age-related intolerance to postmyocardial infarction via AMPK/PGC-1α pathway. J. Mol. Cell. Cardiol.,2018; 115: 170 –178
Google Scholar - 66. Rai N., Dey S.: Protective response of Sestrin under stressfulconditions in aging. Ageing Res. Rev., 2020; 64: 101186
Google Scholar - 67. Reznick R.M., Zong H., Li J., Morino K., Moore I.K., Yu H.J., LiuZ.X., Dong J., Mustard K.J., Hawley S.A., Befroy D., Pypaert M., HardieD.G., Young L.H., Shulman G.I.: Aging-associated reductions inAMP-activated protein kinase activity and mitochondrial biogenesis.Cell Metab., 2007; 5: 151–156
Google Scholar - 68. Ro S.H., Semple I.A., Park H., Park H., Park H.W., Kim M., KimJ.S., Lee J.H.: Sestrin2 promotes Unc-51-like kinase 1 mediatedphosphorylation of p62/sequestosome-1. FEBS J., 2014; 281: 3816–3827
Google Scholar - 69. Sablina A.A.., Budanov A.V., Ilyinskaya G.V., Agapova L.S.,Kravchenko J.E., Chumakov P.M.: The antioxidant function of thep53 tumor suppressor. Nat. Med., 2005; 11: 1306 –1313
Google Scholar - 70. Sánchez-Álvarez M., Strippoli R., Donadelli M., Bazhin A.V.,Cordani M.: Sestrins as a therapeutic bridge between ROS and autophagyin cancer. Cancers, 2019; 11: 1415
Google Scholar - 71. Sanli T., Linher-Melville K., Tsakiridis T., Singh G.: Sestrin2modulates AMPK subunit expression and its response to ionizingradiation in breast cancer cells. PLoS One, 2012; 7: e32035
Google Scholar - 72. Saxton R.A., Knockenhauer K.E., Wolfson R.L., ChantranupongL., Pacold M.E., Wang T., Schwartz T.U., Sabatini D.M.: Structuralbasis for leucine sensing by the Sestrin2-mTORC1 pathway. Science,2016; 351: 53 –58
Google Scholar - 73. Shaw R.J.: LKB1 and AMP-activated protein kinase controlof mTOR signalling and growth. Acta Physiol., 2009; 196: 65 –80
Google Scholar - 74. Shin B.Y., Jin S.H., Cho I.J., Ki S.H.: Nrf2-ARE pathway regulatesinduction of Sestrin-2 expression. Free Radic. Biol. Med.,2012; 53: 834 –841
Google Scholar - 75. Sun G., Xue R., Yao F., Liu D., Huang H., Chen C., Li Y., Zeng J.,Zhang G., Dong Y., Liu C.: The critical role of Sestrin 1 in regulatingthe proliferation of cardiac fibroblasts. Arch. Biochem. Biophys.,2014; 542: 1 –6
Google Scholar - 76. Sun W., Wang Y., Zheng Y., Quan N.: The emerging role of sestrin2in cell metabolism, and cardiovascular and age-related diseases.Aging Dis., 2020; 11: 154 –163
Google Scholar - 77. Tao R., Xiong X., Liangpunsakul S., Dong X.C.: Sestrin 3 proteinenhances hepatic insulin sensitivity by direct activation of themTORC2-Akt signaling. Diabetes, 2015; 64: 1211 –1223
Google Scholar - 78. Velasco-Miguel S., Buckbinder L., Jean P., Gelbert L., TalbottR., Laidlaw J., Seizinger B., Kley N.: PA26, a novel target of the p53tumor suppressor and member of the GADD family of DNA damageand growth arrest inducible genes. Oncogene, 1999; 18: 127 –137
Google Scholar - 79. Wei J.L., Fu Z.X., Fang M., Guo J.B., Zhao Q.N., Lu W.D., Zhou Q.Y.:Decreased expression of sestrin 2 predicts unfavorable outcome incolorectal cancer. Oncol. Rep., 2015; 33: 1349 –1357
Google Scholar - 80. Wolfson R.L., Chantranupong L., Saxton R.A., Shen K., ScariaS.M., Cantor J.R., Sabatini D.M.: Sestrin2 is a leucine sensor for themTORC1 pathway. Science, 2016; 351: 43 –48
Google Scholar - 81. Wullschleger S., Loewith R., Hall M.N.: TOR signaling in growthand metabolism. Cell, 2006; 124: 471 –484
Google Scholar - 82. Xie M., Zhang D., Dyck J.R., Li Y., Zhang H., Morishima M., MannD.L., Taffet G.E., Baldini A., Khoury D.S., Schneider M.D.: A pivotalrole for endogenous TGF-β-activated kinase-1 in the LKB1/AMPactivatedprotein kinase energy-sensor pathway. Proc. Natl. Acad.Sci. USA, 2006; 103: 17378 –17383
Google Scholar - 83. Xu Y.P., Han F., Tan J.: Edaravone protects the retina againstischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway. Mol. Med. Rep., 2017; 16: 9210 –9216
Google Scholar - 84. Xue R., Zeng J., Chen Y., Chen C., Tan W., Zhao J., Dong B., SunY., Dong Y., Liu C.: Sestrin 1 ameliorates cardiac hypertrophy viaautophagy activation. J. Cell. Mol. Med., 2017; 21: 1193 –1205
Google Scholar - 85. Yang J.H., Kim K.M., Kim M.G., Seo K.H., Han J.Y., Ka S.O., ParkB.H., Shin S.M., Ku S.K., Cho I.J., Ki S.H.: Role of sestrin2 in the regulationof proinflammatory signaling in macrophages. Free Radic.Biol. Med., 2015; 78: 156 –167
Google Scholar - 86. Yu R., Chen C., Mo Y.Y., Hebbar V., Owuor E.D., Tan T.H., KongA.N.: Activation of mitogen-activated protein kinase pathwaysinduces antioxidant response element-mediated gene expressionvia a Nrf2-dependent mechanism. J. Biol. Chem., 2000; 275: 39907–39913
Google Scholar - 87. Yu Y., Yoon S.O., Poulogiannis G., Yang Q., Ma X.M., Villén J.,Kubica N., Hoffman G.R., Cantley L.C., Gygi S.P., Blenis J.: Phosphoproteomicanalysis identifies Grb10 as an mTORC1 substrate thatnegatively regulates insulin signaling. Science, 2011; 332: 1322–1326
Google Scholar - 88. Zhang J.: Teaching the basics of autophagy and mitophagy toredox biologists –mechanisms and experimental approaches. RedoxBiol., 2015; 4: 242–259
Google Scholar - 89. Zhang Z., Qian Q., Li M., Shao F., Ding W.X., Lira V.A., Chen S.X.,Sebag S.C., Hotamisligil G.S., Cao H., Yang L.: The unfolded proteinresponse regulates hepatic autophagy by sXBP1-mediated activationof TFEB. Autophagy, 2020; DOI: 10.1080/15548627.2020.1788889
Google Scholar - 90. Zhou D., Zhan C., Zhong Q., Li S.: Upregulation of sestrin-2expression via P53 protects against 1-methyl-4-phenylpyridinium(MPP+) neurotoxicity. J. Mol. Neurosci., 2013; 51: 967 –975
Google Scholar - 91. Zighelboim I., Goodfellow P.J., Schmidt A.P., Walls K.C., MallonM.A., Mutch D.G., Yan P.S., Huang T.H., Powell M.A.: Differentialmethylation hybridization array of endometrial cancers revealstwo novel cancer-specific methylation markers. Clin. Cancer Res.,2007; 13: 2882 –2889
Google Scholar