Starzenie się układu immunologicznego i jego konsekwencje dla zdrowia
Anna Tylutka 1 , Agnieszka Zembroń-Łacny 1Abstrakt
Starzenie się układu odpornościowego, określane terminem immunosenescencji (immunosenescence), jest procesem postępującym i nieodwracalnym obejmującym obniżenie liczby dziewiczych limfocytów T i limfocytów B, aktywności cytotoksycznej komórek NK oraz zaburzenia równowagi pro- i przeciwzapalnej poprzez zmiany wytwarzania IL-2, -4, -6, -10, -17, TNF-α, IFN-γ i in. Z wiekiem nasila się autoimmunizacja i uogólniony stan zapalny z jednoczesnym deficytem immunologicznym, zwiększając podatność na choroby infekcyjne, obniżając reaktywność na szczepienia profilaktyczne, zachorowalność na choroby autoimmunologiczne. Zwiększa się ryzyko infekcyjnych powikłań urazów, zaostrzają się objawy chorób przewlekłych z niedostateczną reakcją na obecność komórek nowotworowych. Od lat na podstawie analizy częstotliwości zakażeń wirusowych i bakteryjnych, wskaźników immunologicznych i zapalenia podejmowane są próby opracowania profilu odpornościowego ryzyka (immune risk profile, IRP) oraz skutecznych metod profilaktyki zaburzeń funkcji układu immunologicznego i przedłużenia sprawności funkcjonalnej osób starszych.
Przypisy
- 1. Al-Attar A., Presnell S.R., Clasey J.L., Long D.E., Walton R.G., SextonM., Starr M.E., Kern P.A., Peterson C.A., Lutz C.T.: Human bodycomposition and immunity: Visceral adipose tissue produces IL-15and muscle strength inversely correlates with NK cell function inelderly humans. Front. Immunol., 2018; 9: 440
Google Scholar - 2. Arnon T.I., Lev M., Katz G., Chernobrov Y., Porgador A., MandelboimO.: Recognition of viral hemagglutinins by NKp44 but not byNKp30. Eur. J. Immunol., 2001; 31: 2680–2689
Google Scholar - 3. Asif N., Iqbal R., Nazir C.F.: Human immune system during sleep.Am. J. Clin. Exp. Immunol., 2017; 6: 92–96
Google Scholar - 4. Bancos S., Phipps R.P.: Memory B cells from older people expressnormal levels of cyclooxygenase-2 and produce higher levels of IL-6and IL-10 upon in vitro activation. Cell. Immunol., 2010; 266: 90–97
Google Scholar - 5. Bender B.S., Nagel J.E., Adler W.H., Andres R.: Absolute peripheralblood lymphocyte count and subsequent mortality of elderlyman. The Baltimore longitudinal study of aging. J. Am. Geriatr. Soc.,1986; 34: 649–654
Google Scholar - 6. Bulati M., Buffa S., Candore G., Caruso C., Dunn-Walters D.K., PellicanòM., Wu Y.C., Colona Romano G.: B cells and immunosenescence:A focus on IgG+IgD−CD27−(DN) B cells in aged humans. Ageing. Res.Rev., 2011; 10: 274–284
Google Scholar - 7. Camous X., Pera A., Solana R., Larbi A.: NK cells in healthy agingand age-associated diseases. J. Biomed. Biotechnol., 2012; 2012: 195956
Google Scholar - 8. Campos C., Pera A., Sanchez-Correa B., Alonso C., Lopez-FernandezI., Morgado S., Tarazona R., Solana R.: Effect of age and CMV onNK cell subpopulations. Exp. Gerontol., 2014; 54: 130–137
Google Scholar - 9. Cano L.E., Lopera D.E.: Introduction to T and B lymphocytes. W:Autoimmunity: From Bench to Bedside, red.: J.M. Anaya, Y. Shoenfeld,A. Rojas-Villarraga, R.A. Levy, R. Cervera. El Rosario UniversityPress, Bogota (Colombia) 2013
Google Scholar - 10. Carrasco Y.R., Fleire S.J., Cameron T., Dustin M.L., Batista F.D.:LFA-1/ICAM-1 interaction lowers the threshold of B cell activationby facilitating B cell adhesion and synapse formation. Immunity.,2004; 20: 589–599
Google Scholar - 11. Cen L., Yang C., Huang S., Zhou M., Tang X., Li K., Guo W., WuZ., Mo M., Xiao Y., Chen X., Yang X., Huang Q., Chen C., Qu S., Xu P.:Peripheral lymphocyte subsets as a marker of Parkinson’s disease ina Chinese population. Neurosci. Bull., 2017; 33: 493–500
Google Scholar - 12. Chidrawar S.M., Khan N., Chan Y.L., Nayak L., Moss P.A.: Ageingis associated with a decline in peripheral blood CD56 bright NK cells.Immun. Ageing., 2006; 3: 10
Google Scholar - 13. Chong Y., Ikematsu H., Yamaji K., Nishimura M., Nabeshima S.,Kashiwagi S., Hayashi J.: CD27+ (memory) B cell decrease and apoptosis-resistant CD27− (naive) B cell increase in aged humans: Implicationsfor age-related peripheral B cell developmental disturbances.Int. Immunol., 2005; 17: 383–390
Google Scholar - 14. Colonna-Romano G., Bulati M., Aquino A., Pellicanò M., VitelloS., Lio D., Candore G., Caruso C.: A double-negative (IgD−CD27−) B cellpopulation is increased in the peripheral blood of elderly people.Mech. Ageing Dev., 2009; 130: 681–690
Google Scholar - 15. Cooper M.A., Fehniger T.A., Caligiuri M.A.: The biology of humannatural killer-cell subsets. Trends. Immunol., 2001; 22: 633–640
Google Scholar - 16. Corley J., Shivappa N., Hébert J.R., Starr J.M., Deary I.J.: Associationsbetween dietary inflammatory index scores and inflammatorybiomarkers among older adults in the Lothian Birth Cohort 1936Study. J. Nutr. Health. Aging., 2019; 23: 628-636
Google Scholar - 17. Drela N.: Immunologiczna teoria starzenia. Post. Bioch., 2014;60: 221-232
Google Scholar - 18. Dunn-Walters D.K.: The ageing human B cell repertoire: A failureof selection? Clin. Exp. Immunol., 2016; 183: 50–56
Google Scholar - 19. Esin S., Batoni G., Counoupas C., Stringaro A., BrancatisanoF.L., Colone M., Maisetta G., Florio W., Arancia G., Campa M.: Directbinding of human NK cell natural cytotoxicity receptor NKp44 tothe surfaces of mycobacteria and other bacteria. Infect. Immun.,2008; 76: 1719–1727
Google Scholar - 20. Farr A.G., Sidman C.L.: Reduced expression of Ia antigens bythymic epithelial cells of aged mice. J. Immunol., 1984; 133: 98–103
Google Scholar - 21. Flórez-Álvarez L., Hernandez J.C., Zapata W.: NK cells in HIV-1infection: From basic science to vaccine strategies. Front. Immunol.,2018; 9: 2290
Google Scholar - 22. Frasca D., Diaz A., Romero M., Landin A.M., Blomberg B.B.: Ageeffects on B cells and humoral immunity in humans. Ageing Res.Rev., 2011; 10: 330–335
Google Scholar - 23. Frasca D., Diaz A., Romero M., Thaller S., Blomberg B.B.: Metabolicrequirements of human pro-inflammatory B cells in aging andobesity. PLoS One, 2019; 14: e0219545
Google Scholar - 24. Frasca D., Landin A.M., Riley R.L., Blomberg B.B.: Mechanismsfor decreased function of B cells in aged mice and humans. J. Immunol.,2008; 180: 2741–2746
Google Scholar - 25. Fu B., Tian Z., Wei H.: Subsets of human natural killer cells andtheir regulatory effects. Immunology, 2014; 141: 483–489
Google Scholar - 26. Fuentes E., Fuentes M., Alarcón M., Palomo I.: Immune systemdysfunction in the elderly. An. Acad. Bras. Cienc., 2017; 89: 285–299
Google Scholar - 27. Fülop T., Larbi A., Dupuis G., Le Page A., Frost E.H., Cohen A.A.,Witkowski J.M., Franceschi C.: Immunosenescence and inflammagingas two sides of the same coin: Friends or foes? Front. Immunol.,2018; 8: 1960
Google Scholar - 28. Gala K., Burdzinska A., Paczek L.: Mezenchymalne komorki macierzysteszpiku kostnego a starzenie. Post. Biol. Komórki, 2010;37: 89–106
Google Scholar - 29. Geginat J., Sallusto F., Lanzavecchia A.: Cytokine-driven proliferationand differentiation of human naive, central memory, andeffector memory CD4+ T cells. J. Exp. Med., 2001; 194: 1711–1719
Google Scholar - 30. Goronzy J.J., Weyand C.M.: Successful and maladaptive T cellsaging. Immunity, 2017; 46: 364–378
Google Scholar - 31. Gounder S.S., Abdullah B.J., Radzuanb N.E., Zain F.D., Sait N.B.,Chua C., Subramani B.: Effect of aging on NK cell population andtheir proliferation at ex vivo culture condition. Anal. Cell. Pathol.,2018; 2018: 7871814
Google Scholar - 32. Guzik T.J., Cosentino F.: Epigenetics and immunometabolismin diabetes and aging. Antioxid. Redox. Signal., 2018; 29: 257–274
Google Scholar - 33. Haynes L., Maue A.C.: Effects of aging on T cell function. Curr.Opin. Immunol., 2009; 21: 414–417
Google Scholar - 34. Hazeldine J., Lord J.M.: The impact of ageing on natural killercell function and potential consequences for health in older adults.Ageing. Res. Rev., 2013; 12: 1069–1078
Google Scholar - 35. Hecht M.L., Rosental B., Horlacher T., Hershkovitz O., De Paz J.L.,Noti C., Schauer S., Porgador A., Seeberger P.H.: Natural cytotoxicityreceptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J. Proteome Res., 2009; 8: 712–720
Google Scholar - 36. Inoue S., Saito M., Kotani J.: Immunosenescence in neurocriticalcare. J. Intensive Care, 2018; 6: 65
Google Scholar - 37. Kang I., Hong M.S., Nolasco H., Park S.H., Dan J.M., Choi J.Y.,Craft J.: Age associated change in the frequency of memory CD4+ Tcells impairs long term CD4+ T cell responses to influenza vaccine.J. Immunol., 2004; 173: 673–681
Google Scholar - 38. Keenan C.R., Allan R.S.: Epigenomic drivers of immune dysfunctionin aging. Aging Cell., 2019; 18: e12878
Google Scholar - 39. Kolar G.R., Mehta D., Wilson P.C., Capra J.D.: Diversity of theIg repertoire is maintained with age in spite of reduced germinalcentre cells in human tonsil lymphoid tissue. Scand. J. Immunol.,2006; 64: 314–324
Google Scholar - 40. Lara J., Cooper R., Nissan J., Ginty A.T., Khaw K.T., Deary I.J., LordJ.M., Kuh D., Mathers J.C.: A proposed panel of biomarkers of healthyageing. BMC Med., 2015; 13: 222
Google Scholar - 41. Lee I.M., Shiroma E.J., Kamada M., Bassett D.R., Matthews C.E.,Buring J.E.: Association of step volume and intensity with all-causemortality in older women. JAMA Intern. Med., 2019; 179: 1105–1112
Google Scholar - 42. Le Garff-Tavernier M., Béziat V., Decocq J., Siguret V., GandjbakhchF., Pautas E., Debré P., Merle-Beral H., Vieillard V.: Human NKcells display major phenotypic and functional changes over the lifespan. Aging Cell., 2010; 9: 527–535
Google Scholar - 43. Lynch L.A., O’Connell J.M., Kwasnik A.K., Cawood T.J., O’FarrellyC., O’Shea D.B.: Are natural killer cells protecting the metabolicallyhealthy obese patient? Obesity, 2009; 17: 601–605
Google Scholar - 44. Ma S., Wang C., Mao X., Hao Yi.: B cell dysfunction associatedwith aging and autoimmune diseases. Front. Immunol., 2019; 10: 318
Google Scholar - 45. Malaguarnera L., Cristaldi E., Lipari H., Malaguarnera M.: Acquiredimmunity: Immunosenescence and physical activity. Eur. Rev.Aging. Phys. Act., 2008; 5: 61
Google Scholar - 46. Martin V., Wu Y.C., Kipling D., Dunn-Walters D.K.: Age-relatedaspects of human IgM+ B cell heterogeneity. Ann. N. Y. Acad. Sci.,2015; 1362: 153–163
Google Scholar - 47. Martorana A., Balistreri C.R., Bulati M., Buffa S., Azzarello D.M.,Camarda C., Monastero R., Caruso C., Colonna-Romano G.: Doublenegative (CD19+IgG+IgD-CD27-) B lymphocytes: a new insight fromtelomerase in healthy elderly, in centenarian offspring and in Alzheimer’sdisease patients. Immunol. Lett., 2014; 162: 303–309
Google Scholar - 48. Mehr R., Melamed D.: Reversing B cell aging. Aging, 2011; 3:438–443
Google Scholar - 49. Murray M.A., Chotirmall S.H.: The Impact of immunosenescenceon pulmonary disease. Mediators. Inflamm., 2015; 2015: 692546
Google Scholar - 50. O’Rourke R.W., Kay T., Scholz M.H., Diggs B., Jobe B.A., LewinsohnD.M., Bakke A.C.: Alterations in T-cell subset frequency in peripheralblood in obesity. Obes. Surg., 2005; 15: 1463–1468
Google Scholar - 51. O’Shea D., Cawood T.J., O’Farrelly C., Lynch L.: Natural killer cellsin obesity: Impaired function and increased susceptibility to the effectsof cigarette smoke. PLoS One., 2010; 5: e8660
Google Scholar - 52. Palmer D.B.: The effect of age on thymic function. Front. Immunol.,2013; 4: 316
Google Scholar - 53. Panda A., Qian F,. Mohanty S., van Duin D., Newman F.K., ZhangL., Chen S., Towle V., Belshe R.B., Fikrig E., Allore H.G., MontgomeryR.R., Shaw A.C.: Age-associated decrease in TLR function in primaryhuman dendritic cells predicts influenza vaccine response. J. Immunol.,2010; 184: 2518–2527
Google Scholar - 54. Pawelec G.: Immune signatures associated with mortality differin elderly populations from different birth cohorts and countrieseven within northern Europe. Mech. Ageing Dev., 2019; 177: 182–185
Google Scholar - 55. Pedersen B.K.: The physiology of optimizing health with focuson exercise as medicine. Annu Rev Physiol., 2019; 81: 607–627
Google Scholar - 56. Pertovaara M., Raitala A., Lehtimäki T., Karhunen P.J., Oja S.S.,Jylhä M., Hervonen A., Hurme M.: Indoleamine 2,3-dioxygenase activityin nonagenarians is markedly increased and predicts mortality.Mech. Ageing. Dev., 2006; 127: 497–499
Google Scholar - 57. Pessoa de Magalhães R.J., Vidriales M.B., Paiva B., Fernandez-Gimenez C., Garcia-Sanz R., Mateos M.V., GutierrezN.C., LecrevisseQ., Blanco J.F., Hernandez J., de las Heras N., Martinez-Lopez J., RoigM., Costa E.S., Ocio E.M., et al.: Analysis of the immune system ofmultiple myeloma patients achieving long-term disease control bymultidimensional flow cytometry. Haematologica, 2013; 98: 79–86
Google Scholar - 58. Pilarski L.M., Yacyshyn B.R., Jensen G.S., Pruski E., Pabst H.F.:Beta 1 integrin (CD29) expression on human postnatal T cell subsetsdefined by selective CD45 isoform expression. J. Immunol., 1991;147: 830–837
Google Scholar - 59. Pinti M., Appay V., Campisi J., Frasca D., Fülöp T., Sauce D., LarbiA., Weinberger B., Cossarizza A.: Aging of the immune system: Focuson inflammation and vaccination. Eur. J. Immunol., 2016; 46:2286–2301
Google Scholar - 60. Pisegna S., Zingoni A., Pirozzi G., Cinque B., Cifone M.G., MorroneS., Piccoli M., Frati L., Palmieri G., Santoni A.: Src-dependentSyk activation controls CD69-mediated signaling and function onhuman NK cells. J. Immunol., 2002; 169: 68–74
Google Scholar - 61. Ponnappan S., Ponnappan U.: Aging and immune function: Molecularmechanisms to interventions. Antioxid Redox Signal., 2011;14: 1551–1585
Google Scholar - 62. Salam N., Rane S., Das R., Faulkner M., Gund R., Kandpal U., LewisV.,Mattoo H., Prabhu S., Ranganathan V.,Durdik J., George A., RathS., Bal V.: T cell ageing: Effects of age on development, survival &function. Indian. J. Med. Res., 2013; 138: 595–608
Google Scholar - 63. Santos R.V., Viana V.A., Boscolo R.A., Margues V.G., SantanaM.G., Lira F.S., Tufik S., de Mello M.T.: Moderate exercise trainingmodulates cytokine profile and sleep in elderly people. Cytokine,2012; 60: 731–735
Google Scholar - 64. Scholz J.L., Diaz A., Riley R.L., Cancro M.P., Frasca D.: A comparativereview of aging and B cell function in mice and humans. Curr.Opin. Immunol., 2013; 25: 504–510
Google Scholar - 65. Shi Y., Yamazaki T., Okubo Y., Uehara Y., Sugane K., Agematsu K.:Regulation of aged humoral immune defense against pneumococcalbacteria by IgM memory B cell. J. Immunol., 2005; 175: 3262–3267
Google Scholar - 66. Simoni M., Baldacci S., Maio S., Cerrai S., Sarno G., Viegi G.:Adverse effects of outdoor pollution in the elderly. J. Thorac. Dis.,2015; 7: 34–45
Google Scholar - 67. Solana C., Tarazona R., Solana R.: Immunosenescence of naturalkiller cells, inflammation, and Alzheimer’s disease. Int. J. Alzheimers.Dis., 2018; 2018: 3128758
Google Scholar - 68. Sproston N.R., El Mohtadi M., Slevin M., Gilmore W., AshworthJ.J.: The effect of C-reactive protein isoforms on nitric oxide productionby U937 monocytes/macrophages. Front. Immunol., 2018; 9: 1500
Google Scholar - 69. Szabo P., Shen S., Telford W., Weksler M.E.: Impaired rearrangementof IgH V to DJ segments in bone marrow Pro-B cells from oldmice. Cell. Immunol., 2003; 222: 78–87
Google Scholar - 70. Tawinwung S., Petpiroon N., Chanvorachote P.: Blocking of type 1 angiotensin II receptor inhibits T-lymphocyte activation and IL-2production. In. Vivo, 2018; 32: 1353–1359
Google Scholar - 71. Tseng H.C., Bui V., Man Y.G., Cacalano N., Jewett A.: Inductionof split anergy conditions natural killer cells to promote differentiationof stem cells through cel-cell contact and secreted factors.Front. Immunol., 2014; 5: 269
Google Scholar - 72. Tsuboi I., Morimoto K., Hirabayashi Y., Li G.X., Aizawa S., MoriK.J., Kanno J., Inoue T.: Senescent B lymphopoiesis is balanced insuppressive homeostasis: Decrease in interleukin‐7 and transforminggrowth factor-β levels in stromal cells of senescence‐acceleratedmice. Exp. Biol. Med., 2004; 229: 494–502
Google Scholar - 73. Urbanowicz I., Nahaczewska W., Stacherzak-Pawlik J., WoźniakM.: Starzenie się limfocytów i jego wpływ na rozwój przewlekłejbiałaczki limfocytowej. Diagn. Lab., 2013; 49: 137–144
Google Scholar - 74. Weksler M.E.: Changes in the B-cell repertoire with age. Vaccine,2000; 18: 1624–1628
Google Scholar - 75. Wikby A., Ferguson F., Forsey R., Thompson J., Strindhall J., LöfgrenS., Nilsson B.O., Ernerudh J., Pawelec G., Johansson B.: An immunerisk phenotype, cognitive impairment, and survival in verylate life: Impact of allostatic load in Swedish octogenarian and nonagenarianhumans. J. Gerontol. A Biol. Sci. Med. Sci., 2005; 60: 556–565
Google Scholar - 76. Wikby A., Johansson B., Ferguson F.: The OCTO and NONA immunelongitudinal studies: A review of 11 years studies of Swedishvery old humans. Adv. Cell. Aging Gerontol., 2002; 13: 1–16
Google Scholar - 77. Wikby A., Nilsson B.O., Forsey R., Thompson J., StrindhallJ., Löfgren S., Ernerudh J., Pawelec G., Ferguson F., Johansson B.:The immune risk phenotype is associated with IL-6 in the terminaldecline stage: Findings from the Swedish NONA immunelongitudinal study of very late life functioning. Mech. AgeingDev., 2006; 127: 695–704
Google Scholar - 78. Witkowski J.M.: Mechanizmy starzenia się układu odpornościowegona niektóre choroby wieku podeszłego. Post. Bioch., 2014;60: 233–239
Google Scholar - 79. Xia C., Rao X., Zhong J.: Role of T lymphocytes in type 2 diabetesand diabetes-associated inflammation. J. Diabetes. Res., 2017;2017: 6494795
Google Scholar - 80. Zelle-Rieser C., Thangvadivel S., Biedermann R., Brunner A.,Stoitzner P., Willenbacher E., Greil R., Jöhrer K.: T cells in multiplemyeloma display features of exhaustion and senescence at the tumorsite. J. Hematol. Oncol., 2016; 9: 116
Google Scholar