Surowicza aktywność metaloproteinaz-2 i -9 oraz stężenie stromielizyny-1 jako czynniki predykcyjne w patogenezie dysplazji oskrzelowo-płucnej u noworodków urodzonych przedwcześnie

ORYGINALNY ARTYKUŁ

Surowicza aktywność metaloproteinaz-2 i -9 oraz stężenie stromielizyny-1 jako czynniki predykcyjne w patogenezie dysplazji oskrzelowo-płucnej u noworodków urodzonych przedwcześnie

Sławomir Wątroba 1 , Joanna Kocot 2 , Jarosław Bryda 3 , Jacek Kurzepa 2

1. Department of Neonatology and Neonatal Intensive Care Unit, Independent Public Healthcare, Puławy, Poland
2. Department of Medical Chemistry, Medical University, Lublin, Poland
3. Department of Veterinary Hygiene, Voivodship Veterinary Inspectorate, Lublin, Poland

Opublikowany: 2019-12-09
DOI: 10.5604/01.3001.0013.6295
GICID: 01.3001.0013.6295
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2019; 73 : 703-712

 

Abstrakt

Aim: Bronchopulmonary dysplasia (BPD) is one of the most severe respiratory diseases, mainly related to premature neonates. Previous studies indicated the role of matrix metalloproteinases (MMPs) in the development of BPD. The aim of the study was to determine the relationship between MMP-2, MMP-3, MMP-9 with their tissue inhibitors (TIMP-1 TIMP-2) and BPD occurrence in premature neonates. Material/Methods: Eighty-one patients, divided into four study groups, numbered from 1 to 4, depending on gestational age (25–28; 29–32; 33–36; 37–40 weeks), were enrolled. Venous blood was collected between 5 and 7 days after birth. The activity of MMP-2 and MMP-9 were determined with usage of gelatin zymography, whereas MMP-3, TIMP-1 and TIMP-2 was determined using the immunoassay ELISA. Results: BPD was diagnosed in 50% of patients from group 1 and 11% from group 2. The increase of MMP-2 activity in Group 2, and a decrease in MMP-2/TIMP-2 ratio was noticed in Group 1 compared to Group 2 and 4. A significantly lower incidence of BPD in patients with higher (above the median) values for MMP-2/TIMP-2 (OR = 0.02, CI = 0.00 – 0.55; p <0.05) was noticed in Group 1. The decreased occurrence of BPD in patients with higher MMP-3 concentration, higher MMP-9 activity and the higher value of MMP-9/TIMP-1 did not reach statistical significance. Conclusions: It has been shown that elevated activity of collagenolytic enzyme in serum, especially MMP-2, may have the effect of decreasing the risk of bronchopulmonary dysplasia in premature neonates.

Przypisy

  • 1. Agrons G.A., Courtney S.E., Stocker J.T., Markowitz R.I.: From thearchives of the AFIP: Lung disease in premature neonates: radiologicpathologiccorrelation. Radiographics, 2005; 25(4): 1047–73
    Google Scholar
  • 2. Arza B., De Maeyer M., Félez J., Collen D., Lijnen H.R.: Criticalrole of glutamic acid 202 in the enzymatic activity of stromelysin-1(MMP-3). Eur. J. Biochem., 2001; 268(3): 826–31
    Google Scholar
  • 3. Atkinson J., Holmbeck K., Yamada S., Birkedal-Hansen H., Parks W.C.,Senior R.M.: Membrane-type 1 matrix metalloproteinase is required fornormal alveolar development. Dev. Dyn., 2005; 232(4): 1079–90
    Google Scholar
  • 4. Bancalari E., Abdenour G.E., Feller R., Gannon J.: Bronchopulmonarydysplasia: clinical presentation. J. Pediatr., 1979; 95(5 Pt 2): 819–23
    Google Scholar
  • 5. Blanken M.O., Rovers M.M., Molenaar J.M., Winkler-SeinstraP.L., Meijer A., Kimpen J.L., Bont L.: Respiratory syncytial virus andrecurrent wheeze in healthy preterm infants. N. Engl. J. Med., 2013;368(19): 1791–9
    Google Scholar
  • 6. Borszewska-Kornacka M.: Standardy opieki medycznejnad noworodkiem w Polsce. Zalecenia Polskiego TowarzystwaNeonatologicznego [Standards of medical care for a newborn inPoland. Recommendations of the Polish Neonatology Society]. 2nded., Medi Press Warsaw; 2017
    Google Scholar
  • 7. Cauwe B., Opdenakker G.: Intracellular substrate cleavage: a noveldimension in the biochemistry, biology and pathology of matrix metalloproteinases.Crit. Rev. Biochem. Molec. Biol., 2010; 45(5): 351–423
    Google Scholar
  • 8. Crosby L.M., Waters C.M.: Epithelial repair mechanisms in thelung. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010; 298(6): L715–L731
    Google Scholar
  • 9. Davey A., McAuley D.F., O’Kane C.M.: Matrix metalloproteinases inacute lung injury: mediators of injury and drivers of repair. Eur. Respir.J., 2011; 38(4): 959–70
    Google Scholar
  • 10. Davidson L.M., Berkelhamer S.K.: Bronchopulmonary dysplasia:Chronic lung disease of infancy and long-term pulmonary outcomes.J. Clin. Med., 2017; 6(1): E4
    Google Scholar
  • 11. Davis J., Rosenfeld W.N.: Bronchopulmonary dysplasia. In: Avery’sNeonatology: Pathophysiology and Management of the Newborn. 6thEdition, Editors: M.G. MacDonald, M.M.K. Seshia, M.D. Mullett, LippincottWilliams & Wilkins, Philadelphia 2005; 578–82
    Google Scholar
  • 12. Deryugina E.I., Quigley J.P.: Matrix metalloproteinases and tumormetastasis. Cancer Metastasis Rev., 2006; 25(1): 9–34
    Google Scholar
  • 13. Du Z., Kong X., Ren Y., Feng Z., Huang J., Chen J., Wang R.: Relevanceof clinical features in the prognosis of bronchopulmonary dysplasia inpremature infants. Exp. Ther. Med., 2017; 14(4): 3433–40
    Google Scholar
  • 14. Ehrenkranz R.A., Walsh M.C., Vohr B.R., Jobe A.H., Wright L.L., FanaroffA.A., Wrage L.A., Poole K., National Institutes of Child Health andHuman Development Neonatal Research Network: Validation of thenational institutes of health consensus definition of bronchopulmonarydysplasia. Pediatrics, 2005; 116(6): 1353–60
    Google Scholar
  • 15. Eriksson L., Haglund B., Odlind V., Altman M., Kieler H.: Prenatalinflammatory risk factors for development of bronchopulmonarydysplasia. Pediatr. Pulmonol., 2014; 49(7): 665–72
    Google Scholar
  • 16. Fic P., Zakrocka I., Kurzepa J., Stepulak A.: Matrix metalloproteinasesand atherosclerosis. Postępy Hig. Med. Dośw., 2011; 65: 16–27
    Google Scholar
  • 17. Fink K., Boratyński J.: The role of metalloproteinases in modificationof extracellular matrix in invasive tumor growth, metastasis andangiogenesis. Postępy Hig. Med. Dośw., 2012; 66: 609–28
    Google Scholar
  • 18. Fukuda Y., Ishizaki M., Okada Y., Seiki M., Yamanaka N.: Matrix metalloproteinasesand tissue inhibitor of metalloproteinase-2 in fetal rabbitlung. Am. J. Physiol. Lung Cell. Mol. Physiol., 2000; 279(3): L555–L561
    Google Scholar
  • 19. Ganser G., Stricklin G., Matrisian L.: EGF and TGFα influence in vitrolung development by the induction of matrix-degrading metalloproteinases.Int. J. Dev. Biol., 1991; 35(4): 453–61
    Google Scholar
  • 20. Greenlee K., Werb Z., Kheradmand F.: Matrix metalloproteinasesin lung: multiple, multifarious, and multifaceted. Physiol. Rev., 2007;87(1): 69–98
    Google Scholar
  • 21. Hedstrom A.B., Gove N.E., Mayock D.E., Batra M.: Performance of the Silverman Andersen Respiratory Severity Score in predicting PCO2 and respiratory support in newborns: a prospective cohort study. J. Perinatol., 2018; 38(5): 505–11
    Google Scholar
  • 22. Javaid A., Morris I.: Bronchopulmonary dysplasia. Paediatr. Child. Health, 2017; 28(1): 22–7
    Google Scholar
  • 23. Jobe A.J.: The new BPD: an arrest of lung development. Pediatr. Res., 1999; 46(6): 641–3
    Google Scholar
  • 24. Jobe A.H., Bancalari E.: Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med., 2001; 163(7): 1723–9
    Google Scholar
  • 25. Jotwani R., Eswaran S.V., Moonga S., Cutler C.W.: MMP-9/TIMP-1 imbalance induced in human dendritic cells by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol., 2010; 58(3): 314–21
    Google Scholar
  • 26. Kheradmand F., Rishi K., Werb Z.: Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J. Cell Sci., 2002; 115: 839–48
    Google Scholar
  • 27. Kim E., Hwang O.: Role of matrix metalloproteinase-3 in neurodegeneration. J. Neurochem., 2011; 116(1): 22–32
    Google Scholar
  • 28. Kurzepa J., Szczepanska-Szerej A., Stryjecka-Zimmer M., Malecka-Massalska T., Stelmasiak Z.: Simvastatin could prevent increase of the serum MMP-9/TIMP-1 ratio in acute ischaemic stroke. Folia Biol., 2006; 52(6): 181–3
    Google Scholar
  • 29. Kwinta P., Bik-Multanowski M., Mitkowska Z., Tomasik T., Legutko M, Pietrzyk J.J.: Genetic risk factors of bronchopulmonary dysplasia. Pediatr. Res., 2008; 64(6): 682–8
    Google Scholar
  • 30. Laughon M.M., Langer J.C., Bose C.L., Smith P.B., Ambalavanan N., Kennedy K.A., Stoll B.J., Buchter S., Laptook A.R., Ehrenkranz R.A., Cotten C.M., Wilson-Costello D.E., Shankaran S., Van Meurs K.P., Davis A.S., et al.: Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infant. Am. J. Respir. Crit. Care Med., 2011; 183(12): 1715–22
    Google Scholar
  • 31. Madro A., Czechowska G., Słomka M., Celinski K., Szymonik-Lesiuk S., Kurzepa J.: The decrease of serum MMP-2 activity corresponds of alcoholic cirrhosis stage. Alcohol, 2012; 46(2): 155–7
    Google Scholar
  • 32. Mailaparambil B., Krueger M., Heizmann U., Schlegel K., Heinze J., Heinzmann A.: Genetic and epidemiological risk factors in the development of bronchopulmonary dysplasia. Dis. Markers, 2010; 29(1): 1–9
    Google Scholar
  • 33. McEvoy C.T., Aschner J.L.: The natural history of bronchopulmonary dysplasia (BPD): The case for primary prevention. Clin. Perinatol., 2015; 42(4): 911–31
    Google Scholar
  • 34. Oblander S.A., Zhou Z., Galvez B.G., Starcher B., Shannon J.M., Durbeej M., Arroyo A.G., Tryggvason K., Apte S.S.: Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation. Dev. Biol., 2005; 277(1): 255–69
    Google Scholar
  • 35. Pandya H.C., Kotecha S.: Chronic lung disease of prematurity: clinical and pathophysiological correlates. Monaldi Arch. Chest Dis., 2001; 56(3): 270–5
    Google Scholar
  • 36. Pepper M.S.: Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscl. Thromb. Vasc. Biol., 2001; 21(7): 1104–17
    Google Scholar
  • 37. Plagens-Rotman K., Bączyk G., Kubiak S., Bernad D., Pyszczorska M., Przybylska R.: Krwawienia wewnątrzczaszkowe u noworodków z ekstremalnie małą urodzeniową masą ciała [Intracranial hemmorhages in the extremely low birth weight infants]. Now. Lek., 2011; 80: 250–7
    Google Scholar
  • 38. Poggi C., Giusti B., Gozzini E., Sereni A., Romagnuolo I., Kura A., Pasquini E., Abbate R., Dani C.: Genetic contributions to the development of complications in preterm newborns. PLoS One, 2015; 10(7): e0131741
    Google Scholar
  • 39. Sampath V., Garland J.S., Le M., Patel A.L., Konduri G.G., Cohen J.D., Simpson P.M., Hines R.N.: A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr. Pulmonol., 2012; 47(5): 460–8
    Google Scholar
  • 40. Schittny J.C.: Development of the lung. Cell Tissue Res., 2017; 367(3): 427–44
    Google Scholar
  • 41. Shaw G.M., O’Brodovich H.M.: Progress in understanding the genetics of bronchopulmonary dysplasia. Semin. Perinatol., 2013; 37:(2) 85–93
    Google Scholar
  • 42. Strassberg S.S., Cristea I.A., Qian D., Parton L.A.: Single nucleotide polymorphisms of tumor necrosis factor-alpha and the susceptibility to bronchopulmonary dysplasia. Pediatr. Pulmonol., 2007; 42(1): 29–36
    Google Scholar
  • 43. Vandenbroucke R.E., Dejonckheere E., Libert C.: A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur. Resp. J., 2011; 38: 1200–14
    Google Scholar
  • 44. Vandooren J., Geurts N., Martens E., Van den Steen P.E., Opdenakker G.: Zymography methods for visualizing hydrolytic enzymes. Nat. Methods, 2013; 10(3): 211–20
    Google Scholar
  • 45. Vinod S., Gow A., Weinberger B., Potak D., Hiatt M., Chandra S., Hegyi T.: Serum surfactant protein D as a marker for bronchopulmonary dysplasia. J. Matern. Fetal Neonatal Med., 2017; 26: 1–5
    Google Scholar
  • 46. Yu K.H., Li J., Snyder M., Shaw G.M., O’Brodovich H.M.: The genetic predisposition to bronchopulmonary dysplasia. Curr. Opin. Pediatr., 2016; 28(3): 318–23
    Google Scholar

Pełna treść artykułu

Skip to content