Szkodliwe działanie wanadu na układ pokarmowy i moczowo-płciowy oraz jego wpływ na płodność i wady rozwojowe płodu

ARTYKUŁ PRZEGLĄDOWY

Szkodliwe działanie wanadu na układ pokarmowy i moczowo-płciowy oraz jego wpływ na płodność i wady rozwojowe płodu

Aleksandra Wilk 1 , Dagmara Szypulska-Koziarska 1 , Barbara Wiszniewska 1

1. Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland

Opublikowany: 2017-09-25
DOI: 10.5604/01.3001.0010.4783
GICID: 01.3001.0010.4783
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2017; 71 : 850-859

 

Abstrakt

Vanadium is a transition metal that has a unique and beneficial effect on both humans and animals. For many years, studies have suggested that vanadium is an essential trace element. Its biological properties are of interest due to its therapeutic potential, including in the treatment of diabetes mellitus. Vanadium deficiencies can lead to a range of pathologies. However, excessive concentration of this metal can cause irreversible damage to various tissues and organs. Vanadium toxicity mainly manifests in gastrointestinal symptoms, including diarrhea, vomiting, and weight reduction. Vanadium also exhibits hepatotoxic and nephrotoxic properties, including glomerulonephritis and pyelonephritis. Vanadium compounds may also lead to partial degeneration of the seminiferous epithelium of the seminiferous tubules in the testes and can affect male fertility. This paper describes the harmful effects of vanadium on the morphology and physiology of both animal and human tissues, including the digestive system, the urinary tract, and the reproductive system. What is more, the following study includes data concerning the correlation between the above-mentioned metal and its influence on fertility and fetus malformations. Additionally, this research identifies the doses of vanadium which lead to pathological alterations becoming visible within tissues. Moreover, this study includes information about the protective efficacy of some substances in view of the toxicity of vanadium.

Przypisy

  • 1. Aragón A.M., Altamirano-Lozano M.: Sperm and testicular modifications induced by subchronic treatments with vanadium (IV) in CD-1 mice. Reprod. Toxicol., 2001; 15: 145-151
    Google Scholar
  • 2. Barceloux D.G: Vanadium. J. Toxicol. Clin. Toxicol., 1999; 37: 265- 278
    Google Scholar
  • 3. Boscolo P., Carmignani M., Volpe A.R., Felaco M., Del Rosso G., Porcelli G., Giuliano G.: Renal toxicity and arterial hypertension in rats chronically exposed to vanadate. Occup. Environ. Med., 1994; 51: 500-503
    Google Scholar
  • 4. Boulassel B., Sadeg N., Roussel O., Perrin M., Belhadj-Tahar H.: Fatal poisoning by vanadium. Forensic Sci. Int., 2011; 206: 79-81
    Google Scholar
  • 5. Bowen W.H.: Exposure to metal ions and susceptibility to dental caries. J. Dent. Educ., 2001; 65: 1046-1053
    Google Scholar
  • 6. Chandra A.K., Ghosh R., Chatterjee A., Sarkar M.: Protection against vanadium-induced testicular toxicity by testosterone propionate in rats. J. Inorg. Biochem., 2007; 101: 944-956
    Google Scholar
  • 7. Chandra A.K., Ghosh R., Chatterjee A., Sarkar M.: Vanadiuminduced testicular toxicity and its prevention by oral supplementation of zinc sulphate. Toxicol. Mech. Methods, 2010; 20: 306-315
    Google Scholar
  • 8. Cornwall G.A.: Role of posttranslational protein modifications in epididymal sperm maturation and extracellular quality control. Adv. Exp. Med. Biol., 2014; 759: 159-180
    Google Scholar
  • 9. D’Cruz O.J., Ghosh P., Uckun F.M.: Spermicidal activity of metallocene complexes containing vanadium (Iv) in humans. Biol. Reprod. 1998; 58: 1515-1526
    Google Scholar
  • 10. Da Ros V.G., Munoz M.W., Battistone M.A., Brukman N.G., Carvajal G., Curci L., Gómez-Elias M.D., Cohen D.B., Cuasnicu P.S.: From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization. Asian J. Androl., 2015; 17: 711-715
    Google Scholar
  • 11. Deng Y., Cui H., Peng X., Fang J., Wang K., Cui W., Liu X.: Effect of dietary vanadium on cecal tonsil T cell subsets and IL-2 contents in broilers. Biol. Trace Elem. Res., 2011; 144: 647-656
    Google Scholar
  • 12. Fortoul T.I., Bizarro-Navares P., Acevedo-Nava S., Pinón-Zárate G., Rodriquez-Lara V., Colin-Barenque L., Mussali-Galante P., Avila- -Casado M.C., Avila-Costa M.R., Saldivar-Osorio L.: Ultrastructural findings in murine seminiferous tubules as a consequence of subchronic vanadium pentoxide inhalation. Reprod. Toxicol., 2007; 23: 588-592
    Google Scholar
  • 13. Galli D., Benedetti L., Bongio M., Maliardi V., Silvani G., Ceccarelli G., Ronzoni F., Conte S., Benazzo F., Graziano A., Papaccio G., Sampaolesi M., De Angelis M.G.: In vitr osteoblastic differentiation of human mesenchymal stem cells and human dental pulp stem cells on poly-L-lysine-treated titanium-6-aluminium-4-vanadium. J. Biomed. Mat. Res. A, 2011; 97: 118-126
    Google Scholar
  • 14. Heinemann G., Braun S., Overbeck M., Page M., Michel J., Vogt W.: The effect of vanadium-contaminated commercially available albumin solutions on renal tubular function. Clin. Nephrol., 2000; 53: 473-478
    Google Scholar
  • 15. Hosseini M.J., Seyedrazi N., Shahraki J., Pourahmad J.: Vanadium induces liver toxicity through reductive activation by glutathione and mitochondrial dysfunction. Adv. Biosci. Biotechnol., 2012; 3: 1096-1103
    Google Scholar
  • 16. Imura H., Shimada A., Naota M., Morita T., Togawa M., Hasegawa T., Seko Y.: Vanadium toxicity in mice: possible impairment of lipid metabolizm and mucosal epithelial cell necrosis in the small intestine. Toxicol. Pathol., 2013; 41: 842-856
    Google Scholar
  • 17. Korbecki J., Baranowska-Bosiacka I., Gutowska I., Chlubek D.: Biochemical and medical importance of vanadium compounds. Acta Biochim. Pol., 2012; 59: 195-200
    Google Scholar
  • 18. Kucera J., Lener J., Mnuková J.: Vanadium levels in urine and cystine levels in fingernails and hair of exposed and normal persons. Biol. Trace Elem. Res., 1994; 43-45: 327-334
    Google Scholar
  • 19. Lahav M., Rennert H., Barzilai D.: Inhibition by vanadate of cyclic AMP production in rat corpora lutea incubated in vitro. Life Sci., 1986; 39: 2557-2564
    Google Scholar
  • 20. Liu J., Cui H., Liu X., Peng X., Deng J., Zuo Z., Cui W., Deng Y., Wang K.: Dietary high vanadium causes oxidative damage-induced renal and hepatic toxicity in broilers. Biol. Trace Elem. Res., 2012; 145: 189-200
    Google Scholar
  • 21. Liu X., Cui H.M., Peng X., Fang J., Cui W., Wu B.: The effect of dietary vanadium on cell cycle and apoptosis of liver in broilers. Biol. Trace Elem Res., 2011; 143: 1508-1515
    Google Scholar
  • 22. Marouane W., Soussi A., Murat J.C., Bezzine S., El Feki A.: The protective effect of Malva sylvestris on rat kidney damaged by vanadium. Lipids Health Dis., 2011; 10: 65
    Google Scholar
  • 23. Martin S.J., Reutelingsperger C.P., Mcgahon A.J., Rader J.A., Van Schie R.C., LaFace D.M., Green D.R.: Early redistribution of plasma membrane phosphatidylserine in a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J. Exp. Med., 1995; 182: 1545-1556
    Google Scholar
  • 24. Minoia C., Sabbioni E., Apostoli P., Pietra R., Pozzoli L., Gallorini M., Nicolaou G., Alessio L., Capodaglio E.: Trace element reference values in tissues from inhibitants of the European Community. I. A study of 46 elements in urine, blood and serum of Italian subjects. Sci. Total Environ, 1990; 95: 89-105
    Google Scholar
  • 25. Morgan A.M., El-Tawil O.S.: Effects of ammonium metavanadate on fertility and reproductive performance of adult male and female rats. Pharmacol. Res., 2003; 47: 75-85
    Google Scholar
  • 26. Mruk D.D., Cheng C.Y.: Sertoli-Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev., 2004; 25: 747-806
    Google Scholar
  • 27. Olaolorun F.A., Obasa A.A., Balogun H.A., Aina O.O., Olopade J.O.: Lactational vitamin E protects against the histotoxic effects of systemically administered vanadium in neonatal rats. Niger J. Physiol. Sci., 2014; 29: 125-129
    Google Scholar
  • 28. Pyttel S., Nimptsch A., Böttger J., Zschörnig K., Jakop U., Wegener J., Müller K., Paasch U., Schiller J.: Changes of murine sperm phospholipid composition during epididymal maturation determined by MALDI-TOF mass spectrometry. Theriogenology, 2014; 82: 396-402
    Google Scholar
  • 29. Rodriguez-Lara V., Morales-Rivero A., Rivera-Cambas A.M., Fortoul T.I.: Vanadium inhalation induces actin changes in mice testicular cells. Toxicol. Ind. Health, 2016; 32: 367-374
    Google Scholar
  • 30. Roy S., Majumdar S., Singh A.K., Ghosh B., Ghosh N., Manna S., Chakraborty T., Mallick S.: Synthesis, characterization, antioxidant status, and toxicity study of vanadium-rutin complex in Balb/c mice. Biol. Trace Elem. Res., 2015; 166: 183-200
    Google Scholar
  • 31. Sarsebekov E.K., Dzharbusynov B.U., Doskeeva R.A.: The nephrotoxic action of heavy crude with a high vanadium content and of its refinery products. Urol. Nefrol., 1994; 3: 35-36
    Google Scholar
  • 32. Seńczuk W.: Toksykologia. Wydawnictwo Lekarskie PZWL, Warszawa 1999
    Google Scholar
  • 33. Shrivastava S., Jadon A., Shukla S.: Effect of tiron and its combination with nutritional supplements against vanadium intoxication in female albino rats. J. Toxicol. Sci., 2007; 32: 185-192
    Google Scholar
  • 34. Shrivastava S., Joshi D., Bhadauria M., Shukla S., Mathur R.: Cotherapy of tiron and selenium against vanadium induced toxic effects in lactating rats. Iran. J. Reprod. Med., 2011; 9: 229-238
    Google Scholar
  • 35. Stohs S.J., Bagchi D.: Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med.,1995; 18: 321-336
    Google Scholar
  • 36. Sullivan R.: Epididymosomes: a heterogenous population of microvesicles with multiple functions in sperm maturation and storage. Asian J. Androl., 2015; 17: 726-729
    Google Scholar
  • 37. Underwood E.: Trace elements in human and animal nutrition. Academic Press, New York, 1971
    Google Scholar
  • 38. Urban J., Antonowicz- Juchniewicz J., Andrzejak R.: Wanad – zagrożenia i nadzieje. Med. Pracy, 2001; 52: 125-133
    Google Scholar
  • 39. Vijava Bharahi B., Jaya Prakash G., Krishna K.M., Ravi Krishna C.H., Sivanarayana T., Madan K., Rama Raju G.A., Annapurna A.: Protective effect of alpha glucosyl hesperidin (G-hesperidin) on chronic vanadium induced testicular toxicity and sperm nuclear DNA damage in male Sprague Dawley rats. Andrologia, 2015; 47: 568-578
    Google Scholar
  • 40. Wang J.P., Cui R.Y., Zhang K.Y., Ding X.M., Luo Y.H., Bai S.P., Zeng Q.F., Xuan Y., Su Z.W.: High fat diet increased renal and hepatic oxidative stress induced by vanadium of Wistar rats. Biol. Trace Elem. Res., 2016; 170: 415-423
    Google Scholar
  • 41. Wang K., Cui H., Deng Y., Peng X.I., Zuo Z., Fang J., Deng J., Cui W., Wu B.: Effect of dietary vanadium on intestinal microbiota in broilers. Biol. Trace Elem. Res., 2012; 149: 212-218
    Google Scholar
  • 42. Yilmaz-Ozden T., Kurt-Sirin O., Tunali S., Akev N., Can A., Yanardag R.: Ameliorative effect of vanadium on oxidative stress in stomach tissue of diabetic rats. Bosn. J. Basic Med. Sci., 2014; 14: 105-109
    Google Scholar

Pełna treść artykułu

Przejdź do treści