Szlak kinureninowy: związek między zaburzeniami depresyjnymi a stanem zapalnym
Justyna Kubacka 1 , Anna Stefańska 1 , Grażyna Sypniewska 1Abstrakt
Depression is highly prevalent worldwide and the leading cause of disability. It is believed that currently more than 300 million people of all ages suffer from depression. However, the unambiguous cause of the depression remains unknown. It is suggested that the occurrence of this disease is primarily affected by genetic factors, psychological factors and atypical brain structure or function. Recently, an increasingly important role is attributed to the inflammatory response, which is considered to be the main cause of depression. Activation of the kynurenine pathway (KP) is one of the described mechanisms by which inflammation can induce depression. Kynurenine pathway activation is associated with several neuropsychiatric diseases, including major depression disorder (MDD). The imbalance between the neuroprotective and neurotoxic metabolites in the kynurenine pathway and the associated serotonin and melatonin deficiency, may contribute to the manifestation of depressive symptoms. In this review we discuss the role of the major enzymes of the tryptophan KP: tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) and the role of selected kynurenic metabolites in the depressive disorders. Particular attention was also paid to the genetic basis of depressive disorders and to the summary of current knowledge on the effectiveness of treatment and supplementation with tryptophan and 5-hydroxytryptophan in depression.
Przypisy
- 1. Arnone D., Saraykar S., Salem H., Teixeira A.L., Dantzer R., SelvarajS.: Role of kynurenine pathway and its metabolites in mooddisorders: A systematic review and meta-analysis of clinical studies.Neurosci. Biobehav. Rev., 2018; 92: 477–485
Google Scholar - 2. Badawy A.A.: Hypothesis kynurenic and quinolinic acids: Themain players of the kynurenine pathway and opponents in inflammatorydisease. Med. Hypotheses, 2018; 118: 129–138
Google Scholar - 3. Badawy A.A.: Kynurenine pathway of tryptophan metabolism:Regulatory and functional aspects. Int. J. Tryptophan Res., 2017;10: 1178646917691938 4 Bieliński M., Jaracz M., Lesiewska N., Tomaszewska M., SikoraM., Junik R., Kamińska A., Tretyn A., Borkowska A.: Associationbetween COMT Val158Met and DAT1 polymorphisms and depressivesymptoms in the obese population. Neuropsychiatr. Dis. Treat.,2017; 13: 2221–2229
Google Scholar - 4. Bieliński M., Jaracz M., Lesiewska N., Tomaszewska M., Sikora M., Junik R., Kamińska A., Tretyn A., Borkowska A.: Association between COMT Val158Met and DAT1 polymorphisms and depressive symptoms in the obese population. Neuropsychiatr. Dis. Treat., 2017; 13: 2221–2229
Google Scholar - 5. Bonaccorso S., Marino V., Biondi M., Grimaldi F., Ippoliti F.,Maes M.: Depression induced by treatment with interferon-alphain patients affected by hepatitis C virus. J. Affect. Disord., 2002;72: 237–241
Google Scholar - 6. Bonaccorso S., Marino V., Puzella A., Pasquini M., Biondi M.,Artini M., Almerighi C., Verkerk R., Meltzer H., Maes M.: Increaseddepressive ratings in patients with hepatitis C receivinginterferon-α-based immunotherapy are related to interferon-α-induced changes in the serotonergic system. J. Clin. Psychopharmacol.,2002; 22: 86–90
Google Scholar - 7. Capuron L., Ravaud A., Neveu P.J., Miller A.H., Maes M., DantzerR.: Association between decreased serum tryptophan concentrationsand depressive symptoms in cancer patients undergoing cytokinetherapy. Mol. Psychiatry, 2002; 7: 468–473
Google Scholar - 8. Cervenka I., Agudelo L.Z., Ruas J.L.: Kynurenines. Tryptophan’smetabolites in exercise, inflammation, and mental health. Science,2017; 357: eaaf9794
Google Scholar - 9. Chen H.B., Li F., Wu S., An S.C.: Hippocampus quinolinic acid modulatesglutamate and NMDAR/mGluR1 in chronic unpredictable mildstress-induced depression. Sheng Li Xue Bao, 2013; 65: 577–585
Google Scholar - 10. Chiarugi A., Meli E., Moroni F.: Similarities and differences inthe neuronal death processes activated by 3OH-kynurenine andquinolinic acid. J. Neurochem., 2001; 77: 1310–1318
Google Scholar - 11. Cook J.S., Pogson C.I., Smith S.A.: Indoleamine 2,3-dioxygenase.A new, rapid, sensitive radiometric assay and its application to thestudy of the enzyme in rat tissues. Biochem. J., 1980; 189: 461–466
Google Scholar - 12. Dantzer R., O’Connor J.C., Lawson M.A., Kelley K.W.: Inflammation-associated depression: From serotonin to kynurenine. Psychoneuroendocrinology,2011; 36: 426–436
Google Scholar - 13. Duda W., Curzytek K., Kubera M., Connor T.J., Fagan E.M., Basta–Kaim A., Trojan E., Papp M., Gruca P., Budziszewska B., Leśkiewicz M.,Maes M., Lasoń W.: Interaction of the immune-inflammatory and thekynurenine pathways in rats resistant to antidepressant treatmentin model of depression. Int. Immunopharmacol., 2019; 73: 527–538
Google Scholar - 14. Elgarf A.S., Aboul-Fotouh S., Abd-Alkhalek H.A., El Tabbal M.,Hassan A.N., Kassim S.K., Hammouda G.A., Farrag K.A., Abdel-TawabA.M.: Lipopolysaccharide repeated challenge followed by chronicmild stress protocol introduces a combined model of depressionin rats: reversibility by imipramine and pentoxifylline. Pharmacol.Biochem. Behav., 2014; 126: 152–162 15 Eskelund A., Li Y., Budac D.P., Müller H.K., Gulinello M., SanchezC., Wegener G.: Drugs with antidepressant properties affect tryptophanmetabolites differently in rodent models with depression- likebehavior. J. Neurochem., 2017; 142: 118–131
Google Scholar - 15. Eskelund A., Li Y., Budac D.P., Müller H.K., Gulinello M., Sanchez C., Wegener G.: Drugs with antidepressant properties affect tryptophan metabolites differently in rodent models with depression- like behavior. J. Neurochem., 2017; 142: 118–131
Google Scholar - 16. Flint J., Kendler K.S.: The genetics of major depression. Neuron,2014; 81: 484–503
Google Scholar - 17. Franklin M., Bermudez I., Murck H., Singewald N., Gaburro S.:Sub-chronic dietary tryptophan depletion – an animal model of incredepressionwith improved face and good construct validity. J. Psychiatr.Res., 2012; 46: 239–247
Google Scholar - 18. Fukui S., Schwarcz R., Rapoport S.I., Takada Y., Smith Q.R.: Blood-brain barrier transport of kynurenines: implications for brainsynthesis and metabolism. J. Neurochem., 1991; 56: 2007–2017
Google Scholar - 19. Gabbay V., Klein R.G., Katz Y., Mendoza S., Guttman L.E., AlonsoC.M., Babb J.S., Hirsch G.S., Liebes L.: The possible role of the kynureninepathway in adolescent depression with melancholic features.J. Child Psychol. Psychiatry, 2010; 51: 935–943
Google Scholar - 20. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators:Global, regional, and national incidence, prevalence, andyears lived with disability for 310 diseases and injuries, 1990–2015:A systematic analysis for the Global Burden of Disease Study 2015.Lancet, 2016; 388: 1545–1602
Google Scholar - 21. Guillemin G.J.: Quinolinic acid, the inescapable neurotoxin. FEBSJ., 2012; 279: 1356–1365
Google Scholar - 22. Guillemin G.J., Kerr S.J., Smythe G.A., Smith D.G., Kapoor V.,Armati P.J., Croitoru J., Brew B.J.: Kynurenine pathway metabolismin human astrocytes: a paradox for neuronal protection. J. Neurochem.,2001; 78: 842–853
Google Scholar - 23. Howren M.B., Lamkin D.M., Suls J.: Associations of depressionwith C- reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom.Med., 2009; 71: 171–186
Google Scholar - 24. Hyde C.L., Nagle M.W., Tian C., Chen X., Paciga S.A., WendlandJ.R., Tung J.Y., Hinds D.A., Perlis R.H., Winslow A.R.: Identification of
Google Scholar - 25. Jeon S.W., Kim Y.K.: Inflammation-induced depression: Its pathophysiologyand therapeutic implications. J. Neuroimmunol., 2017;313: 92–98
Google Scholar - 26. Johansson A.S., Owe-Larsson B., Asp L., Kocki T., Adler M., HettaJ., Gardner R., Lundkvist G.B., Urbanska E.M., Karlsson H.: Activationof kynurenine pathway in ex vivo fibroblasts from patients with bipolardisorder or schizophrenia: cytokine challenge increases productionof 3-hydroxykynurenine. J. Psychiatr. Res., 2013; 47: 1815–1823
Google Scholar - 27. Kruse J.L., Cho J.H., Olmstead R., Hwang L., Faull K., EisenbergerN.I., Irwin M.R.: Kynurenine metabolism and inflammation-induceddepressed mood: A human experimental study. Psychoneuroendocrinology,2019; 109: 104371
Google Scholar - 28. Kupfer D.J., Frank E., Phillips M.L.: Major depressive disorder:new clinical, neurobiological, and treatment perspectives. Lancet,2012; 379: 1045–1055
Google Scholar - 29. Liu H., Ding L., Zhang H., Mellor D., Wu H., Zhao D., Wu C., LinZ., Yuan J., Peng D.: The metabolic factor kynurenic acid of kynureninepathway predicts major depressive disorder. Front. Psychiatry,2018; 9: 552
Google Scholar - 30. Mackay G.M., Forrest C.M., Christofides J., Bridel M.A., MitchellS., Cowlard R., Stone T.W., Darlington L.G.: Kynurenine metabolitesand inflammation markers in depressed patients treated with fluoxetineor counselling. Clin. Exp. Pharmacol. Physiol., 2009; 36: 425–435
Google Scholar - 31. Menard C., Pfau M.L., Hodes G.E., Kana V., Wang V.X., BouchardS., Takahashi A., Flanigan M.E., Aleyasin H., LeClair K.B., JanssenW.G., Labonté B., Parise E.M., Lorsch Z.S., Golden S.A., et al.: Socialstress induces neurovascular pathology promoting depression. Nat.Neurosci., 2017; 20: 1752–1760
Google Scholar - 32. Moffett J.R., Namboodiri M.A.: Tryptophan and the immuneresponse. Immunol. Cell Biol., 2003; 81: 247–265
Google Scholar - 33. Murray C.J., Lopez A.D.: Measuring the global burden of disease.N. Engl. J. Med., 2013; 369: 448–457
Google Scholar - 34. Murray E.A., Wise S.P., Drevets W.C.: Localization of dysfunctionin major depressive disorder: prefrontal cortex and amygdala. Biol.Psychiatry, 2011; 69: e43–e54
Google Scholar - 35. Musso T., Gusella G.L., Brooks A., Longo D.L, Varesio L.: Interleukin-
Google Scholar - 36. Myint A.M.: Kynurenines: from the perspective of major psychiatricdisorders. FEBS J., 2012; 279: 1375–1385
Google Scholar - 37. National Research Council. 1989. Recommended Dietary Allowances:10th Edition. Washington, DC: The National AcademiesPress. https://doi.org/10.17226/1349 (26.06.2019)
Google Scholar - 38. O’Connor J.C., Lawson M.A., André C., Moreau M., Lestage J., CastanonN., Kelley K.W., Dantzer R.: Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenaseactivation in mice. Mol. Psychiatry, 2009; 14: 511–522
Google Scholar - 39. Ogawa S., Fujii T., Koga N., Hori H., Teraishi T., Hattori K., NodaT., Higuchi T., Motohashi N., Kunugi H.: Plasma L-tryptophan concentrationin major depressive disorder: New data and meta-analysis.J. Clin. Psychiatry, 2014; 75: e906–e915
Google Scholar - 40. Ogyu K., Kubo K., Noda Y., Iwata Y., Tsugawa S., Omura Y., WadaM., Tarumi R., Plitman E., Moriguchi S., Miyazaki T., Uchida H., Graff–Guerrero A., Mimura M., Nakajima S.: Kynurenine pathway in depression:a systematic review and meta-analysis. Neurosci. Biobehav.Rev., 2018; 90: 16–25
Google Scholar - 41. Oxenkrug G.F.: Tryptophan kynurenine metabolism as a commonmediator of genetic and environmental impacts in major depressivedisorder: The serotonin hypothesis revisited 40 years later.Isr. J. Psychiatry Relat. Sci., 2010; 47: 56–63
Google Scholar - 42. Qin Y., Wang N., Zhang X., Han X., Zhai X., Lu Y.: IDO and TDOas a potential therapeutic target in different types of depression.Metab. Brain Dis., 2018; 33: 1787–1800
Google Scholar - 43. Raison C.L., Dantzer R., Kelley K.W., Lawson M.A., WoolwineB.J., Vogt G., Spivey J.R., Saito K., Miller A.H.: CSF concentrations ofbrain tryptophan and kynurenines during immune stimulation withIFN-α: Relationship to CNS immune responses and depression. Mol.Psychiatry, 2010; 15: 393–403
Google Scholar - 44. Réus G.Z., Carlessi A.S., Titus S.E., Abelaira H.M., Ignácio Z.M., daLuz J.R., Matias B.I., Bruchchen L., Florentino D., Vieira A., PetronilhoF., Quevedo J.: A single dose of S-ketamine induces long-term antidepressanteffects and decreases oxidative stress in adulthood ratsfollowing maternal deprivation. Dev. Neurobiol., 2015; 75: 1268–1281
Google Scholar - 45. Réus G.Z., Jansen K., Titus S., Carvalho A.F., Gabbay V., QuevedoJ.: Kynurenine pathway dysfunction in the pathophysiology and treatmentof depression: evidences from animal and human studies. J.Psychiatr. Res., 2015; 68: 316–328
Google Scholar - 46. Savitz J., Drevets W.C., Smith C.M., Victor T.A., Wurfel B.E., BellgowanP.S., Bodurka J., Teague T.K., Dantzer R.: Putative neuroprotectiveand neurotoxic kynurenine pathway metabolites are associatedwith hippocampal and amygdalar volumes in subjects with majordepressive disorder. Neuropsychopharmacology, 2015; 40: 463–471
Google Scholar - 47. Savitz J., Drevets WC., Wurfel B.E., Ford B.N., Bellgowan P.S.,Victor T.A., Bodurka J., Teague T.K., Dantzer R.: Reduction of kynurenicacid to quinolinic acid ratio in both the depressed and remittedphases of major depressive disorder. Brain Behav. Immun.,2015; 46: 55–59
Google Scholar - 48. Schwarcz R., Whetsell W.O. Jr., Mangano R.M.: Quinolinic acid:an endogenous metabolite that produces axon-sparing lesions inrat brain. Science, 1983; 219: 316–318
Google Scholar - 49. Serretti A.: Genetics and pharmacogenetics of mood disorders.Psychiatr. Pol., 2017; 51: 197–203
Google Scholar - 50. Sforzini L., Nettis M.A., Mondelli V., Pariante C.M.: Inflammationin cancer and depression: A starring role for the kynureninepathway. Psychopharmacology, 2019; 236: 2997–3011
Google Scholar - 51. Steiner J., Walter M., Gos T., Guillemin G.J., Bernstein H.G., SarnyaiZ., Mawrin C., Brisch R., Bielau H., Meyer zu Schwabedissen L.,Bogerts B., Myint A.M.: Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulategyrus: evidence for an immune-modulated glutamatergicneurotransmission? J. Neuroinflammation, 2011; 8: 94
Google Scholar - 52. Stone T.W.: Neuropharmacology of quinolinic and kynurenicacids. Pharmacol. Rev., 1993; 45: 309–379
Google Scholar - 53. Stone T.W., Darlington L.G.: Endogenous kynurenines as targetsfor drug discovery and development. Nat. Rev. Drug Discov.,2002; 1: 609–620
Google Scholar - 54. Turska M., Rutyna R., Paluszkiewicz M., Terlecka P., DobrowolskiA., Pelak J., Turski M.P., Muszyńska B., Dabrowski W., Kocki T., PlechT.: Presence of kynurenic acid in alcoholic beverages – Is this goodnews, or bad news? Med. Hypotheses, 2019; 122: 200–205
Google Scholar - 55. Turski M.P., Turska M., Paluszkiewicz P., Parada-Turska J., OxenkrugG.F.: Kynurenic acid in the digestive system – New facts, newchallenges. Int. J. Tryptophan Res., 2013; 6: 47–55
Google Scholar - 56. Uher R.: The role of genetic variation in the causation of mentalillness: An evolution-informed framework. Mol. Psychiatry, 2009;14: 1072–1082
Google Scholar - 57. Van der Goot A.T., Nollen E.A.: Tryptophan metabolism: enteringthe field of aging and age-related pathologies. Trends Mol.Med., 2013; 19: 336–344
Google Scholar - 58. Walker A.K., Budac D.P., Bisulco S., Lee A.W., Smith R.A., BeendersB., Kelley K.W., Dantzer R.: NMDA receptor blockade byketamine abrogates lipopolysaccharide-induced depressive-likebehavior in C57BL/6J mice. Neuropsychopharmacology, 2013;38: 1609-1616
Google Scholar - 59. Watanabe Y., Fujiwara M., Yoshida R., Hayaishi O.: Stereospecificityof hepatic L-tryptophan 2,3-dioxygenase. Biochem. J., 1980;189: 393–405
Google Scholar - 60. Widner B., Ledochowski M., Fuchs D.: Interferon-gamma-inducedtryptophan degradation: Neuropsychiatric and immunologicalconsequences. Curr. Drug Metab., 2000; 1: 193–204
Google Scholar - 61. Wigner P., Czarny P., Galecki P., Su K.P., Sliwinski T.: The molecularaspects of oxidative & nitrosative stress and the tryptophancatabolites pathway (TRYCATs) as potential causes of depression.Psychiatry Res., 2018; 262: 566–574
Google Scholar - 62. Wurfel B.E., Drevets W.C., Bliss S.A., McMillin J.R., Suzuki H., FordB.N., Morris H.M., Teague T.K., Dantzer R., Savitz J.B.: Serum kynurenicacid is reduced in affective psychosis. Transl. Psychiatry, 2017; 7: e1115
Google Scholar - 63. Young S.N.: Acute tryptophan depletion in humans: a reviewof theoretical, practical and ethical aspects. J. Psychiatry Neurosci.,2013; 38: 294–305
Google Scholar - 64. Yuwiler A., Oldendorf W.H., Geller E., Braun L.: Effect of albuminbinding and amino acid competition on tryptophan uptake intobrain. J. Neurochem., 1977; 28: 1015–1023
Google Scholar - 65. Zhu H., Bogdanov M.B., Boyle S.H., Matson W., Sharma S., MatsonS., Churchill E., Fiehn O., Rush J.A., Krishnan R.R., PickeringE., Delnomdedieu M., Kaddurah-Daouk R., PharmacometabolomicsResearch Network: Pharmacometabolomics of response to sertralineand to placebo in major depressive disorder – possible role formethoxyindole pathway. PLoS One, 2013; 8: e68283
Google Scholar - 66. Zunszain P.A., Hepgul N., Pariante C.M.: Inflammation and depression.Curr. Top. Behav. Neurosci., 2013; 14: 135–151
Google Scholar