Udział czynników endokrynnych i komórek macierzystych w regeneracji mięśni szkieletowych

ARTYKUŁ PRZEGLĄDOWY

Udział czynników endokrynnych i komórek macierzystych w regeneracji mięśni szkieletowych

Barbara Morawin 1 , Agnieszka Zembroń-Łacny 1

1. Katedra Fizjologii Stosowanej i Klinicznej, Collegium Medicum, Uniwersytet Zielonogórski

Opublikowany: 2021-06-02
DOI: 10.5604/01.3001.0014.9125
GICID: 01.3001.0014.9125
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2021; 75 : 371-384

 

Abstrakt

Proces odbudowy uszkodzonych mięśni szkieletowych obejmuje cztery fazy: degeneracji, odpowiedzi zapalnej i immunologicznej, regeneracji oraz reorganizacji, regulowanych przez wiele cząsteczek o charakterze immuno-endokrynnym oddziałujących na komórki mięśniowe oraz komórki macierzyste mięśni. Do tych cząsteczek należy testosteron (T), który wiążąc się z wewnątrzkomórkowym receptorem androgenowym inicjuje ekspresję mięśniowej izoformy insulinopodobnego czynnika wzrostu 1 (IGF-1Ec). Współdziałanie T i IGF-1Ec stymuluje wzrost i regenerację mięśni z powodu zahamowania apoptozy, nasilenia proliferacji i różnicowania SCs. W wyniku starzenia się, dystrofii mięśniowych lub chorób wyniszczających liczba SCs ulega znacznemu obniżeniu. Regularny wysiłek fizyczny zapobiega jej obniżeniu i tym samym podwyższa potencjał regeneracyjny mięśni zarówno u młodych, jak i starszych osób. Jednym z wyzwań współczesnej medycyny jest możliwość wykorzystania komórek macierzystych oraz podłoży imitujących macierz zewnątrzkomórkową w medycynie regeneracyjnej i molekularnej, zwłaszcza w chorobach degeneracyjnych i pourazowej rekonstrukcji mięśni szkieletowych. Celem pracy jest przedstawienie aktualnych informacji na temat molekularnych i komórkowych mechanizmów regeneracji mięśni szkieletowych, roli testosteronu i czynników wzrostu w aktywacji SCs oraz możliwości ich terapeutycznego wykorzystania w stymulacji odbudowy uszkodzonych włókien mięśniowych.

Przypisy

  • 1. Agapitou V., Tzanis G., Dimopoulos S., Karatzanos E., Karga H.,Nanas S.: Effect of combined endurance and resistance trainingon exercise capacity and serum anabolic steroid concentration inpatients with chronic heart failure. Hellenic. J. Cardiol., 2018; 59:179-181
    Google Scholar
  • 2. Allen D.L., Teitelbaum D.H., Kurachi K.: Growth factor stimulationof matrix metalloproteinase expression and myoblast migration andinvasion in vitro. Am. J. Physiol. Cell. Physiol., 2003; 284: C805-C815
    Google Scholar
  • 3. Amir R., Ben-Sira D., Sagiv M.: IGF-I and FGF-2 responses to Wingateanaerobic test in older men. J. Sports. Sci. Med., 2007; 6: 227-232
    Google Scholar
  • 4. Annibalini G., Lucertini F., Agostini D., Vallorani L., GioacchiniA., Barbieri E., Guescini M., Casadei L., Passalia A., Del Sal M., PiccoliG., Andreani M., Federici A., Stocchi V.: Concurrent aerobic and resistancetraining has anti-inflammatory effects and increases bothplasma and leukocyte levels of IGF-1 in late middle-aged type 2 diabeticpatients. Oxid. Med. Cell. Longev, 2017; 2017: 3937842
    Google Scholar
  • 5. Archacka K., Kowalski K.K., Brzóska-Wójtowicz E.: Czy komórkisatelitowe są macierzyste? Post. Bioch., 2013; 59: 205-218
    Google Scholar
  • 6. Archacka K., Moraczewski J., Grabowska I.: Udział niemięśniowychkomórek macierzystych w regeneracji mięśni szkieletowych. Post.Biol. Komórki, 2010; 37: 187-207
    Google Scholar
  • 7. Basualto-Alarcón C., Varela D., Duran J., Maass R., Estrada M.: Sarcopeniaand androgens: A link between pathology and treatment.Front. Endocrinol., 2014; 5: 217
    Google Scholar
  • 8. Beauchamp J.R., Morgan J.E., Pagel C.N., Partridge T.A.: Dynamicsof myoblast transplantation reveal a discrete minority of precursorswith stem cell-like properties as the myogenic source. J. Cell. Biol.,1999; 144: 1113-1122
    Google Scholar
  • 9. Bhasin S., Storer T., Berman N., Callegari C., Clevenger B., PhillipsJ., Bunnell T.J., Tricker R., Shirazi A., Casaburi R.: The effects of supraphysiologicdoses of testosterone on muscle size and strength innormal men. N. Engl. J. Med., 1996; 335: 1-7
    Google Scholar
  • 10. Bosiacki M., Lubkowska A.: Starzenie się a ekspresja metaloproteinazmacierzy zewnątrzkomórkowej w mięśniach. Pomeranian J.Life. Sci., 2019; 65: 105-112
    Google Scholar
  • 11. Burdzińska A., Berwid S., Orzechowski A.: Transplantacje komórekmięśniowych – oczekiwania, możliwości i ograniczenia. Postępy Hig.Med. Dośw., 2005; 59: 299-308
    Google Scholar
  • 12. Carmeli E., Moas M., Lennon S., Powers S.K.: High intensity exerciseincreases expression of matrix metalloproteinases in fast skeletalmuscle fibres. Exp. Physiol., 2005; 90: 613-619
    Google Scholar
  • 13. Charifi N., Kadi F., Féasson L., Denis C.: Effects of endurance traningon satellite cell frequency in skeletal muscle of old men. MuscleNerve, 2003; 28: 87-92
    Google Scholar
  • 14. Chaudhary S., Shenoy S.: Analysis of hormonal responses to aerobicand anaerobic zone training. J. M. S. C. R., 2015; 3: 4677-4683
    Google Scholar
  • 15. Chen H.T., Chung Y.C., Chen Y.J., Ho S.Y., Wu H.J.: Effects of differenttypes of exercise on body composition, muscle strength, andIGF-1 in the elderly with sarcopenic obesity. J. Am. Geriatr. Soc., 2017;65: 827-832
    Google Scholar
  • 16. Chen X., Li Y.: Role of matrix metalloproteinases in skeletal muscle:Migration, differentiation, regeneration and fibrosis. Cell. Adh.Migr., 2009; 3: 337-341
    Google Scholar
  • 17. Chernausek S.D., Backeljauw P.F., Frane J., Kuntze J., UnderwoodL.E., GH Insensitivity Syndrome Collaborative Group: Long-term treatmentwith recombinant insulin-like growth factor (IGF)-I in childrenwith severe IGF-I deficiency due to growth hormone insensitivity. J.Clin. Endocrinol. Metab., 2007; 92: 902-910
    Google Scholar
  • 18. Cho S.Y., Roh H.T.: Taekwondo enhances cognitive function as aresult of increased neurotrophic growth factors in elderly women.Int. J. Environ. Res. Public Health, 2019; 16: 962
    Google Scholar
  • 19. Chyu M.C., Zhang Y., Brismée J.M., Dagda R.Y., Chaung E., Von BergenV., Doctolero S., Shen C.L.: Effects of martial arts exercise on bodycomposition, serum biomarkers and quality of life in overweight/obese premenopausal women: A pilot study. Clin. Med. Insights WomensHealth, 2013; 6: 55-65
    Google Scholar
  • 20. Clemmons D.R.: Role of IGF-binding proteins in regulating IGFresponses to changes in metabolism. J. Mol. Endocrinol., 2018; 61:T139-T169
    Google Scholar
  • 21. Collins C.A., Olsen I., Zammit P.S., Heslop L., Petrie A., PartridgeT.A., Morgan J.E.: Stem cell function, self-renewal, and behavioralheterogeneity of cells from the adult muscle satellite cell niche. Cell,2005; 122: 289-301
    Google Scholar
  • 22. Corotchi M.C., Popa M.A., Simionescu M.: Testosterone stimulatesproliferation and preserves stemness of human adult mesenchymalstem cells and endothelial progenitor cells. Rom. J. Morphol. Embryol.,2016; 57: 75-80
    Google Scholar
  • 23. Cottle B.J., Lewis F.C., Shone V., Ellison-Hughes G.M.: Skeletalmuscle-derived interstitial progenitor cells (PICs) display stem cellproperties, being clonogenic, self-renewing, and multi-potent in vitroand in vivo. Stem Cell. Res. Ther., 2017; 8: 158
    Google Scholar
  • 24. Cui S.F., Li W., Niu J., Zhang C.Y., Chen X., Ma J.Z.: Acute responsesof circulating microRNAs to low-volume sprint interval cycling. FrontPhysiol., 2015; 6: 311
    Google Scholar
  • 25. Cunha P.M., Nunes J.P., Tomeleri C.M., Nascimento M.A., SchoenfeldB.J., Antunes M., Gobbo L.A., Teixeira D., Cyrino E.S.: Resistancetraining performed with single and multiple sets induces similar improvementsin muscular strength, muscle mass, muscle quality, andIGF-1 in older women: A randomized controlled trial. J. Strength Cond.Res., 2020; 34: 1008-1016
    Google Scholar
  • 26. Deane C.S., Hughes D.C., Sculthorpe N., Lewis M.P., Stewart C.E.,Sharples A.P.: Impaired hypertrophy in myoblasts is improved withtestosterone administration. J. Steroid. Biochem. Mol. Biol., 2013; 138:152-161
    Google Scholar
  • 27. Dreyer H.C., Blanco C.E., Sattler F.R., Schroeder E.T., Wiswell R.A.:Satellite cell numbers in young and older men 24 hours after eccentricexercise. Muscle Nerve, 2006; 33: 242-253
    Google Scholar
  • 28. Englund D.A., Peck B.D., Murach K.A., Neal A.C., Caldwell H.A., Mc-Carthy J.J., Peterson C.A., Dupont-Verteegden E.E.: Resident musclestem cells are not required for testosterone-induced skeletal musclehypertrophy. Am. J. Physiol. Cell Physiol., 2019; 317: C719-C724
    Google Scholar
  • 29. Forcales S.V.: Potential of adipose-derived stem cells in muscularregenerative therapies. Front. Aging Neurosci., 2015; 7: 123
    Google Scholar
  • 30. Fukada S.I.: The roles of muscle stem cells in muscle injury, atrophyand hypertrophy. J. Biochem., 2018; 163: 353-358
    Google Scholar
  • 31. Gomes R.V., Moreira A., Lodo L., Nosaka K., Coutts A.J., Aoki M.S.:Monitoring training loads, stress, immune-endocrine responses andperformance in tennis players. Biol. Sport, 2013; 30: 173-180
    Google Scholar
  • 32. Grabowska I., Zimowska M., Maciejewska K., Jablonska Z., BazgaA., Ozieblo M., Streminska W., Bem J., Brzoska E., Ciemerych M.A.: Adiposetissue-derived stromal cells in matrigel impacts the regenerationof severely damaged skeletal muscles. Int. J. Mol. Sci., 2019; 20: 3313
    Google Scholar
  • 33. Harridge S.D.: Plasticity of human skeletal muscle: Gene expressionto in vivo function. Exp. Physiol., 2007; 92: 783-797
    Google Scholar
  • 34. Hashimoto H., Rebagliati M., Ahmad N., Muraoka O., KurokawaT., Hibi M., Suzuki T.: The Cerberus/Dan-family protein Charon is anegative regulator of Nodal signaling during left-right patterning inzebrafish. Development, 2004; 131: 1741-1753
    Google Scholar
  • 35. Hayes L.D., Grace F.M., Sculthorpe N., Herbert P., Ratcliffe J.W.,Kilduff L.P., Baker J.S.: The effects of a formal exercise training programmeon salivary hormone concentrations and body compositionin previously sedentary aging men. Springerplus, 2013; 2: 18
    Google Scholar
  • 36. Heatwole C.R., Eichinger K.J., Friedman D.I., Hilbert J.E., JacksonC.E., Logigian E.L., Martens W.B., McDermott M.P., Pandya S.K., QuinnC., Smirnow A.M., Thornton C.A., Moxley R.T.3rd: Open-label trial ofrecombinant human insulin-like growth factor-1/recombinant humaninsulin-like growth factor binding protein-3 (rhIGF-1/rhIGFBP-3) inmyotonic dystrophy type 1. Arch. Neurol., 2011; 68: 37-44
    Google Scholar
  • 37. Hejazi K., Hosseini S.R.: Influence of selected exercise on serumimmunoglobulin, testosterone and cortisol in semi-endurance eliterunners. Asian J. Sports Med., 2012; 3: 185-192
    Google Scholar
  • 38. Higashi Y., Gautam S., Delafontaine P., Sukhanov S.: IGF-1 and cardiovasculardisease. Growth. Horm. IGF Res., 2019; 45: 6-16
    Google Scholar
  • 39. Huard J., Gharaibeh B., Usas A.: Regenerative medicine basedon muscle-derived stem cells. Oper. Tech. Orthop., 2010; 20: 119-126
    Google Scholar
  • 40. Itariu B.K., Zeyda M., Prager G., Stulnig T.M.: Insulin-like growthfactor 1 predicts post-load hypoglycemia following bariatric surgery:A prospective cohort study. PLoS One, 2014; 9: e94613
    Google Scholar
  • 41. Jung P., Zimowska M.: Metaloproteinazy macierzyzewnątrzkomórkowej w rozwoju, fizjologii i procesach degeneracyjnychmięśni szkieletowych. Post. Bioch., 2016; 62: 25-35
    Google Scholar
  • 42. Junnila R.K., List E.O., Berryman D.E., Murrey J.W., Kopchick J.J.:The GH/IGF-1 axis in ageing and longevity. Nat. Rev. Endocrinol.,2013; 9: 366-376
    Google Scholar
  • 43. Jȕrimäe J., Jȕrimäe T.: Leptin responses to short term exercise incollege level male rowers. Br. J. Sports Med., 2005; 39: 6-9
    Google Scholar
  • 44. Kadi F., Schjerling P., Andersen L.L., Charifi N., Madsen J.L., ChristensenL.R., Andersen J.L.: The effects of heavy resistance training anddetraining on satellite cells in human skeletal muscles. J. Physiol.,2004; 558: 1005-1012
    Google Scholar
  • 45. Kilian Y., Engel F., Wahl P., Achtzehn S., Sperlich B., Mester J.: Markersof biological stress in response to a single session of high-intensityinterval training and high-volume training in young athletes. Eur. J.Appl. Physiol., 2016; 116: 2177-2186
    Google Scholar
  • 46. Kim T., Chang J.S., Kim H., Lee K.H., Kong I.D.: Intense walking exerciseaffects serum IGF-1 and IGFBP3. J. Lifestyle Med., 2015; 5: 21-25
    Google Scholar
  • 47. Kraemer W.J., Ratamess N.A., Hymer W.C., Nindl B.C., Fragala M.S.:Growth hormone(s), testosterone, insulin-like growth factors, andcortisol: Roles and integration for cellular development and growthwith exercise. Front. Endocrinol., 2020; 11: 33
    Google Scholar
  • 48. Kvorning T., Andersen M., Brixen K., Schjerling P., Suetta C., MadsenK.: Suppression of testosterone does not blunt mRNA expression ofmyoD, myogenin, IGF, myostatin or androgen receptor post strengthtraining in humans. J. Physiol., 2007; 578: 579-593
    Google Scholar
  • 49. Liu W., Wen Y., Bi P., Lai X., Liu X.S., Liu X., Kuang S.: Hypoxia promotessatellite cell self-renewal and enhances the efficiency of myoblasttransplantation. Development, 2012; 139: 2857-2865
    Google Scholar
  • 50. Maass A., Düzel S., Brigadski T., Goerke M., Becke A., Sobieray U.,Neumann K., Lövdén M., Lindenberger U., Bäckman L., Braun-DullaeusR., Ahrens D., Heinze H.J., Müller N.G., Lessmann V., Sendtner M., Düzel E.: Relationships of peripheral IGF-1, VEGF and BDNF levels to exerciserelatedchanges in memory, hippocampal perfusion and volumes inolder adults. Neuroimage, 2016; 131: 142-154
    Google Scholar
  • 51. Mackey A., Kjaer M., Dandanell S., Mikkelsen K.H., Holm L., DøssingS., Kadi F., Koskinen S.O., Jensen C.H., Schrøder H.D., Langberg H.: The influenceof anti-inflammatory medication on exercise-induced myogenicprecursor cell response in humans. J. Appl. Physiol., 2007; 103: 425-431
    Google Scholar
  • 52. Mañes S., Mira E., Barbacid M.M., Ciprés A., Fernández-Resa P.,Buesa J.M., Mérida I., Aracil M., Márquez G., Martıń ez-A C.: Identificationof insulin-like growth factor-binding protein-1 as a potentialphysiological substrate for human stromelysin-3. J. Biol. Chem., 1997;272: 25706-25712
    Google Scholar
  • 53. Marcell T.J., Harman S.M., Urban R.J., Metz D.D., Rodgers B.D.,Blackman M.R.: Comparison of GH, IGF-I, and testosterone with mRNAof receptors and myostatin in skeletal muscle in older men. Am. J.Physiol. Endocrinol. Metab., 2001; 281: E1159-E1164
    Google Scholar
  • 54. Mendell J.R., Kissel J.T., Amato A.A., King W., Signore L., Prior T.W.,Sahenk Z., Benson S., McAndrew P.E., Rice R., Nagaraja H., Stephens R.,Lantry L., Morris G.E., Burghes A.H.: Myoblast transfer in the treatmentof Duchenne’s muscular dystrophy. N. Engl. J. Med., 1995; 333: 832-838
    Google Scholar
  • 55. Meng J., Muntoni F., Morgan J.: CD133+ cells derived from skeletalmuscles of Duchenne muscular dystrophy patients have a compromisedmyogenic and muscle regenerative capability. Stem. Cell Res.,2018; 30: 43-52
    Google Scholar
  • 56. Mierzejewski B., Archacka K., Grabowska I., Florkowska A., CiemerychM.A., Brzoska E.: Human and mouse skeletal muscle stemand progenitor cells in health and disease. Semin. Cell. Dev. Biol.,2020; 104: 93-104
    Google Scholar
  • 57. Milewska M., Grabiec K., Grzelkowska-Kowalczyk K.: Interakcjeszlaków sygnałowych proliferacji i różnicowania w biogenezie.Postępy Hig. Med. Dośw., 2014; 68: 516-526
    Google Scholar
  • 58. Miller R.G., Sharma K.R., Pavlath G.K, Gussoni E., Mynhier M.,Lanctot A.M., Greco C.M., Steinman L., Blau H.M.: Myoblast implantationin Duchenne muscular dystrophy: The San Francisco study.Muscle Nerve, 1997; 20: 469-478
    Google Scholar
  • 59. Mitchell K.J., Pannérec A., Cadot B., Parlakian A., Besson V., GomesE.R., Marazzi G., Sassoon D.A.: Identification and characterization ofa non-satellite cell muscle resident progenitor during postnatal development.Nat. Cell Biol., 2010; 12: 257-266
    Google Scholar
  • 60. Molsted S., Andersen J.L., Eidemak I., Harrison A.P., JørgensenN.: Resistance training and testosterone levels in male patients withchronic kidney disease undergoing dialysis. Biomed. Res. Int., 2014;2014: 121273
    Google Scholar
  • 61. Molsted S., Andersen J.L., Harrison A.P., Eidemak I., Mackey A.L.:Fiber type-specific response of skeletal muscle satellite cells to highintensityresistance training in dialysis patients. Muscle Nerve, 2015;52: 736-745
    Google Scholar
  • 62. Montarras D., Morgan J., Collins C., Relaix F., Zaffran S., CumanoA., Partridge T., Buckingham M.: Direct isolation of satellite cells forskeletal muscle regeneration. Science, 2005; 309: 2064-2067
    Google Scholar
  • 63. Morawin B.: Rola testosteronu w regeneracji mięśni szkieletowychpo wysiłku fizycznym. Rocznik Lubuski, 2014; 40: 95-105
    Google Scholar
  • 64. Møller A.B., Lønbro S., Farup J., Voss T.S., Rittig N., Wang J., HøjrisI., Mikkelsen U.R., Jessen N.: Molecular and cellular adaptations to exercisetraining in skeletal muscle from cancer patients treated withchemotherapy. J. Cancer Res. Clin. Oncol., 2019; 145: 1449-1460
    Google Scholar
  • 65. Mueller S.M., Mihaylova V., Frese S., Petersen J.A., Ligon-AuerM., Aguayo D., Flück M., Jung H.H., Toigo M.: Satellite cell contentin Huntington’s disease patients in response to endurance training.Orphanet J. Rare Dis., 2019; 14: 135
    Google Scholar
  • 66. Mukund K., Subramaniam S.: Skeletal muscle: A review of molecularstructure and function, in health and disease. Wiley Interdiscip.Rev. Syst. Biol. Med., 2020; 12: e1462
    Google Scholar
  • 67. Negaresh R., Ranjbar R., Baker J.S., Habibi A., Mokhtarzade M.,Gharibvand M.M., Fokin A.: Skeletal muscle hypertrophy, insulin-likegrowth factor 1, myostatin and follistatin in healthy and sarcopenicederly men: The effect of whole-body resistance training. Int. J. Prev.Med., 2019; 10: 29
    Google Scholar
  • 68. Nemet D., Portal S., Zadik Z., Pilz-Burstein R., Adler-Portal D.,Meckel Y., Eliakim A.: Training increases anabolic response and reducesinflammatory response to a single practice in elite male adolescentvolleyball players. J. Pediatr. Endocrinol. Metab., 2012; 25: 875-880
    Google Scholar
  • 69. Nindl B.C., Alemany J.A., Tuckow A.P., Rarick K.R., Staab J.S., KraemerW.J., Maresh C.M., Spiering B.A., Hatfield D.L., Flyvbjerg A., FrystykJ.: Circulating bioactive and immunoreactive IGF-I remain stable inwomen, despite physical fitness improvements after 8 weeks of resistance,aerobic, and combined exercise training. J. Appl. Physiol.,2010; 109: 112-120
    Google Scholar
  • 70. Onambele-Pearson G.L., Pearson S.J.: The magnitude and characterof resistance-training-induced increase in tendon stiffness at oldage is gender specific. Age, 2012; 34: 427-438
    Google Scholar
  • 71. Partridge T.: Myoblast transplantation. Neuromuscul. Disord.,2002; 12: S3-S6
    Google Scholar
  • 72. Peng H., Huard J.: Muscle-derived stem cells for musculoskeletaltissue regeneration and repair. Transpl. Immunol., 2004; 12: 311-319
    Google Scholar
  • 73. Petriz B.A., Gomes C.P., Almeida J.A., De Oliveria G.P.Jr., RibeiroF.M., Pereira R.W., Franco O.L.: The effects of acute and chronic exerciseon skeletal muscle proteome. J. Cell Physiol., 2017; 232: 257-269
    Google Scholar
  • 74. Pronsato L., Milanesi L., Vasconsuelo A., La Colla A.: Testosteronemodulates FoxO3a and p53-related genes to protect C2C12 skeletalmuscle cells against apoptosis. Steroids, 2017; 124: 35-45
    Google Scholar
  • 75. Qu Z., Balkir L., van Deutekom J.C., Robbins P.D., Pruchnic R., HuardJ.: Development of approaches to improve cell survival in myoblasttransfer therapy. J. Cell Biol., 1998; 142: 1257-1267
    Google Scholar
  • 76. Rando T.A, Blau H.M.: Primary mouse myoblast purification, characterization,and transplantation for cell-mediated gene therapy. J.Cell Biol., 1994; 125: 1275-1287
    Google Scholar
  • 77. Renault V., Thornell L.E., Eriksson P.O., Butler-Browne G., MoulyW.: Regenerative potential of human skeletal muscle during aging.Aging Cell, 2002; 1: 132-139
    Google Scholar
  • 78. Riederer I., Negroni E., Bencze M., Wolff A., Aamiri A., Di SantoJ.P., Silva-Barbosa S.D., Butler-Browne G., Savino W., Mouly V.: Slowingdown differentiation of engrafted human myoblasts into immunodeficientmice correlates with increased proliferation and migration.Mol. Ther., 2012; 20: 146-154
    Google Scholar
  • 79. Rodriguez A.M., Pisani D., Dechesne C.A., Turc-Carel C., KurzenneJ.Y., Wdziekonski B., Villageois A., Bagnis C., Breittmayer J.P., GrouxH., Ailhaud G., Dani C.: Transplantation of a multipotent cell populationfrom human adipose tissue induces dystrophin expression inthe immunocompetent mdx mouse. J. Exp. Med., 2005; 201: 1397-1405
    Google Scholar
  • 80. Sacco A., Doyonnas R., Kraft P., Vitorovic S., Blau H.M.: Self-renewaland expansion of single transplanted muscle stem cells. Nature,2008; 456: 502-506
    Google Scholar
  • 81. Saini A., Mastana S., Myers F., Lewis M.P.: ‘From death, lead meto immortality’ – mantra of ageing skeletal muscle. Curr. Genomics,2013; 14: 256-267
    Google Scholar
  • 82. Sato K., Iemitsu M., Katayama K., Ishida K., Kanao Y., Saito M.: Responsesof sex steroid hormones to different intensities of exercise inendurance athletes. Exp. Physiol., 2016; 101: 168-175
    Google Scholar
  • 83. Schmidt M., Schüler S.C., Hüttner S.S., von Eyss B., von MaltzahnJ.: Adult stem cells at work: Regenerating skeletal muscle. Cell. Mol.Life Sci., 2019; 76: 2559-2570
    Google Scholar
  • 84. Schoenfeld B.J.: The mechanisms of muscle hypertrophy andtheir application to resistance training. J. Strength Cond. Res., 2010;24: 2857-2872
    Google Scholar
  • 85. Schulze M., Belema-Bedada F., Technau A., Braun T.: Mesenchymalstem cells are recruited to striated muscle by NFAT/IL-4-mediated cellfusion. Genes. Dev., 2005; 19: 1787-1798
    Google Scholar
  • 86. Snijders T., Nederveen J.P., Bell K.E., Lau S.W., Mazara N., KumbhareD.A., Phillips S.M., Parise G.: Prolonged exercise training improvesthe acute type II muscle fibre satellite cell response in healthy oldermen. J. Physiol., 2019; 597: 105-119
    Google Scholar
  • 87. Song T., Sadayappan S.: Featured characteristics and pivotal rolesof satellite cells in skeletal muscle regeneration. J. Muscle. Res. Cell.Motil., 2020; 41: 341-353
    Google Scholar
  • 88. Streuli C.: Extracellular matrix remodelling and cellular differentiation.Curr. Opin. Cell Biol., 1999; 11: 634-640
    Google Scholar
  • 89. Sutkowy P.B., Augustyńska B., Woźniak A., Rakowski A.: Physicalexercise combined with whole-body cryotherapy in evaluating thelevel of lipid peroxidation products and other oxidant stress indicatorsin kayakers. Oxid. Med. Cell. Longev., 2014; 2014: 402631
    Google Scholar
  • 90. Thompson J.L., Butterfield G.E., Marcus R., Hintz R.L., Van LoanM., Ghiron L., Hoffman A.R.: The effects of recombinant human insulin-like growth factor-I and growth hormone on body compositionin elderly women. J. Clin. Endocrinol. Metab., 1995; 80: 1845-1852
    Google Scholar
  • 91. Torrente Y., Belicchi M., Sampaolesi M., Pisati F., Meregalli M.,D’Antona G., Tonlorenzi R., Porretti L., Gavina M., Mamchaoui K., PellegrinoM.A., Furling D., Mouly V., Butler-Browne G.S., Bottinelli R. iwsp.: Human circulating AC133+ stem cells restore dystrophin expressionand ameliorate function in dystrophic skeletal muscle. J. Clin.Invest., 2004; 114: 182-195
    Google Scholar
  • 92. Tota Ł., Piotrowska A., Pałka T., Morawska M., Mikuľáková W.,Mucha D., Żmuda-Pałka M., Pilch W.: Muscle and intestinal damagein triathletes. PLoS One, 2019; 14: e0210651
    Google Scholar
  • 93. Tsuchiya Y., Sakuraba K., Ochi E.: High force eccentric exercise enhancesserum tartrate-resistant acid phosphatase-5b and osteocalcin.J. Musculoskelet. Neuronal. Interact., 2014; 14: 50-57
    Google Scholar
  • 94. Vassilakos G., Barton E.R.: Insulin-like growth factor I regulationand its actions in skeletal muscle. Compr. Physiol., 2018; 9: 413-438
    Google Scholar
  • 95. Velloso C.P.: Regulation of muscle mass by growth hormone andIGF-I. Br. J. Pharmacol. 2008; 154: 557-568
    Google Scholar
  • 96. Vlachopapadopoulou E., Zachwieja J.J., Gertner J.M., Manzione D.,Bier D.M., Matthews D.E., Slonim A.E.: Metabolic and clinical responseto recombinant human insulin-like growth factor I in myotonic dystrophy- a clinical research center study. J. Clin. Endocrinol. Metab.,1995; 80: 3715-3723
    Google Scholar
  • 97. Wegner M., Koedijker J.M., Budde H.: The effect of acute exerciseand psychosocial stress on fine motor skills and testosterone concentrationin the saliva of high school students. PLoS One, 2014; 9: e92953
    Google Scholar
  • 98. Wennberg A.M., Hagen C.E., Machulda M.M., Hollman J.H., RobertsR.O., Knopman D.S., Petersen R.C., Mielke M.M.: The associationbetween peripheral total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 and functionaland cognitive outcomes in the Mayo Clinic Study of Aging.Neurobiol. Aging, 2018; 66: 68-74
    Google Scholar
  • 99. Wennberg A.M., Hagen C.E., Petersen R.C., Mielke M.M.: Trajectoriesof plasma IGF-1, IGFBP-3, and their ratio in the Mayo Clinic Studyof Aging. Exp. Gerontol., 2018; 106: 67-73
    Google Scholar
  • 100. Wędrychowicz A., Dziatkowiak H., Sztefko K., Nazim J.: Zachowaniesię IGF-I i jego białek wiążących IGFBP-1 i IGFBP-3 u dzieci imłodzieży chorych na cukrzycę typu 1 oraz ich zależność od kontrolimetabolicznej cukrzycy. Diabetol. Dośw. Klin. 2003; 3: 489-499
    Google Scholar
  • 101. Wiewelhove T., Schneider C., Döweling A., Hanakam F., RascheC., Meyer T., Kellmann M., Pfeiffer M., Ferrauti A.: Effects of differentrecovery strategies following a half-marathon on fatigue markers inrecreational runners. PLoS One, 2018; 13: e0207313
    Google Scholar
  • 102. Yamakawa H., Kusumoto D., Hashimoto H., Yuasa S.: Stem cellaging in skeletal muscle regeneration and disease. Int. J. Mol. Sci.,2020; 21: 1830
    Google Scholar
  • 103. Zammit P.S., Relaix F., Nagata Y., Ruiz A.P., Collins C.A., PartridgeT.A., Beauchamp J.R.: Pax7 and myogenic progression in skeletal musclesatellite cells. J. Cell Sci., 2006; 119: 1824-1832
    Google Scholar
  • 104. Zembroń-Łacny A., Krzywański J., Ostapiuk-Karolczuk J., KasperskaA.: Cell and molecular mechanisms of regeneration and reorganizationof skeletal muscles. Ortop. Traumatol. Rehabil., 2012; 14: 1-11
    Google Scholar
  • 105. Zhang Y., Zhu Y., Li Y., Cao J., Zhang H., Chen M., Wang L., ZhangC.: Long-term engraftment of myogenic progenitors from adiposederivedstem cells and muscle regeneration in dystrophic mice. Hum.Mol. Genet., 2015; 24: 6029-6040
    Google Scholar
  • 106. Żebrowska A., Gąsior Z., Langfort J.: Serum IGF-I and hormonalresponses to incremental exercise in athletes with and without leftventricular hypertrophy. J. Sports. Sci. Med., 2009; 8: 67-76
    Google Scholar

Pełna treść artykułu

Przejdź do treści