Ulepszone metody różnicowania ludzkich embrionalnych komórek macierzystych w kierunku chondrocytów

ARTYKUŁ PRZEGLĄDOWY

Ulepszone metody różnicowania ludzkich embrionalnych komórek macierzystych w kierunku chondrocytów

Wiktoria Maria Suchorska 1 , Ewelina Augustyniak 1 , Magdalena Richter 2 , Magdalena Łukjanow 1 , Violetta Filas 3 , Jacek Kaczmarczyk 2 , Tomasz Trzeciak 2

1. Radiobiology Lab, Greater Poland Cancer Centre, Poznan, Poland
2. Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
3. Pathology Department, Greater Poland Cancer Centre, Poznan, Poland Poznan University of Medical Sciences, Poland

Opublikowany: 2017-06-19
DOI: 10.5604/01.3001.0010.3831
GICID: 01.3001.0010.3831
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2017; 71 : 500-509

 

Abstrakt

Przypisy

  • 1. Abujarour R., Ding S.: Induced pluripotent stem cells free of exogenousreprogramming factors. Genome Biol., 2009; 10: 220
    Google Scholar
  • 2. Aktas M., Buchheiser A., Houben A., Reimann V., Radke T., JeltschK., Maier P., Zeller W.J., Kogler G.: Good manufacturing-practicegrade production of unrestricted somatic stem cell from fresh cordblood. Cytotherapy, 2010; 12: 338-348
    Google Scholar
  • 3. Alfred R., Taiani J.T., Krawetz R.J., Yamashita A., Rancourt D.E.,Kallos M.S.: Large-scale production of murine embryonic stem cellderivedosteoblasts and chondrocytes on microcarriers in serumfreemedia. Biomaterials, 2011; 32: 6006-6016
    Google Scholar
  • 4. Augustyniak E., Trzeciak T., Richter M., Kaczmarczyk J., SuchorskaW.: The role of growth factors in stem cell-directed chondrogenesis:a real hope for damaged cartilage regeneration. Int Orthop., 2015;39: 995-1003
    Google Scholar
  • 5. Bianco P.: Bone and the hematopoietic niche: a tale of two stemcells. Blood, 2011; 117: 5281-5288
    Google Scholar
  • 6. Chen K.G., Mallon B.S., Hamilton R.S., Kozhich O.A., Park K., HoeppnerD.J., Robey P.G., McKay R.D.: Non-colony type monolayer cultureof human embryonic stem cells. Stem Cell Res., 2012; 9: 237-248
    Google Scholar
  • 7. Diekman B.O., Christoforou N., Willard V.P., Sun H., SanchezAdamsJ., Leong K.W., Guilak F.: Cartilage tissue engineering usingdifferentiated and purified induced pluripotent stem cells. Proc.Natl. Acad. Sci. USA, 2012; 109: 19172-19177
    Google Scholar
  • 8. Docheva D., Haasters F., Schieker M.: Mesenchymal stem cells andtheir cell surface receptors. Curr. Rheumatol. Rev., 2008; 4: 155-160
    Google Scholar
  • 9. Durruthy-Durruthy J., Briggs S.F, Awe J., Ramathal C.Y., KarumbayaramS., Lee P.C., Heidmann J.D., Clark A., Karakikes I., LohK.M., Wu J.C., Hoffman A.R., Byrne J., Reijo Pera R.A., Sebastiano V.:Rapid and efficient conversion of integration-free human inducedpluripotent stem cells to GMP-grade culture conditions. PloS One,2014; 9: e94231
    Google Scholar
  • 10. Gong G., Ferrari D., Dealy C.N., Kosher R.A.: Direct and progressivedifferentiation of human embryonic stem cells into the chondrogeniclineage. J. Cell Physiol., 2010; 224: 664-671
    Google Scholar
  • 11. Gupta P.K., Das A., Chullikana A., Majumdar A.S.: Mesenchymalstem cells for cartilage repair in osteoarthritis. Stem Cell Res.Ther., 2012; 3: 25
    Google Scholar
  • 12. Handorf A.M., Li W.J.: Induction of mesenchymal stem cell chondrogenesisthrough sequential of growth factors within specifictemporal windows. J. Cell. Physiol., 2014; 229: 162-171
    Google Scholar
  • 13. Hazeltine L.B., Selekman J.A., Palecek S.P.: Engineering the humanpluripotent stem cell microenvironment to direct cell fate.Biotechnol. Adv., 2013; 31: 1002-1019
    Google Scholar
  • 14. Hwang N.S., Varghese S., Elisseeff J.: Derivation of chondrogenically-commitedcells from human embryonic cells for cartilage tissueregeneration. PLoS One, 2008; 3: e2498
    Google Scholar
  • 15. Jezierska-Woźniak K., Nosarzewska D., Tutas A., Mikołajczyk A.,Okliński M., Jurkowski M.K.: Wykorzystanie tkanki tłuszczowej jakoźródła mezenchymalnych komórek macierzystych. Postępy Hig.Med. Dośw., 2010; 64: 326-332
    Google Scholar
  • 16. Karlsson C., Emanuelsson K., Wessberg F., Kajic K., Axell M.Z.,Eriksson P.S., Lindahl A., Hyllner J., Strehl R.: Human embryonic stemcell-derived mesenchymal progenitors – potential in regenerativemedicine. Stem Cell Res., 2009; 3: 39-50
    Google Scholar
  • 17. Lach M., Trzeciak T., Richter M., Pawlicz J., Suchorska W.M.: Directeddifferentiation of induced pluripotent stem cells into chondrogeniclineages for articular cartilage treatment. J. Tissue Eng.,2014; 5: 1-9
    Google Scholar
  • 18. Minagawa A., Kaneko S.: Rise of iPSCs as a cell source for adoptiveimmunotherapy. Hum Cell., 2014; 27: 47-50
    Google Scholar
  • 19. Mummery C.L., Zhang J., Nq E.S., Elliott D.A., Elefanty A.G., KampT.J.: Differentiation of human embryonic stem cells and inducedpluripotent stem cells to cardiomiocytes: a methods overview. Circ.Res., 2012; 111: 344-358
    Google Scholar
  • 20. Nejadnik H., Diecke S., Lenkow O.D., Chapelin F., Donig J., TongX., Derugin N., Chan R.C., Gaur A., Yang F., Wu J.C., Daldrup-LinkH.E.: Improved approach for chondrogenic differentation of humaninduced pluripotent stem cells. Stem Cell Rev., 2015; 11: 242-253
    Google Scholar
  • 21. Nishimori M., Yakushiji H., Mori M., Miyamoto T., Yaguchi T.,Ohno S., Miyake Y., Sakaguchi T., Ueda M., Ohno E.: Tumorigenesisin cells derived from induced pluripotent stem cells. Hum. Cell.,2014; 27: 29-35
    Google Scholar
  • 22. Oldershaw R.A., Baxter M.A., Lowe E.T., Bates N., Grady L.M.,Soncin F., Brison D.R., Hardingham T.E., Kimber S.J.: Directed differentiationof human embryonic stem cells toward chondrocytes.Nat. Biotechnol., 2010; 28: 1187-1194
    Google Scholar
  • 23. Olmer R., Lange A., Selzer S., Kasper C., Haverich A., Martin U.,Zweigerdt R.: Suspension culture of human pluripotent stem cellsin controlled, stirred bioreactors. Tissue Eng. Part C Methods, 2012;18: 772-784
    Google Scholar
  • 24. Piskorska-Jasiulewicz M.M., Witkowska-Zimny M.: Okołoporodoweźródła komórek macierzystych. Postępy Hig. Med. Dośw.,2015; 69: 327-334
    Google Scholar
  • 25. Prathalingam N., Ferguson L., Young L., Lietz G., Oldershaw R.,Healy L., Craig A., Lister H., Binaykia R., Sheth R., Murdoch A., HerbertM.: Production and validation of a good manufacturing practicegrade human fibroblast line for supporting human embryonic stemcell derivation and culture. Stem Cell Res. Ther., 2012; 3: 12
    Google Scholar
  • 26. Robinton D.A., Daley G.Q.: The promise of induced pluripotentstem cells in research and therapy. Nature, 2012; 481: 295-305
    Google Scholar
  • 27. Sen A., Kallos M.S., Behie L.A.: Passaging protocols for mammalianneural stem cells in suspension bioreactors. Biotechnol. Prog.,2002; 18: 337-345
    Google Scholar
  • 28. Siti-Ismail N., Bishop A.E., Polak J.M., Mantalaris A.: The benefitof human embryonic stem cell encapsulation for prolonged feederfreemaintenance. Biomaterials, 2008; 29: 3946-3952
    Google Scholar
  • 29. Soncin F., Ward C.M.: The function of e-cadherin in stem cellpluripotency and self-renewal. Genes, 2011; 2: 229-259
    Google Scholar
  • 30. Sun X., Wie L., Chen Q., Terek R.M.: CXCR4/SDF1 mediate hypoxiainduced chondrosarcoma cell invasion through ERK signalingand increased MMP1 expression. Mol. Cancer, 2010; 9: 17
    Google Scholar
  • 31. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., TomodaK., Yamanaka S.: Induction of pluripotent stem cells formadult human fibroblasts by defined factors. Cell, 2007; 131: 861-872
    Google Scholar
  • 32. Tallheden T., Brittberg M., Peterson L., Lindahl A.: Human articularchondrocytes – plasticity and differentiation potential. CellsTissues Organs, 2006; 184: 55-67
    Google Scholar
  • 33. Tanaka M., Jokubaitis V., Wood C., Wang Y., Brouard N., PeraM., Hearn M., Simmons P., Nakayama N.: BMP inhibition stimulatesWNT-dependent generation of chondrogenic mesoderm form embryonicstem cells. Stem Cell Res., 2009; 3: 126-141
    Google Scholar
  • 34. Tandon N., Marolt D., Cimetta E., Vunjak-Novakovic G.: Bioreactorengineering of stem cell environments. Biotechnol. Adv.,2013; 31: 1020-1031
    Google Scholar
  • 35. Tannenbaum S.E., Turetsky T.T., Singer O., Aizenman E., KirshbergS., IIouz N., Gil Y., Berman-Zaken Y., Perlman T.S., Geva N., Levy O., Arbell D., Simon A., Ben-Meir A., Shufaro Y., et al.: Derivation ofxeno-free and GMP-grade human embryonic stem cells – platformsfor future clinical applications. PLoS One, 2012; 7: e35325
    Google Scholar
  • 36. Toh W.S., Cao T.: Derivation of chondrogenic cells from humanembryonic stem cells for cartilage tissue engineering. Methods Mol.Biol., 2014; 1307: 263-279
    Google Scholar
  • 37. Toh W.S., Guo X.M., Choo A.B., Lu K., Lee E.H., Cao T.: Differentiationand enrichment of expandable chondrogenic cells from humanembryonic stem cell in vitro. J. Cell Mol. Med., 2009; 13: 3570-3590
    Google Scholar
  • 38. Toh W.S., Yang Z., Heng B.C., Cao T.: Differentiation of humanembryonic stem cells toward the chondrogenic lineage. MethodsMol. Biol., 2007; 407: 333-349
    Google Scholar
  • 39. Troy T.C., Turksen K.: Commitment of embryonic stem cells toan epidermal cell fate and differentiation in vitro. Dev. Dyn., 2005;232: 293-300
    Google Scholar
  • 40. Trzeciak T., Augustyniak E., Richter M., Kaczmarczyk J., SuchorskaW.: Induced pluripotent and mesenchymal stem cells as a promisingtool for articular cartilage regeneration. J. Cell Sci. Ther., 2014;5: 1724
    Google Scholar
  • 41. Umeda K., Zhao J., Simmons P., Stanley E., Elefanty A., NakayamaN.: Human chondrogenic paraxial mesoderm, directed specificationand prospective isolation from pluripotent stem cells. Sci.Rep., 2012; 2: 455
    Google Scholar
  • 42. Xu J., Wang W., Ludeman M., Cheng K., Hayami T., Lotz J.C.,Kapila S.: Chondrogenic differentiation of human mesenchymalstem cells in three-dimensional alginate gels. Tissue Eng. Part A,2008; 14: 667-680
    Google Scholar
  • 43. Yamashita A., Liu S., Woltjen K., Thomas B., Meng G., Hotta A.,Takahashi K., Ellis J., Yamanaka S., Rancourt D.E.: Cartilage tissueengineering identifies abnormal human induced pluripotent stemcells. Sci. Rep., 2013; 3: 1978
    Google Scholar
  • 44. Yang H.N., Park J.S., Woo D.G., Jeon S.Y., Do H.J., Lim H.Y., KimS.W., Kim J.H., Park K.H.: Chondrogenesis of mesenchymal stem cellsand dedifferentiated chondrocytes by transfection with SOX Triogenes. Biomaterials, 2011; 32: 7695-7704
    Google Scholar
  • 45. Yodmuang S., Gadjanski I., Chao P.H., Vunjak-Novakovic G.: Transienthypoxia improves matrix properties in tissue engineered cartilage.J. Orthop. Res., 2013; 31: 544-553
    Google Scholar
  • 46. Yodmuang S., Marolt D., Marcos-Campos I., Gadjanski I., VunjakNovakovicG.: Synergistic effects of hypoxia and morphogenetic factorson early chondrogenic commitment of human embryonic stemcells in embryoid body culture. Stem Cell Rev., 2015; 11: 228-241
    Google Scholar
  • 47. Zhang Z., McCaffery J.M., Spencer R.G., Francomano C.A.: Hyalinecartilage engineered by chondrocytes in pellet culture: histological,immmunohistochemical and ultrastructural analysis in comparisonwith cartilage explants. J. Anat., 2004; 205: 229-237
    Google Scholar

Pełna treść artykułu

Przejdź do treści