Wpływ kwasu dokozaheksaenowego (DHA) i eikozapentaenowego (EPA) na regulację funkcji komórek śródbłonka naczyniowego*
Dominika Łacheta 1 , Wioletta Olejarz 2 , Marta Włodarczyk 1 , Grażyna Nowicka 1Abstrakt
Kwasy dokozaheksaenowy (DHA) i eikozapentaenowy (EPA) należą do wielonienasyconych kwasów tłuszczowych z grupy n-3 (n-3 PUFA), a ich głównym źródłem w diecie są ryby morskie. Badania epidemiologiczne wykazały, że ich duże spożycie wiąże się ze zmniejszonym ryzykiem wystąpienia chorób sercowo-naczyniowych. DHA i EPA hamują rozwój stanu zapalnego, zmieniają funkcję i regulację cząsteczek będących jednocześnie biomarkerami naczyniowymi. Są czynnikami wazodylatacyjnymi i wazokonstrykcyjnymi przez kontrolowanie syntezy tlenku azotu (NO) i endoteliny-1 (ET-1) w komórkach śródbłonka. Przyczyniają się także do ochrony przeciwmiażdżycowej przez regulację ekspresji receptora utlenionych LDL (oxLDL), inhibitora aktywatora plazminogenu-1 (PAI-1), receptora tromboksanu A2 (TXA2) oraz cząsteczek adhezyjnych ICAM-1 (międzykomórkowa cząsteczka adhezyjna-1), VCAM-1 (naczyniowa cząsteczka adhezyjna-1), a także białka chemotaktycznego monocytów 1 (MCP-1). Badania wskazują, że DHA i EPA regulują aktywację receptora TLR4 (receptor Toll-podobny 4) i osłabiają aktywację szlaku sygnałowego czynnika jądrowego κB (NF-κB). Wykazują działanie przeciwzapalne wpływając na receptor wolnego kwasu tłuszczowego 4 (FFAR4). Jednak ich skuteczność i mechanizmy działania nie są jeszcze dokładnie poznane, dlatego celem tej publikacji było ocenienie wpływu DHA i EPA na komórki śródbłonka naczyń oraz przegląd najnowszych badań dotyczących ich potencjału w zapobieganiu chorobom sercowo-naczyniowym.
Przypisy
- 1. Abedi E., Sahari, M.A.: Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr., 2014; 2: 443–463
Google Scholar - 2. Appleton K.M., Sallis H.M., Perry R., Ness A.R., Churchill R.: ω-3 Fatty acids for major depressive disorder in adults: An abridged Cochrane review. BMJ Open, 2016; 6: e010172
Google Scholar - 3. Balakumar P., Taneja G.: Fish oil and vascular endothelial protection: bench to bedside. Free Radic. Biol. Med., 2012; 53: 271–279
Google Scholar - 4. Bryk D., Olejarz W., Zapolska-Downar D.: Mitogen-activated protein kinases in atherosclerosis. Postępy Hig. Med. Dośw., 2014; 68: 10–22
Google Scholar - 5. Calder P.C.: Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta, 2015; 1851: 469–484
Google Scholar - 6. Calder P.C.: Mechanisms of action of (n-3) fatty acids. J. Nutr, 2012; 142: 592S–599S
Google Scholar - 7. Calder P.C.: New evidence that omega-3 fatty acids have a role in primary prevention of coronary heart disease. J. Public Health Emergency, 2017. http://jphe.amegroups.com/article/view/3849/4642 (28.06.2019)
Google Scholar - 8. Calder P.C.: The role of marine omega-3 (n-3) fatty acids in inflammatory processes, atherosclerosis and plaque stability. Mol. Nutr. Food Res., 2012; 56: 1073–1080
Google Scholar - 9. Chang C.Y., Kuan Y.H., Li J.R., Chen W.Y., Ou Y.C., Pan H.C., Liao S.L., Raung S.L., Chang C.J., Chen C.J.: Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J. Nutr. Biochem., 2013; 24: 2127–2137
Google Scholar - 10. Chao C.Y., Lii C.K., Ye S.Y., Li C.C., Lu C.Y., Lin A.H., Liu K.L., Chen H.W.: Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells. J. Agric Food Chem., 2014; 62: 4152–4158
Google Scholar - 11. Chen H., Li D., Chen J., Roberts G.J., Saldeen T., Mehta J.L.: EPA and DHA attenuate ox-LDL-induced expression of adhesion molecules in human coronary artery endothelial cells via protein kinase B pathway. J. Mol. Cell. Cardiol., 2003; 35: 769–775
Google Scholar - 12. Dasilva G., Pazos M., Garcia-Egido E., Gallardo J.M., Rodriguez I., Cela R., Medina I.: Healthy effect of different proportions of marine omega-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation. J. Nutr. Biochem., 2015; 26: 1385–1392
Google Scholar - 13. Davenport A.P., Alexander S.P., Sharman J.L., Pawson A.J., Benson H.E., Monaghan A.E., Liew W.C., Mpamhanga C.P., Bonner T.I., Neubig R.R., Pin J.P., Spedding M., Harmar A.J.: International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev, 2013; 65: 967–986
Google Scholar - 14. Davidson M.H., Benes L.B.: The future of n-3 polyunsaturated fatty acid therapy. Curr. Opin. Lipidol., 2016; 27: 570–578
Google Scholar - 15. Davignon J., Ganz P.: Role of endothelial dysfunction in atherosclerosis. Circulation, 2004; 109 (Suppl. 1): III27–III32
Google Scholar - 16. Fleming J.A., Kris-Etherton P.M.: The evidence for α-linolenic acid and cardiovascular disease benefits: Comparisons with eicosapentaenoic acid and docosahexaenoic acid. Adv. Nutr., 2014; 5: 863S–876S
Google Scholar - 17. Gladine C., Newman J.W., Durand T., Pedersen T.L., Galano J.M., Demougeot C., Berdeaux O., Pujos-Guillot E., Mazur A., Comte B.: Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention. PLoS One, 2014; 9: e89393
Google Scholar - 18. Honda K.L., Lamon-Fava S., Matthan N.R., Wu, D., Lichtenstein A.H.: Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages. Prostaglandins Leuk. Essent. Fatty Acids, 2015; 97: 27–34
Google Scholar - 19. Hong S.H., Belayev L., Khoutorova L., Obenaus A., Bazan N.G.: Docosahexaenoic acid confers enduring neuroprotection in experimental stroke. J. Neurol. Sci., 2014; 338: 135–141
Google Scholar - 20. Huang C.Y., Sheu W.H., Chiang A.N.: Docosahexaenoic acid and eicosapentaenoic acid suppress adhesion molecule expression in human aortic endothelial cells via differential mechanisms. Mol. Nutr. Food Res., 2015; 59: 751–762
Google Scholar - 21. Ibrahim A., Mbodji K., Hassan A., Aziz M., Boukhettala N., Coeffier M., Savoye G., Dechelotte P., Marion-Letellier R.: Anti-inflammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin. Nutr., 2011; 30: 678–687
Google Scholar - 22. Im D.S.: Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur. J. Pharmacol., 2016; 785: 36–43
Google Scholar - 23. Jiang J., Li K., Wang F., Yang B., Fu Y., Zheng J., Li D.: Effect of marine-derived n-3 polyunsaturated fatty acids on major eicosanoids: A systematic review and meta-analysis from 18 randomized controlled trials. PLoS One, 2016; 11: e0147351
Google Scholar - 24. Kiage J.N., Sampson U.K., Lipworth L., Fazio S., Mensah G.A., Yu Q., Munro H., Akwo E.A., Dai Q., Blot W.J., Kabagambe E.K.: Intake of polyunsaturated fat in relation to mortality among statin users and non-users in the Southern Community Cohort Study. Nutr. Metab. Cardiovasc. Dis., 2015; 25: 1016–1024
Google Scholar - 25. Liu H.Q., Qiu Y., Mu Y., Zhang X.J., Liu L., Hou X.H., Zhang L., XuX.N., Ji A.L., Cao R., Yang R.H., Wang F.: A high ratio of dietary n-3/n-6polyunsaturated fatty acids improves obesity-linked inflammationand insulin resistance through suppressing activation of TLR4 in SDrats. Nutr. Res., 2013; 33: 849–858
Google Scholar - 26. Liu K.L., Yang Y.C., Yao H.T., Chia T.W., Lu C.Y., Li C.C., Tsai H.J.,Lii C.K., Chen H.W.: Docosahexaenoic acid inhibits inflammation viafree fatty acid receptor FFA4, disruption of TAB2 interaction withTAK1/TAB1 and downregulation of ERK-dependent Egr-1 expressionin EA.hy926 cells. Mol. Nutr. Food Res., 2016; 60: 430–443
Google Scholar - 27. Marciniak-Łukasiak K.: Rola i znaczenie kwasów tłuszczowychomega-3. Żywność: Nauka – Technologia – Jakość, 2011; 18: 24–35
Google Scholar - 28. Martin S.A., Brash A.R., Murphy R.C.: The discovery and earlystructural studies of arachidonic acid. J. Lipid Res. 2016; 57: 1126–1132
Google Scholar - 29. Michel T., Vanhoutte P.M.: Cellular signaling and NO production.Pflugers Arch., 2010; 459: 807–816
Google Scholar - 30. Minihane A.M., Armah C.K., Miles E.A., Madden J.M., Clark A.B.,Caslake M.J., Packard C.J., Kofler B.M., Lietz G., Curtis P.J., Mathers J.C.,Williams C.M., Calder P.C.: Consumption of fish oil providing amountsof eicosapentaenoic acid and docosahexaenoic acid that can be obtainedfrom the diet reduces blood pressure in adults with systolichypertension: A retrospective analysis. J. Nutr., 2016; 146: 516–523
Google Scholar - 31. Moniri N.H.: Free-fatty acid receptor-4 (GPR120): Cellular andmolecular function and its role in metabolic disorders. Biochem.Pharmacol., 2016; 110-111: 1–15
Google Scholar - 32. Mori T.A.: Dietary n-3 PUFA and CVD: a review of the evidence.Proc. Nutr. Soc., 2014; 73: 57–64
Google Scholar - 33. Mozaffarian D., Wu J.H.: (n-3) fatty acids and cardiovascularhealth: are effects of EPA and DHA shared or complementary? J.Nutr., 2012; 142: 614S–625S
Google Scholar - 34. Mundi S., Massaro M., Scoditti E., Carluccio M.A., van HinsberghV.W.M., Iruela-Arispe M.L., De Caterina R.: Endothelial permeability,LDL deposition, and cardiovascular risk factors-a review. Cardiovasc.Res., 2018; 114: 35–52
Google Scholar - 35. Nestel P., Clifton P., Colquhoun D., Noakes M., Mori T.A., SullivanD., Thomas B.: Indications for omega-3 long chain polyunsaturatedfatty acid in the prevention and treatment of cardiovascular disease.Heart Lung Circ., 2015; 24: 769–779
Google Scholar - 36. Nichols P.D., Glencross B., Petrie J.R., Singh S.P.: Readily availablesources of long-chain omega-3 oils: is farmed Australian seafooda better source of the good oil than wild-caught seafood? Nutrients,2014; 6: 1063–1079
Google Scholar - 37. Nowak J.Z.: Przeciwzapalne „prowygaszeniowe” pochodne wielonienasyconychkwasów tłuszczowych omega 3 i omega 6. PostępyHig. Med. Dośw., 2010; 64: 115–132
Google Scholar - 38. O’Connell T.D., Block R.C., Huang S.P., Shearer G.C.: omega3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacyand novel signaling through free fatty acid receptor 4. J. Mol.Cell. Cardiol., 2017; 103: 74–92
Google Scholar - 39. Oh D.Y., Walenta E., Akiyama T.E., Lagakos W.S., Lackey D., PessentheinerA.R., Sasik R., Hah N., Chi T.J., Cox J.M., Powels M.A., DiSalvo J., Sinz C., Watkins S.M., Armando A.M., i wsp.: A Gpr120-selectiveagonist improves insulin resistance and chronic inflammationin obese mice. Nat. Med., 2014; 20: 942–947
Google Scholar - 40. Olejarz W., Bryk D., Zapolska-Downar D.: Significance of nuclearfactor κB in atherosclerosis: a potential therapeutic target for cardiovasculardisease. Czynniki Ryzyka, 2015; 78: 35–43
Google Scholar - 41. Özogul Y., Özogul F., Alagoz S.: Fatty acid profiles and fat contentsof commercially important seawater and freshwater fish species ofTurkey: A comparative study. Food Chemistry, 2007; 103: 217–223
Google Scholar - 42. Pan J.X.: LncRNA H19 promotes atherosclerosis by regulatingMAPK and NF-κB signaling pathway. Eur. Rev. Med. Pharmacol.Sci., 2017; 21: 322–328
Google Scholar - 43. Pilkington S.M., Rhodes L.E., Al-Aasswad N.M., Massey K.A.,Nicolaou A.: Impact of EPA ingestion on COX- and LOX-mediatedeicosanoid synthesis in skin with and without a pro-inflammatoryUVR challenge – report of a randomised controlled study in humans.Mol. Nutr. Food Res., 2014; 58: 580–590
Google Scholar - 44. Qi K., Fan C., Jiang J., Zhu H., Jiao H., Meng Q., Deckelbaum R.J.:Omega-3 fatty acid containing diets decrease plasma triglycerideconcentrations in mice by reducing endogenous triglyceride synthesisand enhancing the blood clearance of triglyceride-rich particles.Clin. Nutr., 2008; 27: 424–430
Google Scholar - 45. Risk and Prevention Study Collaborative group, RoncaglioniM.C., Tombesi M., Avanzini F., Barlera S., Caimi V., Longoni P., MarzonaI., Milani V., Silletta M.G., Tognoni G., Marchioli R.: n-3 fattyacids in patients with multiple cardiovascular risk factors. N. Engl.J. Med., 2013; 368: 1800–1808
Google Scholar - 46. Rizzi T.S., van der Sluis S., Derom C., Thiery E., van Kesteren R.E.,Jacobs N., Van Gestel S., Vlietinck R., Verhage M., Heutink P., PosthumaD.: FADS2 genetic variance in combination with fatty acid intake mightalter composition of the fatty acids in brain. PLoS One, 2013; 8: e68000
Google Scholar - 47. Salem N.Jr., Eggersdorfer M.: Is the world supply of omega-3fatty acids adequate for optimal human nutrition? Curr.. Opin Clin.Nutr. Metab. Care, 2015; 18: 147–154
Google Scholar - 48. Serasanambati M., Chilakapati S.R.: Function of nuclear factorkappa B (NF-κB) in human diseases-a review. South Indian J. Biol.Sci., 2016; 2: 368–387
Google Scholar - 49. Sicińska P., Pytel E., Kurowska J., Koter-Michalak M.: Suplementacjakwasami omega w różnych chorobach. Postępy Hig. Med.Dośw., 2015; 69: 838–852
Google Scholar - 50. Simopoulos A.P.: The importance of the omega-6/omega-3 fattyacid ratio in cardiovascular disease and other chronic diseases. Exp.Biol. Med., 2008; 233: 674–688
Google Scholar - 51. Song T.J., Chang Y., Shin M.J., Heo J.H., Kim Y.J.: Low levels ofplasma omega 3-polyunsaturated fatty acids are associated with cerebralsmall vessel diseases in acute ischemic stroke patients. Nutr.Res., 2015; 35: 368–374
Google Scholar - 52. Sprague M., Dick J.R., Tocher D.R.: Impact of sustainable feedson omega-3 long-chain fatty acid levels in farmed Atlantic salmon,2006-2015. Sci. Rep., 2016; 6: 21892
Google Scholar - 53. Stebbins C.L., Stice J.P., Hart C.M., Mbai F.N., Knowlton A.A.: Effectsof dietary decosahexaenoic acid (DHA) on eNOS in human coronary arteryendothelial cells. J. Cardiovasc. Pharmacol. Ther., 2008; 13: 261–268
Google Scholar - 54. Tousoulis D., Oikonomou E., Economou E.K., Crea F., Kaski J.C.:Inflammatory cytokines in atherosclerosis: current therapeutic approaches.Eur. Heart J., 2016; 37: 1723–1732
Google Scholar - 55. Vanhoutte P.M., Shimokawa H., Feletou M., Tang E.H.: Endothelialdysfunction and vascular disease – a 30th anniversary update.Acta Physiol., 2017; 219: 22–96
Google Scholar - 56. Wang T.M., Chen C.J., Lee T.S., Chao H.Y., Wu W.H., Hsieh S.C.,Sheu H.H., Chiang A.N.: Docosahexaenoic acid attenuates VCAM-1expression and NF-κB activation in TNF-α-treated human aorticendothelial cells. J. Nutr. Biochem., 2011; 22: 187–194
Google Scholar - 57. Wang Z., Guo A., Ma L., Yu H., Zhang L., Meng H., Cui Y., Yu F.,Yang B.: Docosahexenoic acid treatment ameliorates cartilage degenerationvia a p38 MAPK-dependent mechanism. Int. J. Mol. Med.,2016; 37: 1542–1550
Google Scholar - 58. Williams-Bey Y., Boularan C., Vural A., Huang N.N., Hwang I.Y.,Shan-Shi C., Kehrl J.H.: Omega-3 free fatty acids suppress macrophageinflammasome activation by inhibiting NF-κB activation andenhancing autophagy. PLoS One, 2014; 9: e97957
Google Scholar - 59. Xun P., Qin B., Song Y., Nakamura Y., Kurth T., Yaemsiri S.,Djousse L., He K.: Fish consumption and risk of stroke and its subtypes:accumulative evidence from a meta-analysis of prospectivecohort studies. Eur. J. Clin. Nutr., 2012; 66: 1199–1207
Google Scholar - 60. Yamagata K.: Docosahexaenoic acid regulates vascular endothelialcell function and prevents cardiovascular disease. Lipids HealthDis., 2017; 16: 118
Google Scholar - 61. Yamagata K., Suzuki S., Tagami M.: Docosahexaenoic acid preventedtumor necrosis factor α-induced endothelial dysfunction andsenescence. Prostaglandins Leuk. Essent. Fatty Acids, 2016; 104: 11–18
Google Scholar - 62. Yang Y.C., Lii C.K., Wei Y.L., Li C.C., Lu C.Y., Liu K.L., Chen H.W.:Docosahexaenoic acid inhibition of inflammation is partially viacross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways.J. Nutr. Biochem., 2013; 24: 204–212
Google Scholar - 63. Zamberletti E., Piscitelli F., De Castro V., Murru E., Gabaglio M.,Colucci P., Fanali C., Prini P., Bisogno T., Maccarrone M., CampolongoP., Banni S., Rubino T., Parolaro D.: Lifelong imbalanced LA/ALA intakeimpairs emotional and cognitive behavior via changes in brainendocannabinoid system. J. Lipid Res., 2017; 58: 301–316
Google Scholar - 64. Zhang J.Y., Kothapalli K.S., Brenna J.T.: Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acidbiosynthesis. Curr. Opin. Clin. Nutr. Metab. Care, 2016; 19: 103–110
Google Scholar - 65. Zheng J., Huang T., Yu Y., Hu X., Yang B., Li D.: Fish consumptionand CHD mortality: an updated meta-analysis of seventeen cohortstudies. Public Health Nutr., 2012; 15: 725–737
Google Scholar - 66. Zulyniak M.A., Perreault M., Gerling C., Spriet L.L., Mutch D.M.:Fish oil supplementation alters circulating eicosanoid concentrationsin young healthy men. Metabolism, 2013; 62: 1107–1113
Google Scholar