Wpływ owocystatyny na funkcje poznawcze szczurów

ORYGINALNY ARTYKUŁ

Wpływ owocystatyny na funkcje poznawcze szczurów

Bartłomiej Stańczykiewicz 1 , Maria Rutkowska 2 , Marta Lemieszewska 3 , Marta Jakubik-Witkowska 3 , Jakub Gburek 4 , Krzysztof Gołąb 4 , Katarzyna Juszczyńska 4 , Tadeusz Trziszka 5 , Joanna Rymaszewska 3

1. Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University, Wroclaw, Poland
2. Department of Pharmacology, Wroclaw Medical University, Wroclaw, Poland
3. Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
4. Department of Pharmaceutical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
5. Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland

Opublikowany: 2017-12-29
DOI: 10.5604/01.3001.0010.7670
GICID: 01.3001.0010.7670
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2017; 71 : 1202-1208

 

Abstrakt

Wstęp: Increased occurrence of cognitive deficits in mild cognitive impairment is related with the phenomenon of aging within the population. Cystatin C has been associated with cysteine protease inhibiting properties as well as an induction of autophagy and proliferation that can potentially be used as an adjuvant in the treatment of cognitive decline. The aim of the study was to evaluate the effect of ovocystatin, which is structurally and biologically similar to cystatin C, on cognitive functions in experimental young and aging rat models. Materiały/Metody: The young (four-month-old) and aging (ten-month-old) Wistar Crl: Wi (Han) rats received ovocystatin (i.p.) for 12 days at a dose of 200 and 20 μg/rat, respectively. Cognitive functions were determined using the Morris water maze. Wyniki: Ovocystatin treatment at a dose of 200 μg/rat improved the performance of old rats in the Morris water maze test via increasing the spent time and the distance traveled in the target zone but the differences were not statistically significant (p>0.05). The results of the study highlight the important role cystatins play in neurodegenerative processes as well as the influence they have on cognitive functions. Furthermore, the obtained findings suggest ovocystatin may be used in the treatment of mild cognitive impairment or cognitive decline in dementia, but further morphological, biochemical and immunohistochemical studies are needed.

Przypisy

  • 1. Alosco M.L., Galioto R., Spitznagel M.B., Strain G., Devlin M., Cohen R., Crosby R.D., Mitchell J.E., Gunstad J.: Cognitive function after bariatric surgery: evidence for improvement 3 years after surgery. Am. J. Surg., 2014; 207: 870-876
    Google Scholar
  • 2. Anastasi A., Brown M.A., Kembhavi A.A., Nicklin M.J., Sayers C.A., Sunter D.C., Barrett A.J.: Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem. J., 1983; 211: 129-138
    Google Scholar
  • 3. Barrett A.J.: A new assay for cathepsin B1 and other thiol proteinases. Anal. Biochem., 1972; 47: 280-293
    Google Scholar
  • 4. Bernstein H.G., Kirschke H., Wiederanders B., Pollak K.H., Zipress A., Rinne A.: The possible place of cathepsins and cystatins in the puzzle of Alzheimer disease. Mol. Chem. Neuropathol., 1996; 27: 225-247
    Google Scholar
  • 5. DeKosky S.T., Marek K.: Looking backward to move forward: early detect
    Google Scholar
  • 6. Foster T.C.: Biological markers of age-related memory deficits: treatment of senescent physiology. CNS Drugs, 2006; 20: 153-166
    Google Scholar
  • 7. Gauthier S., Kaur G., Mi W., Tizon B., Levy E.: Protective mechanisms by cystatin C in neurodegenerative diseases. Front. Biosci., 2011; 3: 541-554
    Google Scholar
  • 8. Ghidoni R., Benussi L., Glionna M., Desenzani S., Albertini V., Levy E., Emanuele E., Binetti G.: Plasma cystatin C and risk of developing Alzheimer’s disease in subjects with mild cognitive impairment. J. Alzheimers Dis., 2010; 22: 985-991
    Google Scholar
  • 9. Gołąb K., Gburek J., Juszczyńska K., Trziszka T., Polanowski A.: Stabilization of monomeric chicken egg white cystatin. Przem. Chem., 2012; 91: 741-744
    Google Scholar
  • 10. Hasegawa A., Naruse M., Hitoshi S., Iwasaki Y., Takebayashi H., Ikenaka K.: Regulation of glial development by cystatin C. J. Neurochem., 2007; 100: 12-22
    Google Scholar
  • 11. Horowski A., Gołąb K., Juszczyńska K., Trziszka T., Polanowski A., Gburek J.: Effect of fosforylation on aggregation of chicken egg white cystatin. Przem. Chem., 2013; 92: 551-554
    Google Scholar
  • 12. Hu Y., Hung A.C., Cui H., Dawkins E., Bolós M., Foa L., Young K.M., Small D.H.: Role of cystatin C in amyloid precursor protein-induced proliferation of neural stem/progenitor cells. J. Biol. Chem., 2013; 288: 18853-18862
    Google Scholar
  • 13. Kato T., Heike T., Okawa K., Haruyama M., Shiraishi K., Yoshimoto M., Nagato M., Shibata M., Kumada T., Yamanaka Y., Hattori H., Nakahata T.: A neurosphere-derived factor, cystatin C, supports differentiation of ES cells into neural stem cells. Proc. Natl. Acad. Sci. USA, 2006; 103: 6019-6024
    Google Scholar
  • 14. Konopska B., Gburek J., Gołąb K., Warwas M.: Influence of aminoglycoside antibiotics on chicken cystatin binding to renal brush-border membranes. J. Pharm. Pharmacol., 2013; 65: 988-994
    Google Scholar
  • 15. Kos J., Mitrović A., Mirković B.: The current stage of cathepsin B inhibitors as potential anticancer agents. Future Med. Chem., 2014; 6:1355-1371
    Google Scholar
  • 16. Kumada T., Hasegawa A., Iwasaki Y., Baba H., Ikenaka K.: Isolation of cystatin C via functional cloning of astrocyte differentiation factors. Dev. Neurosci., 2004; 26: 68-76
    Google Scholar
  • 17. Liguz-Lęcznar M., Zakrzewska R., Daniszewska K., Kossut M.: Functional assessment of sensory functions after photothrombotic stroke in the barrel field of mice. Behav. Brain Res., 2014; 261: 202-209
    Google Scholar
  • 18. Liu Y., Li J., Wang Z., Yu Z., Chen G.: Attenuation of early brain injury and learning deficits following experimental subarachnoid hemorrhage secondary to cystatin C: possible involvement of the autophagy pathway. Mol. Neurobiol., 2014; 49: 1043-1054
    Google Scholar
  • 19. Madero M., Gul A., Sarnak M.J.: Review: cognitive function in chronic kidney disease. Semin. Dial., 2008; 21: 29-37
    Google Scholar
  • 20. Maetzler W., Schmid B., Synofzik M., Schulte C., Riester K., Huber H., Brockmann K., Gasser T., Berg D., Melms A.: The CST3 BB genotype and low cystatin C cerebrospinal fluid levels are associated with dementia in Lewy body disease. J. Alzheimers Dis., 2010; 19: 937-942
    Google Scholar
  • 21. Magister S., Kos J.: Cystatins in immune system. J. Cancer, 2013; 4: 45-56
    Google Scholar
  • 22. Malicka-Blaszkiewicz M., Filipczak N., Gołąb K., Juszczyńska K., Sebzda T., Gburek J.: Ovocystatin affects actin cytoskeleton organization and induces proapoptotic activity. Acta Biochim. Pol., 2014; 61: 753-758
    Google Scholar
  • 23. Mathews P.M., Levy E.: Cystatin C in aging and in Alzheimer’s disease. Ageing Res. Rev., 2016, 32: 38-50
    Google Scholar
  • 24. Mussap M., Plebani M.: Biochemistry and clinical role of human cystatin C. Crit. Rev. Clin. Lab. Sci., 2004; 41: 467-550
    Google Scholar
  • 25. Nixon R.A.: Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci., 2006; 29: 528-535
    Google Scholar
  • 26. Olsson T., Nygren J., Håkansson K., Lundblad C., Grubb A., Smith M.L., Wieloch T.: Gene deletion of cystatin C aggravates brain damage following focal ischemia but mitigates the neuronal injury after global ischemia in the mouse. Neuroscience, 2004; 128: 65-71
    Google Scholar
  • 27. Pirttilä T.J., Lukasiuk K., Håkansson K., Grubb A., Abrahamson M., Pitkänen A.: Cystatin C modulates neurodegeneration and neurogenesis following
    Google Scholar
  • 28. Pirttilä T.J., Manninen A., Jutila L., Nissinen J., Kälviäinen R., Vapalahti M., Mervaala E.: Cystatin C expression is associated with granule cell dispersion in epilepsy. Ann. Neurol., 2005; 58: 211-223
    Google Scholar
  • 29. Sarnak M.J., Katz R., Fried L.F., Siscovick D., Kestenbaum B., Seliger S., Rifkin D., Tracy R., Newman A.B., Shlipak M.G., Cardiovascular Health Study: Cystatin C and aging success. Arch. Intern. Med., 2008; 168: 147-153
    Google Scholar
  • 30. Schägger H., von Jagow G.: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem., 1987; 166: 368-379
    Google Scholar
  • 31. Shamsi A., Bano B.: Journey of cystatins from being mere thiol protease inhibitors to at heart of many pathological conditions. Int. J. Biol. Macromol., 2017; 102: 674-693
    Google Scholar
  • 32. Slinin Y., Peters K.W., Ishani A., Yaffe K., Fink H.A., Stone K.L., Steffes M., Ensrud K.E., Study of Osteoporotic Fractures: Cystatin C and cognitive impairment 10 years later in older women. J. Gerontol. A Biol. Sci. Med. Sci., 2015; 70: 771-778
    Google Scholar
  • 33. Sun B., Zhou Y., Halabisky B., Lo I., Cho S.H., Mueller-Steiner S., Devidze N., Wang X., Grubb A., Gan L.: Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron, 2008; 60: 247-257
    Google Scholar
  • 34. Sun Q.: Growth stimulation of 3T3 fibroblasts by cystatin. Exp. Cell Res., 1989; 180: 150-160
    Google Scholar
  • 35. Sundelöf J., Arnlöv J., Ingelsson E., Sundström J., Basu S., Zethelius B., Larsson A., Irizarry M.C., Giedraitis V., Rönnemaa E., Degerman-Gunnarsson M., Hyman B.T., Basun H., Kilander L., Lannfelt L.: Serum cystatin C and the risk of Alzheimer disease in elderly men. Neurology, 2008; 71: 1072-1079
    Google Scholar
  • 36. Szpak M., Trziszka T., Polanowski A., Gburek J., Gołąb K., Juszczyńska K., Janik P., Malicki A., Szyplik K.: Evaluation of the antibacterial activity of cystatin against selected strains of Escherichia coli. Folia Biol., 2014; 62: 187-192
    Google Scholar
  • 37. Taupin P., Ray J., Fischer W.H., Suhr S.T., Hakansson K., Grubb A., Gage F.H.: FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron, 2000; 28: 385-397
    Google Scholar
  • 38. Tavéra C., Leung-Tack J., Prévot D., Gensac M.C., Martinez J., Fulcrand P., Collé A.: Cystatin C secretion by rat glomerular mesangial cells: autocrine loop for in vitro growth-promoting activity. Biochem. Biophys. Res. Commun., 1992; 182: 1082-1088
    Google Scholar
  • 39. Tolkovsky A.M., Xue L., Fletcher G.C., Borutaite V.: Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie, 2002; 84: 233-240
    Google Scholar
  • 40. Tombaccini D., Mocali A., Weber E., Paoletti F.: A cystatin-based affinity procedure for the isolation and analysis of papain-like cysteine proteinases from tissue extracts. Anal. Biochem., 2001; 289: 231-238
    Google Scholar
  • 41. Turk V., Stoka V., Turk D.: Cystatins: biochemical and structural properties, and medical relevance. Front. Biosci., 2008; 13: 5406-5420
    Google Scholar
  • 42. Wang X.F., Liu D.X., Liang Y., Xing L.L., Zhao W.H., Qin X.X., Shang D.S., Li B., Fang W.G., Cao L., Zhao W.D., Chen Y.H.: Cystatin C shifts APP processing from amyloid-β production towards non-amyloidgenic pathway in brain endothelial cells. PLoS One, 2016; 11: e0161093
    Google Scholar
  • 43. Warwas M., Piwowar A.: Urinary cystatin C as a biomarker of renal tubular injury. Postępy Hig. Med. Dośw., 2011; 65: 562-568
    Google Scholar
  • 44. Yaffe K., Kurella-Tamura M., Ackerson L., Hoang T.D., Anderson A.H., Duckworth M., Go A.S., Krousel-Wood M., Kusek J.W., Lash J.P., Ojo A., Robinson N., Sehgal A.R., Sondheimer J.H., Steigerwalt S., Townsend R.R., CRIC Study Investigators: Higher levels of cystatin C are associated with worse cognitive function in older adults with chronic kidney disease: The Chronic Renal Insufficiency Cohort Cognitive Study. J. Am. Geriatr. Soc., 2014; 62: 1623-1629
    Google Scholar
  • 45. Yaffe K., Lindquist K., Shlipak M.G., Simonsick E., Fried L., Rosano C., Satterfield S., Atkinson H., Windham B.G., Kurella-Tamura M.: Cystatin C as a marker of cognitive function in elders: findings from the health ABC study. Ann. Neurol., 2008; 63: 798-802
    Google Scholar

Pełna treść artykułu

Przejdź do treści