Wpływ temperatury na potencjał antyoksydacyjny różnych rodzajów miodów

ORYGINALNY ARTYKUŁ

Wpływ temperatury na potencjał antyoksydacyjny różnych rodzajów miodów

Katarzyna Janda 1 , Karolina Jakubczyk 1 , Katarzyna Woźniak 1 , Edyta Stępień 2 , Izabela Gutowska 3 

1. Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Szczecin, Poland
2. Department of Plant Taxonomy and Phytogeography, Faculty of Biology, University of Szczecin, Szczecin, Poland
3. Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland

Opublikowany: 2020-02-21
DOI: 10.5604/01.3001.0013.8611
GICID: 01.3001.0013.8611
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2020; 74 : 42-48

 

Abstrakt

Honey is the most popular bee product consumed by humans. It is known for its nutritional properties and health benefits, which include neuroprotective effects, the support of the circulatory system, and the beneficial influence it has on skin and respiratory system disorders. The aim of this study was to determine the influence of water temperature used for the preparation of honey solutions on their antioxidant potential. Material and methods. The study material included buckwheat honey, black locust honey, and rape honey. Honey solutions (1%) were prepared using distilled water with the temperatures: 25°C, 70°C, 80°C, and 90°C. The antioxidant activity of samples was measured with spectrophotometric method using synthetic radical DPPH. The antioxidant activity of honey was between 0.29 to 78.50% of DPPH inhibition, depending on the type of honey and the temperature of water used for the preparation of solutions. Buckwheat honey was characterised by the highest antioxidant potential. A significant, directly proportional correlation was observed between the antioxidant potential and the temperature of buckwheat and rape II honey solutions. In the case of buckwheat honey, rape honey I and black locust honey, the highest antioxidant potential was achieved in solutions prepared using distilled water at 90°C, whereas in the case of rape honey II, the highest values were observed at 80°C and 90°C. The lowest inhibition of the DPPH radical was observed in solutions at 70°C in all of the honey types. In the case of the studied honeys, it is even advisable to prepare water solutions at 80°C or 90°C in order to increase its antioxidant potential, e.g. by adding honey to tea or milk.

Przypisy

  • 1. Bassani D.C., Nunes D.S., Granato D.: Optimization of phenolics andflavonoids extraction conditions and antioxidant activity of roastedyerba-mate leaves (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) using responsesurface methodology. An. Acad. Bras. Cienc., 2014; 86: 923–933
    Google Scholar
  • 2. Batu A., Aydoğmuş R.E., Bayrambaş K., Eroğlu A., Karakavuk E.,Eroğlu Z.: Changes in Brix, pH and total antioxidants and polyphenolsof various honeys stored in different temperatures. J. FoodAgric. Environ., 2014; 12: 281–285
    Google Scholar
  • 3. Beretta G., Granata P., Ferrero M., Orioli M., Facino R.M.: Standardizationof antioxidant properties of honey by a combination ofspectrophotometric/fluorimetric assays and chemometrics. Anal.Chimica Acta, 2005; 533: 185–191
    Google Scholar
  • 4. Bertoncelj J., Doberšek U., Jamnik M., Golob T.: Evaluation of thephenolic content, antioxidant activity and colour of Slovenian honey.Food Chem., 2007; 105: 822–828
    Google Scholar
  • 5. Bobiş O., Mărghitaş L.A., Dezmirean D., Bonta V., Mihai C.M.: Beehiveproducts: source of nutrients and natural biologically activecompounds. J. Agroaliment. Proc. Technol., 2010; 16: 104–109
    Google Scholar
  • 6. Borawska J., Bednarski W., Gołębiewska J.: Profile of honey saccharidesand possibilities of applying Bifidobacterium to modify their compositionand properties. Food, Science, Technologies, 2011; 3: 29–39
    Google Scholar
  • 7. Burlando B., Cornara L.: Honey in dermatology and skin care: areview. J. Cosmet. Dermatol., 2013; 12: 306–313
    Google Scholar
  • 8. Chua L.S., Rahaman N.L., Adnan N.A., Tan T.T.: Antioxidant activityof three honey samples in relation with their biochemical components.J. Anal. Methods. Chem., 2013; 2013: 313798
    Google Scholar
  • 9. Gheldof N., Engeseth N.: Antioxidant capacity of honeys fromvarious floral sources based on the determination of oxygen radicalabsorbance capacity and inhibition of in vitro lipoproteinoxidation in human serum samples. J. Agric. Food Chem., 2002;50: 3050–3055
    Google Scholar
  • 10. [10] Gheldof N., Wang X.H., Engeseth N.J.: Identification and quantification of antioxidant components of honeys from various floral sources. J. Agric. Food Chem., 2002; 50: 5870–5877
    Google Scholar
  • 11. Henatsch D., Wesseling F., Kross K.W., Stokroos R.J.: Honey and beehive products in otorhinolaryngology: a narrative review. Clin. Otolaryngol., 2016; 41: 519–531
    Google Scholar
  • 12. Hołderna-Kędzia E., Kędzia B.: Research on an antioxidant capacity of honeys. Acta Agrobotan., 2006; 59: 265–269 (in Polish)
    Google Scholar
  • 13. Ioannidou M.D., Zachariadis G.A., Anthemidis A.N., Stratis J.A.: Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry. Talanta, 2005; 65: 92–97
    Google Scholar
  • 14. Kesić A., Crnkić A., Ibrišimović-Mehmedinović N., Šestan A., Ćatović B.: Changes of antioxidant activity in honey as a result of Haber-Wais reaction. Am. J. Applied Chem., 2014; 2: 112–116
    Google Scholar
  • 15. Khalil M.I., Sulaiman S.A.: The potential role of honey and its polyphenols in preventing heart diseases: A review. Afr. J. Tradit. Complement. Altern. Med., 2010; 7: 315–321
    Google Scholar
  • 16. Lachman J., Hejtmánková A., Sýkora J., Karban J., Orsák M., Rygerová B.: Contents of major phenolic and flavonoid antioxidants in selected Czech honey. Czech J. Food Sci., 2010; 28: 412–426
    Google Scholar
  • 17. Majewska E.: Comparison of chosen properties of bright and dark honeys. Science, Nature, Technologies, 2009; 13: 1–9 (in Polish)
    Google Scholar
  • 18. Majewska E., Kowalska J., Drużyńska B., Derewiaka D., Ciecierska M.: The study of correlation between total poliphenol content and the capacity to deactivate the DPPH radicals in selected honeys. Aparatura Badawcza i Dydaktyczna, 2014; 2: 127–133 (in Polish)
    Google Scholar
  • 19. Meda A., Lamien C.E., Romito M., Millogo J., Nacoulma O.G.: Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem., 2005; 91: 571–577
    Google Scholar
  • 20. Pham-Huy L.A., He H., Pham-Huy C.: Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008; 4: 89–96
    Google Scholar
  • 21. Piljac-Žegarac J., Stipčević T., Belščak A.: Antioxidant properties and phenolic content of different floral origin honeys. J. Api. Prod. Api. Med. Sci., 2009; 1: 43–50
    Google Scholar
  • 22. Pontis J.A., da Costa L.A., Da Silva S.J., Flach A.: Color, phenolic and flavonoid content, and antioxidant activity of honey from Roraima, Brazil. Food Sci. Technol., 2014; 34: 69–73
    Google Scholar
  • 23. Rahman M.M., Gan S.H., Khalil M.I.: Neurological effects of honey: Current and future prospects. Evidence-Based Compl. Alternative Med., 2014; 2014: 958721
    Google Scholar
  • 24. Šarić G., Marković K., Major N., Krpan M., Uršulin-Trstenjak N., Hruškar M., Vahčić N.: Changes of antioxidant activity and phenolic content in acacia and multifloral honey during storage. Food Tech. Biotech., 2012; 50: 434–441
    Google Scholar
  • 25. Tangvarasittichai S.: Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes, 2015; 6: 456–480
    Google Scholar
  • 26. Telesiński A., Grzeszczuk M., Pobłocki J., Jankowski J., Jadczak D., Zakrzewska H.: Antioxidant activity of some galenic medicines prepared from st. John’s wort (Hypericum perforatum L.) with added honey. Brom. Chem. Toksykol., 2012; 45: 1227–1232 (in Polish)
    Google Scholar
  • 27. Turkmen N., Sari F., Poyrazoglu E.S., Velioglu Y.S.: Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem., 2006; 95: 653–657
    Google Scholar
  • 28. Vit P., Rodríguez-Malaver A., Rondón C., González I., Di Bernardo M.L., García M.Y.: Bioactive indicators related to bioelements of eight unifloral honeys. Arch. Latinoamer. Nutr., 2010; 60: 405–410
    Google Scholar
  • 29. Wilczyńska A.: Changes in colour and antioxidant activity of stored honeys. Brom. Chem. Toksykol., 2011; 44: 945–950 (in Polish)
    Google Scholar
  • 30. Wilczyńska A.: An attempt to use linear regression to determine the relationship between color and antioxidant properties of honey. Sci. J. Gdynia Maritime Univ., 2013; 80: 13–19 (in Polish)
    Google Scholar
  • 31. Wilczyńska A., Przybyłowski P.: Characterization of honey’s polyphenols. Sci. J. Gdynia Maritime Univ., 2009; 61: 33–38 (in Polish)
    Google Scholar
  • 32. Wolska J., Czop M., Jakubczyk K., Janda K.: Influence of temperature and brewing time of nettle (Urtica dioica L.) infusions on vitamin C content. Rocz. Panstw. Zakl. Hig., 2016; 67: 367–371
    Google Scholar
  • 33. Wolska J., Janda K., Jakubczyk K., Szymkowiak M., Chlubek D., Gutowska I.: Levels of antioxidant activity and fluoride content in coffee infusions of arabica, robusta and green coffee beans in according to their brewing methods. Biol. Trace Elem. Res., 2017; 179: 327–333
    Google Scholar
  • 34. Zych I., Krzepiłko A.: Measurement of total antioxidant capacity of selected antioxidants and infusions using DPPH radical reduction. Chemia, Dydaktyka, Ekologia, Metrologia, 2010; 15: 51–54 (in Polish)
    Google Scholar

Pełna treść artykułu

Skip to content