Współczesne kierunki zastosowania ultradźwięków niskiej mocy w terapii przeciwnowotworowej
Sebastian Mazur 1 , Jolanta Rzymowska 2 , Ludmiła Grzybowska-Szatkowska 3Abstrakt
In the recent years, research has been conducted on the role of ultrasounds (US) in anticancer therapy. Although the mechanisms of impact on cancer cells have not yet been fully understood, it is known that the best results are obtained using low power ultrasound. Currently applying ultrasounds to organisms is considered in three areas of influence: thermal (thermic effect), cavitation (cavitation effect), other than thermal and cavitation ones (non-thermal, non-cavitation effect). Under the influence of ultrasonic wave with low power, the absorption of drugs is increased as well as of anti-angiogenic activity. Sonodynamic therapy is aimed at destroying dividing cancer cells through the formation of free radicals in the cavitation mechanism and in the presence of sonosensitizers. At the same time under the influence of US, local hyperthermia is generated. In vivo studies showed a synergistic increase in cytotoxicity due to the effects of ultrasonic hyperthermia and adriamycin. The thermal effect and inertial cavitation are described as two factors induced by US, which may lead to damage to the vascular network within the neoplastic lesion. A proportional increase in tumor echogenicity to the frequency range of the applied ultrasound wave has been demonstrated. The strategy of combining US with photosensitizers, chemotherapeutics or contrast agents is gaining more and more recognition. Obtained results from inter developed studies on antineoplastic sonodynamic therapy indicate that it may become a new additional cancer treatment strategy.
Przypisy
- 1. Atkins T.J., Duck F.A.: Heating caused by selected pulsed Dopplerand physiotherapy ultrasound beams measured using thermal testobjects. Eur. J. Ultrasound, 2003; 16: 243–252
Google Scholar - 2. Barnett S.B.: Intracranial temperature elevation from diagnosticultrasound. Ultrasound Med. Biol., 2001; 27: 883–888
Google Scholar - 3. Barnett S.B.: Ultrasound. Nonthermal issues: cavitation – its nature,detection and measurement. Ultrasound Med. Biol., 1998; 24: S11–S21
Google Scholar - 4. Barnett S.B.: Ultrasound. Other nonthermal mechanisms: acousticradiation force and streaming. Ultrasound Med. Biol., 1998;24: S23–S28
Google Scholar - 5. Chen B., Zheng R., Liu D., Li B., Lin J., Zhang W.: The tumor affinityof chlorin e6 and its sonodynamic effects on non-small cell lungcancer. Ultrason. Sonochem., 2013; 20: 667–673
Google Scholar - 6. Dai S., Hu S., Wu C.: Apoptotic effect of sonodynamic therapymediated by hematoporphyrin monomethyl ether on C6 gliomacells in vitro. Acta Neurochir., 2009; 151: 1655–1661
Google Scholar - 7. Didenko Y.T., McNamara W.B.3rd, Suslick K.S.: Molecular emissionfrom single-bubble sonoluminescence. Nature, 2000; 407: 877–879
Google Scholar - 8. EFSUMB: Safety Tutorial. Radiation stress and its bio-effectsEuropean Committee for Medical Ultrasound Safety (ECMUS), 2011
Google Scholar - 9. Emoto M.: Development of cancer therapy using low-intensityultrasound: realization of simultaneous diagnosis and treatment.Choonpa Igaku, 2012; 39: 251–257
Google Scholar - 10. Ferreira Reis S.: Characterization of biological tissue: measurementof acoustic properties for ultrasound therapy. UniversidadeDe Lisboa, Departamento De Fisica, 2013
Google Scholar - 11. Fuciarelli A.F., Sisk E.C., Thomas R.M., Miller D.L.: Induction ofbase damage in DNA solutions by ultrasonic cavitation. Free Radic.Biol. Med., 1995; 18: 231–238
Google Scholar - 12. Gao H.J., Zhang W.M., Wang X.H., Zheng R.N.: Adriamycin enhancesthe sonodynamic effect of chlorin e6 against the proliferationof human breast cancer MDA-MB-231 cells in vitro. Nan FangYi Ke Da Xue Xue Bao, 2010; 30: 2291–2294
Google Scholar - 13. Harrison G.H., Balcer-Kubiczek E.K., Eddy H.A.: Potentiation ofchemotherapy by low-level ultrasound. Int. J. Radiat. Biol., 1991;59: 1453–1466
Google Scholar - 14. Harrison G.H., Balcer-Kubiczek E.K., Gutierrez P.L.: In vitromechanisms of chemopotentiation by tone-burst ultrasound. UltrasoundMed. Biol., 1996; 22: 355–362
Google Scholar - 15. Hendee W.R., Ritenour E.R.: Medical Imaging Physics, FourthEdition, Wiley-Liss, Inc., New York 2002
Google Scholar - 16. Hristov P.K., Petrov L.A., Russanov E.M.: Lipid peroxidationinduced by ultrasonication in Ehrlich ascitic tumor cells. CancerLett., 1997; 121: 7–10
Google Scholar - 17. Huang D., Okada K., Komori C., Itoi E., Suzuki T.: Enhancedantitumor activity of ultrasonic irradiation in the presence ofnew quinolone antibiotics in vitro. Cancer Sci., 2004; 95: 845–849
Google Scholar - 18. Hughes S.: Medical ultrasound imaging. Phys. Educ., 2001;36: 468
Google Scholar - 19. Hunt S.J., Gade T., Soulen M.C., Pickup S., Sehgal C.M.: Antivascularultrasound therapy: magnetic resonance imaging validationand activation of the immune response in murine melanoma. J.Ultrasound Med., 2015; 34: 275–287
Google Scholar - 20. Hwang J.H., Brayman A.A., Reidy M.A., Matula T.J., KimmeyM.B., Crum L.A.: Vascular effects induced by combined 1-MHz ultrasoundand microbubble contrast agent treatments in vivo. UltrasoundMed. Biol., 2005; 31: 553–564
Google Scholar - 21. Izadifar Z., Babyn P., Chapman D.: Mechanical and biologicaleffects of ultrasound: a review of present knowledge. UltrasoundMed. Biol., 2017; 43: 1085–1104
Google Scholar - 22. Jin Z.H., Miyoshi N., Ishiguro K., Umemura S., Kawabata K.,Yumita N., Sakata I., Takaoka K., Udagawa T., Nakajima S., Tajiri H.,Ueda K., Fukuda M., Kumakiri M.: Combination effect of photodynamicand sonodynamic therapy on experimental skin squamouscell carcinoma in C3 H/HeN mice. J. Dermatol., 2000; 27: 294–306
Google Scholar - 23. Kimura I., Gulick D.T., Shelly J., Ziskin M.C.: Effects of two ultrasounddevices and angles of application on the temperatureof tissue phantom. J. Orthop. Sports Phys. Ther., 1998; 27: 27–31
Google Scholar - 24. Kudo N., Okada K., Yamamoto K.: Sonoporation by single-shotpulsed ultrasound with microbubbles adjacent to cells. Biophys.J., 2009; 96: 4866–4876
Google Scholar - 25. Lejbkowicz F., Salzberg S.: Distinct sensitivity of normal andmalignant cells to ultrasound in vitro. Environ. Health Perspect.,1997; 105: 1575–1578
Google Scholar - 26. Li H., Fan H., Wang Z., Zheng J., Cao W.: Potentiation of scutellarinon human tongue carcinoma xenograft by low-intensityultrasound. PLoS One, 2013; 8: e59473
Google Scholar - 27. Matsuura N., Koonar E., Zhu S., Leung B., Seo M., Sivapalan N.,Goertz D.: Inducing antivascular effects in tumors with ultrasoundstimulated micron-sized bubbles. 2015 IEEE International UltrasonicsSymposium (IUS), Taipei, 2015: 1–4
Google Scholar - 28. McDicken W.N., Anderson T.: Basic physics of medical ultrasound.In: Clinical ultrasound, 3rd ed., vol. 1. Ed.: P.L. Allan, G,M.Baxter, M.J. Weston. Elsevier Ltd., 2011: 3–15
Google Scholar - 29. McEwan C., Owen J., Stride E., Fowley C., Nesbitt H., CochraneD., Coussios C.C., Borden M., Nomikou N., McHale A.P., Callan J.F.:Oxygen carrying microbubbles for enhanced sonodynamic therapyof hypoxic tumours. J. Control Release, 2015; 203: 51–56
Google Scholar - 30. McHale A.P., Callan J.F., Nomikou N., Fowley C., Callan B.: Sonodynamictherapy: concept, mechanism and application to cancertreatment. Adv. Exp. Med. Biol., 2016; 880: 429–450
Google Scholar - 31. Misik V., Riesz P.: Free radical intermediates in sonodynamictherapy. Ann. N. Y. Acad. Sci., 2000; 899: 335–348
Google Scholar - 32. National Council on Radiation Protection and Measurements Report(NCRP): Exposure criteria for medical diagnostic ultrasound: II.Criteria based on all known mechanisms. NCRP Report No. 140, 2002
Google Scholar - 33. Ninomiya K., Noda K., Ogino C., Kuroda S., Shimizu N.: EnhancedOH radical generation by dual-frequency ultrasound with TiO2nanoparticles: its application to targeted sonodynamic therapy.Ultrason. Sonochem., 2014; 21: 289–294
Google Scholar - 34. Osminkina L.A., Sivakov V.A., Mysov G.A., Georgobiani V.A., NatashinaU.A., Talkenberg F., Solovyev V.V., Kudryavtsev A.A., TimoshenkoV.Y.: Nanoparticles prepared from porous silicon nanowiresfor bio-imaging and sonodynamic therapy. Nanoscale Res. Lett.,2014; 9: 463–469
Google Scholar - 35. Pepe J., Ricon M., Wu J.: Experimental comparison of sonoporationand electroporation in cell transfection applications. Acoust.Res. Lett., 2004; 5: 62–67
Google Scholar - 36. Saad A.H., Hahn G.M.: Ultrasound-enhanced effects of adriamycinagainst murine tumors. Ultrasound Med. Biol., 1992; 18: 715–723
Google Scholar - 37. Sakusabe N; Okada K., Sato K., Kamada S., Yoshida Y., Suzuki T.:Enhanced sonodynamic antitumor effect of ultrasound in the presenceof nonsteroidal anti-inflammatory drugs. Jpn. J. Cancer Res.,1999; 90: 1146–1151
Google Scholar - 38. Sasaki K., Yumita N., Nishigaki R., Sakata I., Nakajima S., UmemuraS.I.: Pharmacokinetic study of a gallium-porphyrin photo- andsono-sensitizer, ATX-70, in tumor-bearing mice. Jpn. J. Cancer Res.,2001; 92: 989–995
Google Scholar - 39. Sehgal C., Hunt S., Levenback B., Wood A.: TU-C-144-02: Antivascularultrasound for cancer treatment: The role of thermal effects.Med. Phys., 2013; 40: 440
Google Scholar - 40. Shen S., Wu L., Liu J., Xie M., Shen H., Qi X., Yan Y., Ge Y., Jin Y.:Core-shell structured Fe3O4@TiO2-doxorubicin nanoparticles for targetedchemo-sonodynamic therapy of cancer. Int. J. Pharm., 2015;486: 380–388
Google Scholar - 41. Su X., Wang P., Wang X., Cao B., Li L., Liu Q.: Apoptosis of U937cells induced by hematoporphyrin monomethyl ether-mediated sonodynamicaction. Cancer Biother. Radiopharm., 2013; 28: 207–217
Google Scholar - 42. Sugita N., Iwase Y., Yumita N., Ikeda T., Umemura S.: Sonodynamicallyinduced cell damage using rose bengal derivative. AnticancerRes., 2010; 30: 3361–3366
Google Scholar - 43. Sun H., Ge W., Gao X., Wang S., Jiang S., Hu Y., Yu M., Hu S.: Apoptosispromoting effects of hematoporphyrin monomethyl ether sonodynamictherapy (HMME-SDT) on endometrial cancer. PLoS One,2015; 10: e0137980
Google Scholar - 44. Suslick K.S., Flannigan D.J.: Inside a collapsing bubble: sonoluminescenceand the conditions during cavitation. Annu. Rev. Phys.Chem., 2008; 59: 659–683
Google Scholar - 45. Tachibana K., Sugata K., Meng J., Okumura M., Tachibana S.: Livertissue damage by ultrasound in combination with the photosensitizingdrug, Photofrin II. Cancer Lett., 1994; 78: 177–181
Google Scholar - 46. Tachibana K., Uchida T., Ogawa K., Yamashita N., Tamura K.:Induction of cell-membrane porosity by ultrasound. Lancet, 1999;353: 1409
Google Scholar - 47. Wan G.Y., Liu Y., Chen B.W., Liu Y.Y., Wang Y.S., Zhang N.: Recentadvances of sonodynamic therapy in cancer treatment. Cancer Biol.Med., 2016; 13: 325–338
Google Scholar - 48. Wang F., Gao Q., Guo S., Cheng J., Sun X., Li Q., Wang T., ZhangZ., Cao W., Tian Y.: The sonodynamic effect of curcumin on THP- 1 cell-derived macrophages. Biomed Res. Int., 2013; 2013: 737264
Google Scholar - 49. Wang H., Liu Q., Zhang K., Wang P., Xue Q., Li L., Wang X.: Comparisonbetween sonodynamic and photodynamic effect on MDA–MB-231 cells. J. Photochem. Photobiol., 2013; 127: 182–191
Google Scholar - 50. Wang X., Jia Y., Su X., Wang P., Zhang K., Feng X., Liu Q.: Combinationof protoporphyrin IX-mediated sonodynamic treatmentwith doxorubicin synergistically induced apoptotic cell death ofa multidrug-resistant leukemia K562/DOX cell line. Ultrasound Med.Biol., 2015; 41: 2731–2739
Google Scholar - 51. Wang X., Wang Y., Wang P., Cheng X., Liu Q.: Sonodynamicallyinduced anti-tumor effect with protoporphyrin IX on hepatoma-22solid tumor. Ultrasonics, 2011; 51: 539–546
Google Scholar - 52. Wonwoo C.: Thermal effect and non-thermal, non-cavitationaleffect of ultrasound. http://idnps.com/basics/ultrasound-study-/2-2-thermal-effect-and-non-thermal-non-cavitational-effect-ofultrasound/(18.01.2017)
Google Scholar - 53. Wood A.K., Bunte R.M., Schultz S.M., Sehgal C.M.: Acute increasesin murine tumor echogenicity after antivascular ultrasound therapy:a pilot preclinical study. J. Ultrasound Med., 2009; 28: 795–800
Google Scholar - 54. Wood A.K., Schultz S.M., Lee W.M., Bunte R.M., Sehgal C.M.: Antivascularultrasound therapy extends survival of mice with implantedmelanomas. Ultrasound Med. Biol., 2010; 36: 853–857
Google Scholar - 55. Wu J., Nyborg W.L.: Ultrasound, cavitation bubbles and theirinteraction with cells. Adv. Drug Deliv. Rev., 2008; 60: 1103–1116
Google Scholar - 56. Wu Y., Liu X., Qin Z., Hu L., Wang X.: Low-frequency ultrasoundenhances chemotherapy sensitivity and induces autophagy inPTX-resistant PC-3 cells via the endoplasmic reticulum stress-mediatedPI3K/Akt/mTOR signaling pathway. OncoTargets Therapy,2018; 11: 5621–5630
Google Scholar - 57. Xiang J., Xia X., Jiang Y., Leung A.W., Wang X., Xu J., Wang P.,Yu H., Bai D., Xu C.: Apoptosis of ovarian cancer cells induced bymethylene blue-mediated sonodynamic action. Ultrasonics, 2011;51: 390–395
Google Scholar - 58. Yoshida T., Kondo T., Ogawa R., Feril L.B.Jr., Zhao Q.L., WatanabeA., Tsukada K.: Combination of doxorubicin and low-intensityultrasound causes a synergistic enhancement in cell killing and anadditive enhancement in apoptosis induction in human lymphomaU937 cells. Cancer Chemother. Pharmacol., 2008; 61: 559–567
Google Scholar - 59. Yu H., Chen S.: A model to calculate microstreaming-shear stressgenerated by oscillating microbubbles on the cell membrane in sonoporation.Biomed. Mater. Eng., 2014; 24: 861–868
Google Scholar - 60. Yumita N., Kawabata K., Sasaki K., Umemura S.: Sonodynamiceffect of erythrosin B on sarcoma 180 cells in vitro. Ultrason. Sonochem.,2002; 9: 259–265
Google Scholar - 61. Yumita N., Sasaki K., Umemura S., Nishigaki R.: Sonodynamicallyinduced antitumor effect of a gallium-porphyrin complex, ATX-70.Jpn. J. Cancer Res., 1996; 87: 310–316
Google Scholar - 62. Zhou F., Li Y.H., Wang J.J., Pan J., Lu H.: Endoplasmic reticulumstress could induce autophagy and apoptosis and enhance chemotherapysensitivity in human esophageal cancer EC9706 cells bymediating PI3K/Akt/mTOR signaling pathway. Tumour Biol., 2017;39: 1010428317705748
Google Scholar