Zastosowanie biodegradowalnych polimerów w projektowaniu rusztowań komórkowych

ARTYKUŁ PRZEGLĄDOWY

Zastosowanie biodegradowalnych polimerów w projektowaniu rusztowań komórkowych

Joanna Orłowska 1 , Urszula Kurczewska 2 , Katarzyna Derwińska 3 , Wojciech Orłowski 3 , Daria Orszulak-Michalak 2

1. Ph.D. Student, Medical University of Lodz, Lodz, Poland; Research and Development Laboratory Dermin, Lodz, Poland
2. Department of Biopharmaceutics, Medical University of Lodz, Lodz, Poland
3. Research and Development Laboratory Dermin, Lodz, Poland

Opublikowany: 2015-03-05
DOI: 10.5604/17322693.1142717
GICID: 01.3001.0009.6503
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2015; 69 : 294-301

 

Abstrakt

Przypisy

  • 1. Barnes S.J., Harris L.P.: Tissue Engineering: Roles, Materials andApplications, Nova Publishers, New York, 2008
    Google Scholar
  • 2. Brochhausen C., Lehmann M., Halstenberg S., Meurer A., KlausG., Kirkpatrick C.J.: Signalling molecules and growth factors for tissueengineering of cartilage – what can we learn from the growthplate? J. Tissue Eng. Regen. Med., 2009; 3: 416-429
    Google Scholar
  • 3. Chan B.P., Leong K.W.: Scaffolding in tissue engineering: generalapproaches and tissue-specific considerations. Eur. Spine J., 2008; 17 (Suppl. 4): 467-479
    Google Scholar
  • 4. Dvir-Ginzberg M., Gamlieli-Bonshtein I., Agbaria R., Cohen S.:Liver tissue engineering within alginate scaffolds: effects of cellseedingdensity on hepatocyte viability, morphology, and function.Tissue Eng., 2003; 9: 757-766
    Google Scholar
  • 5. Jayakumar R., Chennazhi K.P., Srinivasan S., Nair S.V., Furuike T.,Tamura H.: Chitin scaffolds in tissue engineering. Int. J. Mol. Sci.,2011; 12: 1876-1887
    Google Scholar
  • 6. Jayakumar R., Furuike T., Tamur H.: Perspectives of chitin andchitosan nanofibrous scaffolds in tissue engineering.Tisssue Engineering,Ed.: Eberli D., 2010, Chapter 10, 205-224
    Google Scholar
  • 7. Krucińska I., Komisarczyk A., Chrzanowski M., Paluch D.: Producingwound dressing materials from chitin derivatives by formingnonwovens directly from polymer solution. Fibres Textiles EasternEurope, 2007; 15: 73-76
    Google Scholar
  • 8. Krucińska I., Komisarczyk A., Paluch D., Szumilewicz J.: Biologicalestimation of dibutyrylchitin nonwovens manufactured by thespraying of polymer solution technique. Polish Chitin Society Monograph,2006; 11: 129-135
    Google Scholar
  • 9. Langer R., Vacanti J.P.: Tissue engineering. Science, 1993; 260:920-926
    Google Scholar
  • 10. Mano J.F., Silva G.A., Azevedo H.S., Malafaya P.B., Sousa R.A., SilvaS.S., Boesel L.F., Oliveira J.C., Santos T.C., Marques A.P., Neves N.M.,Reis R.L.: Natural origin biodegradable systems in tissue engineeringand regenerative medicine: present status and some moving trends.J. R. Soc. Interface, 2007; 4: 999-1030
    Google Scholar
  • 11. Marijnissen W.J., van Osch G.J., Aigner J., van der Veen S.W.,Hollander A.P., Verwoerd-Verhoef H.L., Verhaar J.A.: Alginate asa chondrocyte-delivery substance in combination with a non-wovenscaffold for cartilage tissue engineering. Biomaterials, 2002;23: 1511-1517
    Google Scholar
  • 12. Michalska M., Kozakiewicz M., Bodek K.H.: Polymer angiogenicfactor carrier. Part I. Chitosan-alginate membrane as carrier PDGFABand TGF-beta. Polim. Med., 2008; 38: 19-28
    Google Scholar
  • 13. Rajendran S.: Advanced Textiles for Wound Care, Elsevier, 2009
    Google Scholar
  • 14. Rosso F., Giordano A., Barbarisi M., Barbarisi A.: From cell-ECMinteractions to tissue engineering. J. Cell. Physiol., 2004; 199: 174-180
    Google Scholar
  • 15. Rosso F., Marino G., Giordano A., Barbarisi M., Parmeggiani D.,Barbarisi A.: Smart materials as scaffolds for tissue engineering. J.Cell. Physiol., 2005; 203: 465-470
    Google Scholar
  • 16. Schoukens G., Kiekens P., Krucinska I.: New bioactive textiledressing materials from dibutyrylchitin. Int. J. Cloth. Sci. Tech., 2009;21: 93-101
    Google Scholar
  • 17. Shim J.H., Kim J.Y., Park M., Park J., Cho D.W.: Development ofa hybrid scaffold with synthetic biomaterials and hydrogel usingsolid freeform fabrication technology. Biofabrication, 2011; 3: 034102
    Google Scholar
  • 18. Struszczyk H., Ciechańska D., Wawro D., Stęplewski W., KrucińskaI., Szosland L., Van de Velde K., Kiekens P.: Some properties of dibutyrylchitinfibres., Adv. Chit. Sci., 2005; 8: 279-283
    Google Scholar
  • 19. Sun J., Tan H.: Alginate-based biomaterials for regenerativemedicine applications. Materials, 2013; 6: 1285-1309
    Google Scholar
  • 20. Szosland L., Janowska G.: Polish Patent, no. 169077 B1 1996,Method of obtaining dibutyrylchitin
    Google Scholar
  • 21. Wade R.J., Burdick J.A.: Engineering ECM signals into biomaterials.Mater. Today, 2012; 15: 454-459
    Google Scholar
  • 22. Wang L., Shelton R.M., Cooper P.R., Lawson M., Triffitt J.T., BarraletJ.E.: Evaluation of sodium alginate for bone marrow cell tissueengineering. Biomaterials, 2003; 24: 3475-3481
    Google Scholar
  • 23. Wawro D., Stęplewski W., Komisarczyk A., Krucińska I.: Formationand Properties of Highly Porous Dibutyrylchitin Fibres ContainingNanoparticles. Fibres Textiles Eastern Europe, 2013; 21: 31-37
    Google Scholar
  • 24. Willerth S.M., Sakiyama-Elbert S.E.: Combining stem cells andbiomaterial scaffolds for constructing tissues and cell delivery, StemBook[Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008
    Google Scholar
  • 25. Yang T.L.: Chitin-based materials in tissue engineering: applicationsin soft tissue and epithelial organ. Int. J. Mol. Sci., 2011; 12: 1936-1963
    Google Scholar

Pełna treść artykułu

Przejdź do treści