Zastosowanie fibryny w technologii postaci leku. Osiągnięcia i perspektywy

ARTYKUŁ PRZEGLĄDOWY

Zastosowanie fibryny w technologii postaci leku. Osiągnięcia i perspektywy

Jakub Rech 1 , Justyna Wilińska 2 , Aleksandra Borecka 3 , Artur Turek 2

1. Zakład Biotechnologii i Inżynierii Genetycznej, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
2. Katedra i Zakład Biofarmacji, Wydział Nauk Farmaceutycznych w Sosnowcu, Śląski Uniwersytet Medyczny w Katowicach
3. Centrum Materiałów Polimerowych i Węglowych, Polska Akademia Nauk, Zabrze

Opublikowany: 2020-08-04
DOI: 10.5604/01.3001.0014.3442
GICID: 01.3001.0014.3442
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2020; 74 : 322-330

 

Abstrakt

W ostatnich latach fibryna znalazła zastosowanie jako polimerowy nośnik substancji leczniczych. Przy projektowaniu postaci leku wykorzystywane są nie tylko właściwości pasywne fibryny pozwalające na miejscowe i pozajelitowe dostarczenie substancji leczniczych w sposób kontrolowany i przedłużony, czy też podtrzymywanie tkanek, ich spajanie i uszczelnianie, ale również takie własności aktywne fibryny jak działanie hemostatyczne i proangiogeniczne. Do najczęściej proponowanych i stosowanych postaci leku bazujących na fibrynie należą: dyski, filmy, żele, beadsy i nanocząstki. Fibryna uzyskiwana jest zazwyczaj z fibrynogenu i trombiny, a postaci leku otrzymuje się przez zastosowanie metody wylewania z roztworu, mieszania substratów z wykorzystaniem systemów dwustrzykawkowych lub za pomocą emulsyfikacji. Każda ze wskazanych postaci po wprowadzeniu do organizmu staje się żelem na skutek pochłaniania wody. Istotną zaletą fibryny jako nośnika substancji leczniczych jest biodegradowalność i biozgodność, co pozwala na implantację postaci leku bez konieczności usunięcia z organizmu po uwolnieniu substancji. Postacie leku bazujące na fibrynie są proponowane i stosowane w leczeniu ran, chorób nowotworowych i infekcji.

Przypisy

  • 1. Ahmad E., Fatima M.T., Hoque M., Owais M., Saleemuddin M.:Fibrin matrices: The versatile therapeutic delivery systems. Int. J.Biol. Macromol., 2015; 81: 121–136
    Google Scholar
  • 2. Ahmad E., Fatima M.T., Owais M., Saleemuddin M.: Beaded plasmaclot: A potent sustained-release, drug-delivery system. Ther.Deliv., 2011; 2: 573–583
    Google Scholar
  • 3. Alphonsa B.M., Sudheesh Kumar P.T., Praveen G., Biswas R.,Chennazhi K.P., Jayakumar R.: Antimicrobial drugs encapsulatedin fibrin nanoparticles for treating microbial infested wounds.Pharm. Res., 2014; 31: 1338–1351
    Google Scholar
  • 4. Anai S., Hide T., Takezaki T., Kuroda J., Shinojima N., Makino K.,Nakamura H., Yano S., Kuratsu J.: Antitumor effect of fibrin gluecontaining temozolomide against malignant glioma. Cancer. Sci.,2014; 105: 583–591
    Google Scholar
  • 5. Brown A.C., Barker T.H.: Fibrin-based biomaterials: Modulationof macroscopic properties through rational design at the molecularlevel. Acta Biomater., 2014; 10: 1502–1514
    Google Scholar
  • 6. Cwalina B., Turek A., Nozynski J., Jastrzebska M., Nawrat Z.:Structural changes in pericardium tissue modified with tannicacid. Int. J. Artif. Organs., 2005; 28: 648–653
    Google Scholar
  • 7. Davie E.W., Kulman J.D.: An overview of the structure and functionof thrombin. Semin. Thromb. Hemost., 2006; 32: 3–15
    Google Scholar
  • 8. Fredenberg S., Wahlgren M., Reslow M., Axelsson A.: The mechanismsof drug release in poly(lactic-co-glycolic acid)-based drugdelivery systems – a review. Int. J. Pharm., 2011; 415: 34–52
    Google Scholar
  • 9. Fu J.Z., Li J., Yu Z.L.: Effect of implanting fibrin sealant withropivacaine on pain after laparoscopic cholecystectomy. World. J.Gastroenterol., 2009; 15: 5851–5854
    Google Scholar
  • 10. Fujimoto K., Yamamura K., Osada T., Hayashi T., Nabeshima T.,Matsushita M., Nishikimi N., Sakurai T., Nimura Y.: Subcutaneoustissue distribution of vancomycin from a fibrin glue/Dacron graftcarrier. J. Biomed. Mater. Res., 1997; 36: 564–567
    Google Scholar
  • 11. Goszczyński T., Nevozhay D., Wietrzyk J., Omar M.S., BoratyńskiJ.: The antileukemic activity of modified fibrinogen-methotrexateconjugate. Biochim. Biophys. Acta, 2013; 1830: 2526–2530
    Google Scholar
  • 12. Gruchlik A., Turek A., Polechoński J., Dzierżewicz Z.: Effectsof 300 mT static magnetic field on on IL-8 secretion in normal humancolon myofibroblasts. Acta. Pol. Pharm., 2015; 72: 713–717
    Google Scholar
  • 13. Ho H., Hsiao C., Chen C., Sokoloski T., Sheu M.: Fibrin-baseddrug delivery systems. II. The preparation and characterization ofmicrobeads. Drug. Dev. Ind. Pharm., 1994; 20: 535–546
    Google Scholar
  • 14. Hou T., Xu J., Li Q., Feng J., Zen L.: In vitro evaluation of a fibringel antibiotic delivery system containing mesenchymal stem cellsand vancomycin alginate beads for treating bone infections andfacilitating bone formation. Tissue Eng. Part A., 2008; 14: 1173–1182
    Google Scholar
  • 15. Kim B.S., Shkembi F., Lee J.: In vitro and in vivo evaluation ofcommercially available fibrin gel as a carrier of alendronate forbone tissue engineering. Biomed. Res. Int., 2017; 2017: 6434169
    Google Scholar
  • 16. Kitajiri S., Tabuchi K., Hiraumi H., Kaetsu H.: Relief of posttonsillectomypain by release of lidocaine from fibrin glue. Laryngoscope,2001; 111: 642–644
    Google Scholar
  • 17. Kitazawa H., Sato H., Adachi I., Masuko Y., Horikoshi I.: Microdialysisassessment of fibrin glue containing sodium alginate forlocal delivery of doxorubicin in tumor-bearing rats. Biol. Pharm.Bull., 1997; 20: 278–281
    Google Scholar
  • 18. MacPhee M.J., Singh M.P., Brady R., Akhyani N., Liau G., LasaC., Hue C., Best A., Drohan W.: Fibrin sealant: a versatile deliveryvehicle for drugs and biologics. W: Surgical Adhesives and Sealants:Current Technology and Applications, red.: D.H. Sierra, R.Saltz. Technomic Publishing AG, Basel 1996, 109–120
    Google Scholar
  • 19. Martin N.E., Kim J.W., Abramson D.H.: Fibrin sealant for retinoblastoma:Where are we? J. Ocul. Pharmacol. Ther., 2008; 24:433–438
    Google Scholar
  • 20. Miyazaki S. Nadai T.: Use of fibrin film as a carrier for drugdelivery: In vitro drug permeabilities of fibrin film. Chem. Pharm.Bull., 1980; 28: 2261–2264
    Google Scholar
  • 21. Osada T., Yamamura K., Yano K., Fujimoto K., Mizuno K.,Sakurai T., Nabeshima T.: Distribution and serum concentrationof sisomicin released from fibrin glue-sealed dacron graft in therat and human. J. Biomed. Mater. Res., 2000; 52: 53–57
    Google Scholar
  • 22. Ozaki S., Saito A., Nakaminami H., Ono M., Noguchi N.,Motomura N.: Comprehensive evaluation of fibrin glue as a localdrug-delivery system-efficacy and safety of sustained releaseof vancomycin by fibrin glue against local methicillin-resistantStaphylococcus aureus infection. J. Artif. Organs., 2014; 17: 42–49
    Google Scholar
  • 23. Praveen G., Sreerekha P.R., Menon D., Nair S.V., Chennazhi K.P.:Fibrin nanoconstructs: A novel processing method and their useas controlled delivery agents. Nanotechnology, 2012; 23: 095102
    Google Scholar
  • 24. Redl H.: Verfahren und Vorrichtung zur Beschleunigung desAuflösens von schwerlöslichen lyophilisierten Arzneimitteln. 1980,Austria Patent No. A 4289/80
    Google Scholar
  • 25. Ryan E.A., Mockros L.F., Weisel J.W., Lorand L.: Structural originsof fibrin clot rheology. Biophys. J., 1999; 77: 2813–2826
    Google Scholar
  • 26. Schlag G., Redl H., Turnher M., Dinges H.P.: The importance offibrin in wound repair. W: Fibrin Sealant in Operative Medicine,Vol. 1: Otorhinolaryngology, red.: G. Schlag, H. Redl. Springer-Verlag, Berlin 1986, 3–12
    Google Scholar
  • 27. Spicer P.P., Mikos A.G.: Fibrin glue as a drug delivery system.J. Control. Release, 2010; 148: 49–55
    Google Scholar
  • 28. Tezcaner A., Baran E.T., Keskin D.: Nanoparticles based onplasma proteins for drug delivery applications. Curr. Pharm. Des.,2016; 22: 3445–3454
    Google Scholar
  • 29. Turek A., Cwalina B.: Some irradiation-influenced features ofpericardial tissues engineered for biomaterials. W: New Developmentsin Biomedical Engineering, red. D. Campolo. InTech, Vukovar2010, 543–568
    Google Scholar
  • 30. Turek A., Cwalina B., Kobielarz M.: Radioisotopic investigationof crosslinking density in bovine pericardium used as a biomaterial.Nukleonika, 2013; 58: 511–517
    Google Scholar
  • 31. Turek A., Kasperczyk J., Dzierżewicz Z.: Collagen applicationin drug formulation technology. Achievements and perspectives.Chemik, 2010; 64: 229–237
    Google Scholar
  • 32. Turek A., Kasperczyk J., Jelonek K., Borecka A., Janeczek H.,Libera M., Gruchlik A., Dobrzyński P.: Thermal properties andmorphology changes in degradation process of poly(L-lactideco-glycolide) matrices with risperidone. Acta Bioeng. Biomech.,2015; 17: 11–20
    Google Scholar
  • 33. Turek A., Olakowska E., Borecka A., Janeczek H., Sobota M.,Jaworska J., Kaczmarczyk B., Jarząbek B., Gruchlik A., Libera M.,Liśkiewicz A., Jędrzejowska-Szypułka H., Kasperczyk J.: Shapememoryterpolymer rods with 17-β-estradiol for the treatment ofneurodegenerative diseases: An in vitro and in vivo study. Pharm.Res., 2016; 33: 2967–2978
    Google Scholar
  • 34. Turek A., Wilińska J., Borecka A., Pawlus-Łachecka L.: Applicationof antibiotics in sterylization of homogeneic heart valves.Postępy. Hig. Med. Dośw., 2017; 71: 1187–1201
    Google Scholar
  • 35. van Hinsbergh V.W., Collen A., Koolwijk P.: Role of fibrin matrixin angiogenesis. Ann. N. Y. Acad. Sci., 2001; 936: 426–437
    Google Scholar
  • 36. van Quill K.R., Dioguardi P.K., Tong C.T., Gilbert J.A., AabergT.M. Jr., Grossniklaus H.E., Edelhauser H.F., O’Brien J.M.: Subconjunctivalcarboplatin in fibrin sealant in the treatment oftransgenic murine retinoblastoma. Ophthalmology., 2005; 112:1151–1158
    Google Scholar
  • 37. Vedakumari W.S., Prabu P., Babu S.C., Sastry T.P.: Fibrin nanoparticlesas possible vehicles for drug delivery. Biochim. Biophys.Acta, 2013; 1830: 4244–4253
    Google Scholar
  • 38. Vedakumari W.S., Prabu P., Sastry T.P.: Chitosan-fibrin nanocompositesas drug delivering and wound healing materials.J. Biomed. Nanotechnol., 2015; 11: 657–667
    Google Scholar
  • 39. Viale M., Rossi M., Russo E., Cilli M., Aprile A., Profumo A., SantiP., Fenoglio C., Cafaggi S., Rocco M.: Fibrin gels loaded with cisplatinand cisplatin-hyaluronate complexes tested in a subcutaneoushuman melanoma model. Invest. New Drugs, 2015; 33:1151–1161
    Google Scholar
  • 40. Weisel J.W., Litvinov R.I.: Mechanisms of fibrin polymerizationand clinical implications. Blood, 2013; 121: 1712–1719
    Google Scholar
  • 41. Wilińska J., Turek A., Borecka A., Rech J., Kasperczyk J.: Electronbeam sterilization of implantable rods with risperidone andwith 17-β-estradiol: A structural, thermal and morphology study.Acta Bioeng. Biomech., 2019; 21: 39–47
    Google Scholar
  • 42. Woolverton C.J., Fulton J.A., Salstrom S.J., Hayslip J., HallerN.A., Wildroudt M.L., MacPhee M.: Tetracycline delivery from fibrincontrols peritoneal infection without measurable systemicantibiotic. J. Antimicrob. Chemother., 2001; 48: 861–867
    Google Scholar
  • 43. Xing J., Hou T., Luobu B., Luo F., Chen Q., Li Z., Jin H., Xu J.:Anti-infection tissue engineering construct treating osteomyelitisin rabbit tibia. Tissue. Eng. Part A., 2013; 19: 255–263
    Google Scholar
  • 44. Yang Z., Mochalkin I., Doolittle R.F.: A model of fibrin formationbased on crystal structures of fibrinogen and fibrin fragmentscomplexed with synthetic peptides. Proc. Natl. Acad. Sci. USA,2000; 97: 14156–14161
    Google Scholar
  • 45. Yau L., Molnar P., Moon M.C., Buhay S., Werner J.P., Molnar K.,Saward L., Del Rizzo D., Zahradka P.: Meta-iodobenzylguanidine,an inhibitor of arginine-dependent mono(ADP-ribosyl)ation, preventsneointimal hyperplasia. J. Pharmacol. Exp. Ther., 2008; 326:717–724
    Google Scholar
  • 46. Yoshida H., Yamaoka Y., Shinoyama M., Kamiya A.: Novel drugdelivery system using autologous fibrin glue – release propertiesof anti-cancer drugs. Biol. Pharm. Bull., 2000; 23: 371–374
    Google Scholar
  • 47. Zhibo X., Miaobo Z.: Effect of sustained-release lidocaine onreduction of pain after subpectoral breast augmentation. Aesthet.Surg. J., 2009; 29: 32–34
    Google Scholar

Pełna treść artykułu

Skip to content