GLOSA LUB KOMENTARZ PRAWNICZY
Zastosowanie nanotechnologii w medycynie
Zygmunt Zdrojewicz 1 , Mateusz Waracki 2 , Bartosz Bugaj 2 , Damian Pypno 2 , Krzysztof Cabała 21. Wroclaw Medical University, Department and Clinic of Endocrinology, Diabetology and Isotope Therapy
2. Wroclaw Medical University, Faculty of Medicine
Opublikowany: 2015-10-29
DOI: 10.5604/17322693.1177169
GICID: 01.3001.0009.6589
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2015; 69 : 1196-1204
Abstrakt
Przypisy
- 1. Abiodun-Solanke I., Ajayi D., Arigbede A.: Nanotechnology and its applicationin dentistry. Ann. Med. Health Sci. Res., 2014; 4 (Suppl. 3): 171-177
Google Scholar - 2. Ahn H.S., Hwang J.Y., Kim M.S., Lee J.Y., Kim J.W., Kim H.S., ShinU.S., Knowles J.C., Kim H.W., Hyun J.K.: Carbon-nanotube-interfacedglass fiber scaffold for regeneration of transected sciatic nerve. ActaBiomater., 2015; 13: 324-334
Google Scholar - 3. Akagi T., Wang X., Uto T., Baba M., Akashi M.: Protein directdelivery to dendritic cells using nanoparticles based on amphiphilicpoly(amino acid) derivatives. Biomaterials, 2007; 28: 3427-3436
Google Scholar - 4. Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., ZarghamiN., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K.: Liposome:classification, preparation, and applications. Nanoscale Res. Lett.2013; 8: 102
Google Scholar - 5. Banchereau J., Steinman R.M.: Dendritic cells and the control ofimmunity. Nature, 1998; 392: 245-252
Google Scholar - 6. Bangham A.D., Horne R.W.: Negative staining of phospholipidsand their structural modification by surface-active agents asobserved in the electron microscope. J. Mol. Biol., 1964; 8: 660-668
Google Scholar - 7. Bansal S., Bansal M., Kumria R.: Nanocrystals: current strategiesand trends. Int. J. Res. Pharm. Biomed. Sci., 2012; 3: 406-419
Google Scholar - 8. Bruchez M.Jr., Moronne M., Gin P., Weiss S., Alivisatos A.P.: Semiconductornanocrystals as fluorescent biological labels. Science, 1998; 281: 2013-2016
Google Scholar - 9. Cai S., Yang Q., Bagby T.R., Forrest M.L.: Lymphatic drug deliveryusing engineered liposomes and solid lipid nanoparticles. Adv. DrugDeliv. Rev., 2011; 63: 901-908
Google Scholar - 10. Chaudhury K., Kumar V., Kandasamy J., RoyChoudhury S.: Regenerativenanomedicine: current perspectives and future directions.Int. J. Nanomedicine, 2014; 9: 4153-4167
Google Scholar - 11. Chen W., Xiong Q., Ren Q., Guo Y., Li G.: Can amino-functionalizedcarbon nanotubes carry functional nerve growth factor? Neural Regen.Res., 2014; 9: 285-292
Google Scholar - 12. Chow E.K., Ho D.: Cancer nanomedicine: from drug delivery toimaging. Sci. Transl. Med., 2013; 5: 216rv4
Google Scholar - 13. Cirillo G., Hampel S., Spizzirri U.G., Parisi O.I., Picci N., IemmaF.: Carbon nanotubes hybrid hydrogels in drug delivery: a perspectivereview. Biomed. Res. Int., 2014; 2014: 825017
Google Scholar - 14. Das S., Chaudhury A.: Recent advances in lipid nanoparticleformulations with solid matrix for oral drug delivery. AAPS PharmSciTech.,2011; 12: 62-76
Google Scholar - 15. Dobosz K.: Nanotechnology in computer programming. StudiaInformatica, 2002; 23: 59-66
Google Scholar - 16. Eisele R.M., Chopra S.S., Glanemann M., Gebauer B.: Risk oflocal failure after ultrasound guided irreversible electroporationof malignant liver tumors. Interv. Med. Appl. Sci., 2014; 6: 147-153
Google Scholar - 17. Elamanchili P., Diwan M., Cao M. Samuel J.: Characterizationof poly(D,L-lactic-co-glycolic acid) based nanoparticulate systemfor enhanced delivery of antigens to dendritic cells. Vaccine, 2004;22: 2406-2412
Google Scholar - 18. Foged C., Brodin B., Frokjaer S., Sundblad A.: Particle size andsurface charge affect particle uptake by human dendritic cells in anin vitro model. Int. J. Pharm., 2005; 298: 315-322
Google Scholar - 19. Fredman G., Kamaly N., Spolitu S., Milton J., Ghorpade D., ChiassonR., Kuriakose G., Perretti M., Farokhzad O., Tabas I.: Targetednanoparticles containing the proresolving peptide Ac2-26 protectagainst advanced atherosclerosis in hypercholesterolemic mice. Sci.Transl. Med., 2015; 7: 275ra20
Google Scholar - 20. Freitas R.A.: Nanomedicine, volume I: Basic Capabilities. LandesBioscience, Georgetown, TX 1999; 31
Google Scholar - 21. Gamvrellis A., Leong D., Hanley J.C., Xiang S.D., Mottram P., PlebanskiM.: Vaccines that facilitate antigen entry into dendritic cells.Immunol. Cell Biol., 2004; 82: 506-516
Google Scholar - 22. Gao L., Liu G., Ma J., Wang X., Zhou L., Li X.: Drug nanocrystals:in vivo performances. J. Control. Release, 2012; 160: 418-430
Google Scholar - 23. Gao L., Liu G., Ma J., Wang X., Zhou L., Li X., Wang F.: Applicationof drug nanocrystal technologies on oral drug delivery of poorlysoluble drugs. Pharm. Res., 2013; 30: 307-324
Google Scholar - 24. Gregoriadis G.: Drug entrapment in liposomes. FEBS Lett., 1973;36: 292-296
Google Scholar - 25. Gregoriadis G., Bacon A., Caparros-Wanderley W., McCormackB.: A role for liposomes in genetic vaccination. Vaccine, 2002; 20(Suppl. 5): B1-B9
Google Scholar - 26. Gregory A.E., Titball R., Williamson D.: Vaccine delivery usingnanoparticles. Front. Cell. Infect. Microbiol., 2013; 3: 13
Google Scholar - 27. Hamouda T., Chepurnov A., Mank N., Knowlton J., ChepurnovaT., Myc A., Sutcliffe J., Baker J.R.Jr.: Efficacy, immunogenicity andstability of a novel intranasal nanoemulsion-adjuvanted influenzavaccine in a murine model. Hum. Vaccin., 2010; 6: 585-594
Google Scholar - 28. Hamouda T., Myc A., Donovan B., Shih A.Y., Reuter J.D., BakerJ.R.Jr.: A novel surfactant nanoemulsion with a unique non-irritanttopical antimicrobial activity against bacteria, enveloped virusesand fungi. Microbiol. Res., 2001; 156: 1-7
Google Scholar - 29. Holzinger M., Le Goff A., Cosnier S.: Nanomaterials for biosensingapplications: a review. Front. Chem., 2014; 2: 63
Google Scholar - 30. Hwang J.Y., Shin U.S., Jang W.C., Hyun J.K., Wall I.B., Kim H.W.:Biofunctionalized carbon nanotubes in neural regeneration: a minireview.Nanoscale, 2013; 5: 487-497
Google Scholar - 31. Junghanns J.U., Müller R.H.: Nanocrystal technology, drug deliveryand clinical applications. Int. J. Nanomedicine, 2008; 3: 295-309
Google Scholar - 32. Khanbabaie R., Jahanshahi M.: Revolutionary impact of nanodrugdelivery on neuroscience. Curr. Neuropharmacol., 2012; 10:370-392
Google Scholar - 33. Kim H., Uto T., Akagi, T., Baba M., Akashi M.: Amphiphilicpoly(amino acid) nanoparticles induce size-dependent dendriticcell maturation. Adv. Funct. Mater, 2010; 20: 3925-3931
Google Scholar - 34. Klonoff D.C.: Overview of fluorescence glucose sensing: a technologywith a bright future. J. Diabetes Sci. Technol., 2012; 6: 1242-1250
Google Scholar - 35. Kolosnjaj J., Szwarc H., Moussa F.: Toxicity studies of carbonnanotubes. Adv. Exp. Med. Biol., 2007; 620: 181-204
Google Scholar - 36. Kondratowicz J., Burczyk E.: Nanotechnologia w towaroznawstwieżywności. Chłodnictwo, 2008; 43: 50-53
Google Scholar - 37. Kraft J.C., Freeling J.P., Wang Z., Ho R.J.: Emerging research andclinical development trends of liposome and lipid nanoparticle drugdelivery systems. J. Pharm. Sci., 2014; 103: 29-52
Google Scholar - 38. Langauer-Lewowicka H., Pawlas K.: Nanoparticles, nanotechnology– potential environmental and occupational hazards. Med.Środow., 2014; 17: 7-14
Google Scholar - 39. Lee E.W., Thai S., Kee S.T.: Irreversible electroporation: a novelimage-guided cancer therapy. Gut Liver, 2010; 4 (Suppl.1): 99-104
Google Scholar - 40. Leoni G., Neumann P.A., Kamaly N., Quiros M., Nishio H., JonesH.R., Sumagin R., Hilgarth R.S., Alam A., Fredman G., Argyris I., RijckenE., Kusters D., Reutelingsperger C., Perretti M., et al.: AnnexinA1-containing extracellular vesicles and polymeric nanoparticlespromote epithelial wound repair. J. Clin. Invest., 2015; 125: 1215-1227
Google Scholar - 41. Liu Y., Zhao Y., Sun B., Chen C.: Understanding the toxicity ofcarbon nanotubes. Acc. Chem. Res., 2013; 46: 702-713
Google Scholar - 42. Lohcharoenkal W., Wang L., Chen Y.C., Rojanasakul Y.: Proteinnanoparticles as drug delivery carriers for cancer therapy. Biomed.Res. Int., 2014; 2014, 180549
Google Scholar - 43. Loo C., Lin A., Hirsch L., Lee M.H., Barton J., Halas N., West J.,Drezek R.: Nanoshell-enabled photonics-based imaging and therapyof cancer. Technol. Cancer Res. Treat., 2004; 3: 33-40
Google Scholar - 44. Lowery A.R., Gobin A.M., Day E.S., Halas N.J., West J.L.: Immunonanoshellsfor targeted photothermal ablation of tumor cells. Int.J. Nanomedicine, 2006; 1: 149-154
Google Scholar - 45. Lutsiak M.E., Robinson D.R., Coester C., Kwon G.S., Samuel J.:Analysis of poly(D, L-lactic-co-glycolic acid) nanosphere uptake byhuman dendritic cells and macrophages in vitro. Pharm. Res., 2002;19: 1480-1487
Google Scholar - 46. Makidon P.E., Bielinska A.U., Nigavekar S.S., Janczak K.W., KnowltonJ., Scott A.J., Mank N., Cao Z., Rathinavelu S., Beer M.R., WilkinsonJ.E., Blanco L.P, Landers J.J., Baker J.R.Jr.: Pre-clinical evaluationof a novel nanoemulsion-based hepatitis B mucosal vaccine. PLoSOne, 2008; 3: e2954
Google Scholar - 47. Markman J.L., Rekechenetskiy A., Holler E., Ljubimova J.Y.: Nanomedicinetherapeutic approaches to overcome cancer drug resistance.Adv. Drug Deliv. Rev., 2013; 65: 1866-1879
Google Scholar - 48. Martins S., Sarmento B., Ferreira D.C., Souto E.B.: Lipid-basedcolloidal carriers for peptide and protein delivery – liposomes versuslipid nanoparticles. Int. J. Nanomedicine, 2007; 2: 595-607
Google Scholar - 49. Michałowski W., Michałowska J.: Nanotechnologia we włókiennictwie.Przegląd Włókienniczy – Włókno, Odzież, Skóra, 2005; 2:53-54
Google Scholar - 50. Mir L.M., Belehradek M., Domenge C., Orlowski S., Poddevin B.,Belehradek J.Jr., Schwaab G., Luboinski B., Paoletti C.: Electrochemotherapy,a novel antitumor treatment: first clinical trial. C. R. Acad.Sci. III, 1991; 313: 613-618
Google Scholar - 51. Monthioux M., Kuznetsov V.L.: Who should be given the creditfor the discovery of carbon nanotubes? Carbon, 2006; 44: 1621-1623
Google Scholar - 52. Morton J.G., Day E.S., Halas N.J., West J.L.: Nanoshells for photothermalcancer therapy. Methods Mol. Biol., 2010; 624: 101-117
Google Scholar - 53. Neumann E., Schaefer-Ridder M., Wang Y., Hofschneider P.H.:Gene transfer into mouse lyoma cells by electroporation in highelectric fields. EMBO J., 1982; 1: 841-845
Google Scholar - 54. Putzbach W., Ronkainen N.J.: Immobilization techniques in thefabrication of nanomaterial-based electrochemical biosensors: areview. Sensors, 2013; 13: 4811-4840
Google Scholar - 55. Radushkevich L.V., Lukyanovich V.M.: O strukture ugleroda, obrazujucegosjapri termiceskom razlozenii okisi ugleroda na zeleznomkontakte. Zurn. Fisic. Chim., 1952; 26: 88-95
Google Scholar - 56. Reiss P., Protière M., Li L.: Core/Shell semiconductor nanocrystals.Small, 2009; 5: 154-168
Google Scholar - 57. Ross K.A., Loyd H., Wu W., Huntimer L., Ahmed S., Sambol A.,Broderick S., Flickinger Z., Rajan K., Bronich T., Mallapragada S.,Wannemuehler M.J., Carpenter S., Narasimhan B.: Hemagglutininbasedpolyanhydride nanovaccines against H5N1 influenza elicitprotective virus neutralizing titers and cell-mediated immunity.Int. J. Nanomedicine, 2015; 10: 229-243
Google Scholar - 58. Rubinsky B., Onik G., Mikus P.: Irreversible electroporation: anew ablation modality – clinical implications. Technol. Cancer Res.Treat., 2007; 6: 37-48
Google Scholar - 59. Saeed M.I., Omar A.R., Hussein M.Z., Elkhidir I.M., Sekawi Z.:Systemic antibody response to nano-size calcium phospate biocompatibleadjuvant adsorbed HEV-71 killed vaccine. Clin. Exp. VaccineRes., 2015; 4: 88-98
Google Scholar - 60. Sękowski S., Miłowska K., Gabryelak T.: Dendrimers in biomedicalsciences and nanotechnology. Postępy Hig. Med. Dośw., 2008;62: 725-733
Google Scholar - 61. Silk M.T., Wimmer T., Lee K.S., Srimathveeravalli G., Brown K.T.,Kingham P.T., Fong Y., Durack J.C., Sofocleous C.T., Solomon S.B.:Percutaneous ablation of peribiliary tumors with irreversible electroporation.J. Vasc. Interv. Radiol., 2014; 25: 112-118
Google Scholar - 62. Stanberry L.R., Simon J.K., Johnson C., Robinson P..L, MorryJ., Flack M.R., Gracon S., Myc A., Hamouda T., Baker J.R.Jr: Safetyand immunogenicity of a novel nanoemulsion mucosal adjuvantW805EC combined with approved seasonal influenza antigens. Vaccine,2012; 30: 307-316
Google Scholar - 63. Stankiewicz N., Lelusz M.: Nanotechnology in civil engineering– application review. Budownictwo i Inżynieria Środowiska, 2014;5: 101-112
Google Scholar - 64. Svenson S., Tomalia D.A.: Dendrimers in biomedical applications- reflections on the field. Adv. Drug Deliv. Rev., 2005; 57: 2106-2129
Google Scholar - 65. Świderski F., Waszkiewicz-Robak B.: Nanotechnology the presentand the future. Postępy Techniki Przetwórstwa Spożywczego,2006; 16: 55-57
Google Scholar - 66. Tahamtan A., Ghaemi A., Gorji A., Kalhor H.R., Sajadian A., TabarraeiA., Moradi A., Atyabi F., Kelishadi M.: Antitumor effect of therapeuticHPV DNA vaccines with chitosan-based nanodelivery systems.J. Biomed. Sci., 2014; 21: 69
Google Scholar - 67. Thivierge M., Stankova J., Rola-Pleszczynski M.: Toll-like receptoragonists differentially regulate cysteinyl-leukotriene receptor 1 expression and function in human dendritic cells. J. Allergy Clin.Immunol., 2006; 117: 1155-1162
Google Scholar - 68. Tomalia D.A., Baker H., Dewald J., Hall M., Kallos G., Martin S.,Roeck J., Ryder J., Smith P.: A new class of polymers: starburst-dendriticmacromolecules. Polymer J., 1985; 17: 117-132
Google Scholar - 69. Tomalia D.A., Fréchet J.M.: Discovery of dendrimers and dendriticpolymers: a brief historical perspective. J. Polymer Sci. PartA: Polymer Chemistry, 2002; 40: 2719-2728
Google Scholar - 70. Tsoi K.M., Dai Q., Alman B.A., Chan W.C.: Are quantum dots toxic?Exploring the discrepancy between cell culture and animal studies.Acc. Chem. Res., 2013; 46: 662-671
Google Scholar - 71. Valerio M., Stricker P.D., Ahmed H.U., Dickinson L., Ponsky L.,Shnier R., Allen C., Emberton M.: Initial assessment of safety and clinicalfeasibility of irreversible electroporation in the focal treatmentof prostate cancer. Prostate Cancer Prostatic Dis., 2014; 17: 343-347
Google Scholar - 72. Webster T.J.: IJN’s second year is now a part of nanomedicinehistory! Int. J. Nanomedicine, 2007; 2: 1-2
Google Scholar - 73. Wojnicz R.: Nanomedicine as the basis of personalised medicine.Kardiol. Pol., 2011; 69: 1107-1108
Google Scholar - 74. World Health Organization. The top 10 causes of death. http://www.who.int/mediacentre/factsheets/fs310/en/(13.07.2015)
Google Scholar - 75. Zdrojewicz Z., Pypno D., Cabała K., Bugaj B., Waracki M.: Potentialapplications of marijuana and cannabinoids in medicine. Pol.Merkur. Lekarski, 2014; 37: 248-252
Google Scholar - 76. Zhang X.: Gold nanoparticles: recent advances in the biomedicalapplications. Cell Biochem. Biophys., 2015; 7: 771-775
Google Scholar - 77. Zhang X.D., Wu D., Shen X., Liu P.X., Yang N., Zhao B., Zhang H.,Sun Y.M., Zhang L.A., Fan F.Y.: Size-dependent in vivo toxicity of PEGcoatedgold nanoparticles. Int. J. Nanomedicine, 2011; 6: 2071-2081
Google Scholar - 78. Zhu M., Wang R., Nie G.: Applications of nanomaterials as vaccineadjuvants. Hum. Vaccin. Immunother., 2014; 10: 2761-2774
Google Scholar