Znaczenie kwasu dokozaheksaenowego (DHA) w prewencji zaburzeń funkcji poznawczych u osób starszych
Agata Białecka-Dębek 1 , Dominika Granda 1 , Barbara Pietruszka 1Abstrakt
Starzenie się organizmu, jako nieunikniony i postępujący proces biologiczny, prowadzi do nieodwracalnych zmian fizjologicznych i funkcjonalnych, także w układzie nerwowym. Pojawiające się wraz z wiekiem pogorszenie funkcji poznawczych może istotnie wpływać na jakość życia osób starszych. Kwas dokozaheksaenowy (DHA) jest niezbędny do prawidłowego funkcjonowania układu nerwowego – może wpływać na jego działanie bezpośrednio, m.in. przez wpływ na neurogenezę i neuroplastyczność, ale także pośrednio m.in. przez wpływ na funkcjonowanie układu sercowo-naczyniowego czy działanie przeciwzapalne. Na podstawie literatury przedmiotu można stwierdzić, że dobry stan odżywienia kwasami tłuszczowymi z rodziny n-3, określony na podstawie ich poziomu w osoczu krwi lub erytrocytach, jest związany z mniejszym ryzykiem pogorszenia funkcji poznawczych w wybranych domenach poznawczych, a także mniejszym ryzykiem wystąpienia demencji lub choroby Alzheimera, chociaż dostępne są również badania, gdzie nie potwierdzono powyższej zależności. Ponadto badania dotyczące spożycia DHA i EPA (kwas eikozapentaenowy) wraz z dietą, jak również w postaci suplementów diety, wykazują ich korzystny wpływ na funkcjonowanie poznawcze i ryzyko wystąpienia demencji. Także wyniki badań interwencyjnych, chociaż nie są jednoznaczne, sugerują, że wysokie dawki DHA i EPA w postaci suplementów diety mogą spowolnić proces pogorszenia funkcjonowania poznawczego osób starszych w obrębie wybranych domen. Na podstawie dokonanego przeglądu piśmiennictwa można stwierdzić, że kwasy DHA i EPA odgrywają istotną rolę w prewencji zaburzeń poznawczych.
Przypisy
- 1. Abubakari A.R., Naderali M.M., Naderali E.K.: Omega-3 fattyacid supplementation and cognitive function: Are smaller dosagesmore beneficial? Int. J. Gen. Med., 2014; 7: 463–473
Google Scholar - 2. AbuMweis S., Jew S., Tayyem R., Agraib L.: Eicosapentaenoicacid and docosahexaenoic acid containing supplementsmodulate risk factors for cardiovascular disease: Ameta-analysis of randomised placebo-control human clinicaltrials. J. Hum. Nutr. Diet., 2018; 31: 67–84
Google Scholar - 3. Aizawa K., Ageyama N., Yokoyama C., Hisatsune T.:Age-dependent alteration in hippocampal neurogenesiscorrelates with learning performance of macaque monkeys.Exp. Anim., 2009; 58: 403–407
Google Scholar - 4. Albanese E., Dangour A.D., Uauy R., Acosta D., GuerraM., Guerra S.S., Huang Y., Jacob K.S., de Rodriguez J.L.,Noriega L.H., Salas A., Sosa A.L., Sousa R.M., Williams J.,Ferri C.P., Prince M.J.: Dietary fish and meat intake anddementia in Latin America, China, and India: A 10/66Dementia Research Group population-based study. Am. J.Clin. Nutr., 2009; 90: 392–400
Google Scholar - 5. Alexander D.D., Miller P.E., Van Elswyk M.E., Kuratko C.N.,Bylsma L.C.: A meta-analysis of randomized controlled trialsand prospective cohort studies of eicosapentaenoic and docosahexaenoiclong-chain omega-3 fatty acids and coronaryheart disease risk. Mayo Clin. Proc., 2017; 92: 15–29
Google Scholar - 6. Ammann E.M., Pottala J.V., Robinson J.G., EspelandM.A., Harris W.S.: Erythrocyte omega-3 fatty acids areinversely associated with incident dementia: Secondaryanalyses of longitudinal data from the Women’s HealthInitiative Memory Study (WHIMS). Prostaglandins Leukot.Essent. Fatty Acids, 2017; 121: 68–75
Google Scholar - 7. Ansari Z.: Homocysteine and mild cognitive impairment:Are these the tools for early intervention in the dementiaspectrum? J. Nutr. Health Aging, 2016; 20: 155–160
Google Scholar - 8. Balachandar R., Soundararajan S., Bagepally B.S.: Docosahexaenoicacid supplementation in age-related cognitivedecline: A systematic review and meta-analysis. Eur.J. Clin. Pharmacol., 2020; 76: 639–648
Google Scholar - 9. Bannenberg G., Serhan C.N.: Specialized pro-resolvinglipid mediators in the inflammatory response: An update.Biochim. Biophys. Acta, 2010; 1801: 1260–1273
Google Scholar - 10. Bayat P.D., Ghanbari A., Moradi M., Raoofi A.: Theeffects of age and sex on brain volume. Int. J. Morphol.,2014; 32: 1477–1483
Google Scholar - 11. Bazan N.G., Molina M.F., Gordon W.C.: Docosahexaenoicacid signalolipidomics in nutrition: Significance inaging, neuroinflammation, macular degeneration, Alzheimer’s,and other neurodegenerative diseases. Annu. Rev.Nutr., 2011; 31: 321–351
Google Scholar - 12. Bendlin B.B., Fitzgerald M.E., Ries M.L., Xu G., KastmanE.K., Thiel B.W., Rowley H.A., Lazar M., AlexanderA.L., Johnson S.C.: White matter in aging and cognition:A cross-sectional study of microstructure in adults agedeighteen to eighty-three. Dev. Neuropsychol., 2010; 35:257–277
Google Scholar - 13. Bennett I.J., Madden D.J.: Disconnected aging: Cerebralwhite matter integrity and age-related differences incognition. Neuroscience, 2014; 276: 187–205
Google Scholar - 14. Bettcher B.M., Kramer J.H.: Inflammation and clinicalpresentation in neurodegenerative disease: A volatilerelationship. Neurocase, 2013; 19: 182–200
Google Scholar - 15. Beydoun M.A., Kaufman J.S., Satia J.A., RosamondW., Folsom A.R.: Plasma n-3 fatty acids and the risk ofcognitive decline in older adults: The atherosclerosisrisk in communities study. Am. J. Clin. Nutr., 2007; 85:1103–1111
Google Scholar - 16. Biagi E., Nylund L., Candela M., Ostan R., Bucci L., PiniE., Nikkïla J., Monti D., Satokari R., Franceschi C., BrigidiP., De Vos W.: Through ageing, and beyond: Gut microbiotaand inflammatory status in seniors and centenarians.PLoS One, 2010; 5: e10667
Google Scholar - 17. Boneva N.B., Yamashima T.: New insights into“GPR40-CREB interaction in adult neurogenesis” specificfor primates. Hippocampus, 2012; 22: 896–905
Google Scholar - 18. Cai L., Chan J.S., Yan J.H., Peng K.: Brain plasticity andmotor practice in cognitive aging. Front. Aging. Neurosci.,2014; 6: 31
Google Scholar - 19. Calder P.C.: n-3 fatty acids, inflammation and immunity:new mechanisms to explain old actions. Proc. Nutr. Soc.,2013; 72: 326–336
Google Scholar - 20. Calder P.C.: Omega-3 fatty acids and inflammatory processes:From molecules to man. Biochem. Soc. Trans., 2017;45: 1105–1115
Google Scholar - 21. Cannon J.A., Moffitt P., Perez-Moreno A.C., Walters M.R.,Broomfield N.M., McMurray J.J., Quinn T.J.: Cognitive impairmentand heart failure: Systematic review and meta-analysis.J. Card. Fail., 2017; 23: 464–475
Google Scholar - 22. Cao D., Kevala K., Kim J., Moon H.S., Jun S.B., LovingerD., Kim H.Y.: Docosahexaenoic acid promotes hippocampalneuronal development and synaptic function. J. Neurochem.,2009; 111: 510–521
Google Scholar - 23. Cherubini A., Andres-Lacueva C., Martin A., Lauretani F.,Iorio A.D., Bartali B., Corsi A., Bandinelli S., Mattson M.P., FerrucciL.: Low plasma N-3 fatty acids and dementia in olderpersons: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med.Sci., 2007; 62: 1120–1126
Google Scholar - 24. Chhetri J.K., de Souto Barreto P., Soriano G., Gennero I.,Cantet C., Vellas B.: Vitamin D, homocysteine and n-3PUFAstatus according to physical and cognitive functions inolder adults with subjective memory complaint: Resultsfrom cross-sectional study of the MAPT trial. Exp. Gerontol.,2018; 111: 71–77
Google Scholar - 25. Chin A.V., Robinson D.J., O’Connell H., Hamilton F., BruceI., Coen R., Walsh B., Coakley D., Molloy A., Scott J., LawlorB.A., Cunningham C.J.: Vascular biomarkers of cognitive performancein a community-based elderly population: TheDublin Healthy Ageing study. Age Ageing, 2008; 37: 559–564
Google Scholar - 26. Chouinard-Watkins R., Rioux-Perreault C., Fortier M.,Tremblay-Mercier J., Zhang Y., Lawrence P., Vohl M.C., PerronP., Lorrain D., Brenna J.T., Cunnane S.C., Plourde M.:Disturbance in uniformly 13C-labelled DHA metabolismin elderly human subjects carrying the apoE ε4 allele. Br. J.Nutr., 2013; 110: 1751–1759
Google Scholar - 27. Ciappolino V., Mazzocchi A., Botturi A., Turolo S., DelvecchioG., Agostoni C., Brambilla P.: The role of docosahexaenoicacid (DHA) on cognitive functions in psychiatricdisorders. Nutrients, 2019; 11: 769
Google Scholar - 28. Cipollina C., Salvatore S.R., Muldoon M.F., Freeman B.A.,Schopfer F.J.: Generation and dietary modulation of antiinflammatoryelectrophilic omega-3 fatty acid derivatives.PLoS One, 2014; 9: e94836
Google Scholar - 29. Colin J., Gregory-Pauron L., Lanhers M.C., ClaudepierreT., Corbier C., Yen F.T., Malaplate-Armand C., Oster T.: Membraneraft domains and remodeling in aging brain. Biochimie,2016; 130: 178–187
Google Scholar - 30. Conklin S.M., Gianaros P.J., Brown S.M., Yao J.K., HaririA.R., Manuck S.B., Muldoon M.F.: Long-chain omega-3fatty acid intake is associated positively with corticolimbicgray matter volume in healthy adults. Neurosci. Lett.,2007; 421: 209–212
Google Scholar - 31. Cunnane S.C., Schneider J.A., Tangney C., Tremblay-Mercier J., Fortier M., Bennett D.A., Morris M.C.: Plasmaand brain fatty acid profiles in mild cognitive impairmentand Alzheimer’s disease. J. Alzheimers Dis., 2012; 29: 691–697
Google Scholar - 32. Daiello L.A., Gongvatana A., Dunsiger S., Cohen R.A.,Ott B.R., Alzheimer’s Disease Neuroimaging Initiative:Association of fish oil supplement use with preservationof brain volume and cognitive function. AlzheimersDement., 2015; 11: 226–235
Google Scholar - 33. Dangour A.D., Allen E., Elbourne D., Fletcher A.,Richards M., Uauy R.: Fish consumption and cognitivefunction among older people in the UK: Baseline datafrom the OPAL study. J. Nutr. Health Aging, 2009; 13:198–202
Google Scholar - 34. de Oliveira Otto M.C., Wu J.H., Thacker E.L., Lai H.,Lemaitre R.N., McKnight B., Padhye N., Song X., KingI.B., Lopez O., Siscovick D., Mozaffarian D.: Longitudinalassociations of omega-6 and omega-3 plasma phospholipidpolyunsaturated fatty acids with dementia in olderadults: The cardiovascular health study. Circulation, 2019;139: A046
Google Scholar - 35. Dullemeijer C., Durga J., Brouwer I.A., van de Rest O.,Kok F.J., Brummer R.J., van Boxtel M.P., Verhoef P.: n3 fattyacid proportions in plasma and cognitive performance inolder adults. Am. J. Clin. Nutr., 2007; 86: 1479–1485
Google Scholar - 36. Dyall S.C., Michael G.J., Michael-Titus A.T.: Omega-3fatty acids reverse age-related decreases in nuclear receptorsand increase neurogenesis in old rats. J. Neurosci.Res., 2010; 88: 2091–2102
Google Scholar - 37. Ehninger D., Kempermann G.: Neurogenesis in theadult hippocampus. Cell Tissue Res., 2008; 331: 243–250
Google Scholar - 38. Fairbairn P., Tsofliou F., Johnson A., Dyall S.C.: Effectsof a high-DHA multi-nutrient supplement and exerciseon mobility and cognition in older women (MOBILE): Arandomised semi-blinded placebo-controlled study. Br. J.Nutr., 2020; 124: 146–155
Google Scholar - 39. Faraco G., Brea D., Garcia-Bonilla L., Wang G., RacchumiG., Chang H., Buendia I., Santisteban M.M., SegarraS.G., Koizumi K., Sugiyama Y., Murphy M., Voss H.,Anrather J., Iadecola C.: Dietary salt promotes neurovascularand cognitive dysfunction through a gut-initiatedTH17 response. Nat. Neurosci., 2018; 21: 240–249
Google Scholar - 40. Fleischman D.A., Leurgans S., Arfanakis K., ArvanitakisZ., Barnes L.L., Boyle P.A., Han S.D., Bennett D.A.:Gray-matter macrostructure in cognitively healthy olderpersons: Associations with age and cognition. BrainStruct. Funct., 2014; 219: 2029–2049
Google Scholar - 41. Fonteh A.N., Cipolla M., Chiang A.J., Edminster S.P.,Arakaki X., Harrington M.G.: Polyunsaturated fatty acidcomposition of cerebrospinal fluid fractions shows theircontribution to cognitive resilience of a pre-symptomaticAlzheimer’s disease cohort. Front. Physiol., 2020;11: 83
Google Scholar - 42. Goh J.O.: Functional dedifferentiation and alteredconnectivity in older adults: Neural accounts of cognitiveaging. Aging Dis., 2011; 2: 30–48
Google Scholar - 43. Gorelick P.B.: Role of inflammation in cognitive impairment:Results of observational epidemiological studies andclinical trials. Ann. N. Y. Acad. Sci., 2010; 1207: 155–162
Google Scholar - 44. Grande G., Qiu C., Fratiglioni L.: Prevention of dementiain an ageing world: Evidence and biological rationale.Ageing Res. Rev., 2020; 64: 101045
Google Scholar - 45. Green K.N., Martinez-Coria H., Khashwji H., Hall E.B.,Yurko-Mauro K.A., Ellis L., LaFerla F.M.: Dietary docosahexaenoicacid and docosapentaenoic acid ameliorateamyloid-β and tau pathology via a mechanism involvingpresenilin 1 levels. J. Neurosci., 2007; 27: 4385–4395
Google Scholar - 46. Grimm M.O., Kuchenbecker J., Grösgen S., Burg V.K.,Hundsdörfer B., Rothhaar T.L., Friess P., de Wilde M.C.,Broersen L.M., Penke B., Péter M., Vígh L., Grimm H.S.,Hartmann T.: Docosahexaenoic acid reduces amyloid βproduction via multiple pleiotropic mechanisms. J. Biol.Chem., 2011; 286: 14028–14039
Google Scholar - 47. Groeger A.L., Cipollina C., Cole M.P., Woodcock S.R.,Bonacci G., Rudolph T.K., Rudolph V., Freeman B.A.,Schopfer F.J.: Cyclooxygenase-2 generates anti-inflammatorymediators from omega-3 fatty acids. Nat. Chem. Biol.,2010; 6: 433–441
Google Scholar - 48. Gu Y., Schupf N., Cosentino S.A., Luchsinger J.A., ScarmeasN.: Nutrient intake and plasma β-amyloid. Neurology,2012; 78: 1832–1840
Google Scholar - 49. Hafkemeijer A., Altmann-Schneider I., de Craen A.J.,Slagboom P.E., van der Grond J., Rombouts S.A.: Associationsbetween age and gray matter volume in anatomicalbrain networks in middle-aged to older adults. Aging Cell,2014; 13: 1068–1074
Google Scholar - 50. Haller S., Montandon M.L., Rodriguez C., Garibotto V.,Lilja J., Herrmann F.R., Giannakopoulos P.: Amyloid load,hippocampal volume loss, and diffusion tensor imagingchanges in early phases of brain aging. Front. Neurosci.,2019; 13: 1228
Google Scholar - 51. Harrison S.L., de Craen A.J., Kerse N., Teh R., GranicA., Davies K., Wesnes K.A., den Elzen W.P., Gussekloo J.,Kirkwood T.B., Robinson L., Jagger C., Siervo M., StephanB.C.: Predicting risk of cognitive decline in very old adultsusing three models: The Framingham Stroke risk profile;the cardiovascular risk factors, aging, and dementiamodel; and oxi-inflammatory biomarkers. J. Am. Geriatr.Soc., 2017; 65: 381–389
Google Scholar - 52. Harrison S.L., Ding J., Tang E.Y., Siervo M., RobinsonL., Jagger C., Stephan B.C.: Cardiovascular disease riskmodels and longitudinal changes in cognition: A systematicreview. PLoS One, 2014; 9: e114431
Google Scholar - 53. He C., Qu X., Cui L., Wang J., Kang J.X.: Improvedspatial learning performance of fat-1 mice is associatedwith enhanced neurogenesis and neuritogenesis by docosahexaenoicacid. Proc. Natl. Acad. Sci. USA, 2009; 106:11370–11375
Google Scholar - 54. Hinterberger M., Fischer P.: Folate and Alzheimer:When time matters. J. Neural. Transm., 2013; 120: 211–224
Google Scholar - 55. Hjorth E., Zhu M., Toro V.C., Vedin I., Palmblad J.,Cederholm T., Freund-Levi Y., Faxen-Irving G., WahlundL.O., Basun H., Eriksdotter M., Schultzberg M.: Omega-3fatty acids enhance phagocytosis of Alzheimer’s diseaserelatedamyloid-β42 by human microglia and decreaseinflammatory markers. J. Alzheimers Dis., 2013; 35: 697–713
Google Scholar - 56. Holtzman D.M., Morris J.C., Goate A.M.: Alzheimer’sdisease: The challenge of the second century. Sci. Transl.Med., 2011; 3: 77sr1
Google Scholar - 57. Hooijmans C.R., Pasker-de Jong P.C., de Vries R.B., Ritskes-Hoitinga M.: The effects of long-term omega-3 fatty acidsupplementation on cognition and Alzheimer’s pathology inanimal models of Alzheimer’s disease: A systematic reviewand meta-analysis. J. Alzheimers Dis., 2012; 28: 191–209
Google Scholar - 58. Howe P.R., Evans H.M., Kuszewski J.C., Wong R.H.:Effects of long chain omega-3 polyunsaturated fatty acidson brain function in mildly hypertensive older adults.Nutrients, 2018; 10: 1413
Google Scholar - 59. Huang T., Wahlqvist M.L., Li D.: Effect of n-3 polyunsaturatedfatty acid on gene expression of the critical enzymesinvolved in homocysteine metabolism. Nutr. J., 2012; 11: 6
Google Scholar - 60. Huang T., Zheng J., Chen Y., Yang B., Wahlqvist M.L., Li D.:High consumption of Ω-3 polyunsaturated fatty acids decreaseplasma homocysteine: A meta-analysis of randomized, placebo-controlled trials. Nutrition, 2011; 27: 863–867
Google Scholar - 61. Jiao J., Li Q., Chu J., Zeng W., Yang M., Zhu S.: Effectof n-3 PUFA supplementation on cognitive functionthroughout the life span from infancy to old age: A systematicreview and meta-analysis of randomized controlledtrials. Am. J. Clin. Nutr., 2014; 100: 1422–1436
Google Scholar - 62. Kawakita E., Hashimoto M., Shido O.: Docosahexaenoicacid promotes neurogenesis in vitro and in vivo.Neuroscience, 2006; 139: 991–997
Google Scholar - 63. Kempermann G., Gage F.H., Aigner L., Song H., CurtisM.A., Thuret S., Kuhn H.G., Jessberger S., FranklandP.W., Cameron H.A., Gould E., Hen R., Abrous D.N., ToniN., Schinder A.F. i wsp.: Human adult neurogenesis: Evidenceand remaining questions. Cell Stem Cell, 2018; 23:25–30
Google Scholar - 64. Kim H.L., Kim D.K., Kang S.W., Park Y.K.: Association ofnutrient intakes with cognitive function in Koreans aged 50 years and older. Clin. Nutr. Res., 2018; 7: 199–212
Google Scholar - 65. Kim J., Park M.H., Kim E., Han C., Jo S.A., Jo I.: Plasmahomocysteine is associated with the risk of mild cognitiveimpairment in an elderly Korean population. J. Nutr.,2007; 137: 2093–2097
Google Scholar - 66. Klempin F., Kempermann G.: Adult hippocampal neurogenesisand aging. Eur. Arch. Psychiatry Clin. Neurosci.,2007; 257: 271–280
Google Scholar - 67. Kolan M.: Zaburzenia funkcji poznawczycha choroby niedokrwienne mózgu. W: Neurokognitywistykaw patologii i zdrowiu 2009–2011, red.: I. Kojder.Wydawnictwo Pomorskiego Uniwersytetu Medycznego,Szczecin 2011, 94–105
Google Scholar - 68. Kotwal S., Jun M., Sullivan D., Perkovic V., Neal B.:Omega 3 fatty acids and cardiovascular outcomes: Systematicreview and meta-analysis. Circ. Cardiovasc. Qual.Outcomes, 2012; 5: 808–818
Google Scholar - 69. Kröger E., Verreault R., Carmichael P.H., Lindsay J.,Julien P., Dewailly E., Ayotte P., Laurin D.: Omega-3 fattyacids and risk of dementia: The Canadian study of healthand aging. Am. J. Clin. Nutr., 2009; 90: 184–192
Google Scholar - 70. Kume A., Kurotani K., Sato M., Ejima Y., Pham N.M.,Nanri A., Kuwahara K., Mizoue T.: Polyunsaturated fattyacids in serum and homocysteine concentrations in Japanesemen and women: A cross-sectional study. Nutr.Metab., 2013; 10: 41
Google Scholar - 71. Ledesma M.D., Martin M.G., Dotti C.G.: Lipid changesin the aged brain: Effect on synaptic function and neuronalsurvival. Prog. Lipid. Res., 2012; 51: 23–35
Google Scholar - 72. Lopez L.B., Kritz-Silverstein D., Barrett Connor E.:High dietary and plasma levels of the omega-3 fatty aciddocosahexaenoic acid are associated with decreaseddementia risk: The Rancho Bernardo study. J. Nutr. HealthAging, 2011; 15: 25–31
Google Scholar - 73. Lord S.R., Delbaere K., Sturnieks D.L.: Chapter 10 –Aging. W: Handbook of Clinical Neurology, Volume 159,red.: B.L. Day, S.R. Lord. Elsevier, 2018, 157–171
Google Scholar - 74. Lu Z.H., Li J., Li X.L., Ding M., Mao C.J., Zhu X.Y.,Liu C.F.: Hypertension with hyperhomocysteinemiaincreases the risk of early cognitive impairment afterfirst-ever ischemic stroke. Eur. Neurol., 2019; 82: 75–85
Google Scholar - 75. Ma F., Zhou X., Li Q., Zhao J., Song A., An P., Du Y.,Xu W., Huang G.: Effects of folic acid and vitamin B12,alone and in combination on cognitive function andinflammatory factors in the elderly with mild cognitiveimpairment: A single-blind experimental design. Curr.Alzheimer Res., 2019; 16: 622–632
Google Scholar - 76. Manders M., Vasse E., de Groot L.C., van StaverenW.A., Bindels J.G., Blom H.J., Hoefnagels W.H.: Homocysteineand cognitive function in institutionalised elderlyA cross-sectional analysis. Eur. J. Nutr., 2006; 45: 70–78
Google Scholar - 77. Marciniak-Łukasik K.: Rola i znaczenie kwasówtłuszczowych omega-3. Żywn. Nauka Technol. Jakość,2011; 18: 24–35
Google Scholar - 78. McNamara R.K., Kalt W., Shidler M.D., McDonald J.,Summer S.S., Stein A.L., Stover A.N., Krikorian R.: Cognitiveresponse to fish oil, blueberry, and combined supplementationin older adults with subjective cognitiveimpairment. Neurobiol. Aging, 2018; 64: 147–156
Google Scholar - 79. Middleton L.E., Yaffe K.: Promising strategies for theprevention of dementia. Arch. Neurol., 2009; 66: 1210–1215
Google Scholar - 80. Mora F., Segovia G., del Arco A.: Aging, plasticityand environmental enrichment: Structural changes andneurotransmitter dynamics in several areas of the brain.Brain Res. Rev., 2007; 55: 78–88
Google Scholar - 81. Noble J.M., Manly J.J., Schupf N., Tang M.X., MayeuxR., Luchsinger J.A.: Association of C-reactive protein withcognitive impairment. Arch. Neurol., 2010; 67: 87–92
Google Scholar - 82. Nyberg L., Lövdén M., Riklund K., LindenbergerU., Bäckman L.: Memory aging and brain maintenance.Trends Cogn. Sci., 2012; 16: 292–305
Google Scholar - 83. Otsuka R., Tange C., Nishita Y., Kato Y., Imai T., Ando F.,Shimokata H.: Serum docosahexaenoic and eicosapentaenoicacid and risk of cognitive decline over 10 years amongelderly Japanese. Eur. J. Clin. Nutr., 2014; 68: 503–509
Google Scholar - 84. Park D.C., Reuter-Lorenz P.: The adaptive brain:Aging and neurocognitive scaffolding. Annu. Rev. Psychol.,2009; 60: 173–196
Google Scholar - 85. Peng H.Y., Man C.F., Xu J., Fan Y.: Elevated homocysteinelevels and risk of cardiovascular and all-cause mortality:A meta-analysis of prospective studies. J. ZhejiangUniv. Sci. B, 2015; 16: 78–86
Google Scholar - 86. Pobrotyn P., Susło R., Witczak I.T., Rypicz L., DrobnikJ.: An analysis of the costs of treating aged patients in a large clinical hospital in Poland under the pressureof recent demographic trends. Arch. Med. Sci., 2020; 16:666–671
Google Scholar - 87. Qin B., Plassman B.L., Edwards L.J., Popkin B.M., AdairL.S., Mendez M.A.: Fish intake is associated with slowercognitive decline in Chinese older adults. J. Nutr., 2014;144: 1579–1585
Google Scholar - 88. Raji C.A., Erickson K.I., Lopez O.L., Kuller L.H., GachH.M., Thompson P.M., Riverol M., Becker J.T.: Regular fishconsumption and age-related brain gray matter loss. Am.J. Prev. Med., 2014; 47: 444–451
Google Scholar - 89. Rao J.S., Ertley R.N., Lee H.J., DeMar J.C. Jr., Arnold J.T.,Rapoport S.I., Bazinet R.P.: n-3 polyunsaturated fatty aciddeprivation in rats decreases frontal cortex BDNF via ap38 MAPK-dependent mechanism. Mol. Psychiatry, 2007;12: 36–46
Google Scholar - 90. Reitz C., Tang M.X., Miller J., Green R., Luchsinger J.A.:Plasma homocysteine and risk of mild cognitive impairment.Dement. Geriatr. Cogn. Disord., 2009; 27: 11–17
Google Scholar - 91. Roberts R.O., Geda Y.E., Knopman D.S., Boeve B.F.,Christianson T.J., Pankratz V.S., Kullo I.J., Tangalos E.G.,Ivnik R.J., Petersen R.C.: Association of C-reactive proteinwith mild cognitive impairment. Alzheimers Dement.,2009; 5: 398–405
Google Scholar - 92. Robson L.G., Dyall S., Sidloff D., Michael-Titus A.T.:Omega-3 polyunsaturated fatty acids increase the neuriteoutgrowth of rat sensory neurones throughout developmentand in aged animals. Neurobiol. Aging, 2010; 31:678–687
Google Scholar - 93. Sachdev P.S., Blacker D., Blazer D.G., Ganguli M., JesteD.V., Paulsen J.S., Petersen R.C.: Classifying neurocognitivedisorders: The DSM-5 approach. Nat. Rev. Neurol., 2014;10: 634–642
Google Scholar - 94. Samieri C., Lorrain S., Buaud B., Vaysse C., Berr C.,Peuchant E., Cunnane S.C., Barberger-Gateau P.: Relationshipbetween diet and plasma long-chain n-3 PUFAsin older people: Impact of apolipoprotein E genotype. J.Lipid. Res., 2013; 54: 2559–2567
Google Scholar - 95. Santangeli P., Di Biase L., Bai R., Mohanty S., PumpA., Cereceda Brantes M., Horton R., Burkhardt J.D., LakkireddyD., Reddy Y.M., Casella M., Dello Russo A., TondoC., Natale A.: Atrial fibrillation and the risk of incidentdementia: A meta-analysis. Heart Rhythm, 2012; 9: 1761–1768
Google Scholar - 96. Schaefer E.J., Bongard V., Beiser A.S., Lamon-Fava S.,Robins S.J., Au R., Tucker K.L., Kyle D.J., Wilson P.W., WolfP.A.: Plasma phosphatidylcholine docosahexaenoic acidcontent and risk of dementia and Alzheimer disease: TheFramingham Heart Study. Arch. Neurol., 2006; 63: 1545–1550
Google Scholar - 97. Serhan C.N., Dalli J., Colas R.A., Winkler J.W., ChiangN.: Protectins and maresins: New pro-resolving families ofmediators in acute inflammation and resolution bioactivemetabolome. Biochim. Biophys. Acta, 2015; 1851: 397–413
Google Scholar - 98. Serini S., Bizzarro A., Piccioni E., Fasano E., RossiC., Lauria A., Cittadini A.R., Masullo C., Calviello G.: EPAand DHA differentially affect in vitro inflammatorycytokine release by peripheral blood mononuclear cellsfrom Alzheimer’s patients. Curr. Alzheimer Res., 2012;9: 913–923
Google Scholar - 99. Stephan B.C.M., Harrison S.L., Keage H.A.D., BabateenA., Robinson L., Siervo M.: Cardiovascular disease, thenitric oxide pathway and risk of cognitive impairmentand dementia. Curr. Cardiol. Rep., 2017; 19: 87
Google Scholar - 100. Stillwell W., Shaikh S.R., Zerouga M., Siddiqui R.,Wassall S.R.: Docosahexaenoic acid affects cell signalingby altering lipid rafts. Reprod. Nutr. Dev., 2005; 45: 559–579
Google Scholar - 101. Sun G.Y., Simonyi A., Fritsche K.L., Chuang D.Y., HanninkM., Gu Z., Greenlief C.M., Yao J.K., Lee J.C., BeversdorfD.Q.: Docosahexaenoic acid (DHA): An essential nutrientand a nutraceutical for brain health and diseases. ProstaglandinsLeukot. Essent. Fatty Acids, 2018; 136: 3–13
Google Scholar - 102. Szponar L., Mojska H., Ołtarzewski Ł., Piotrowska K.:Tłuszcze. W: Normy żywienia dla populacji Polski, red.:M. Jarosz. Instytut Żywności i Żywienia, Warszawa 2017,56–75
Google Scholar - 103. Szwed A., Miłowska K.: Rola białek w chorobach neurodegeneracyjnych.Postępy Hig. Med. Dośw., 2012; 66:187–195
Google Scholar - 104. Takao H., Hayashi N., Ohtomo K.: A longitudinalstudy of brain volume changes in normal aging. Eur. J.Radiol., 2012; 81: 2801–2804
Google Scholar - 105. Tan J.H., Abdin E., Shahwan S., Zhang Y., SambasivamR., Vaingankar J.A., Mahendran R., Chua H.C., Chong S.A.,Subramaniam M.: Happiness and cognitive impairmentamong older adults: Investigating the mediational roles ofdisability, depression, social contact frequency, and loneliness.Int. J. Environ. Res. Public Health, 2019; 16: 4954
Google Scholar - 106. Tan Z.S., Harris W.S., Beiser A.S., Au R., Himali J.J.,Debette S., Pikula A., Decarli C., Wolf P.A., Vasan R.S., RobinsS.J., Seshadri S.: Red blood cell ω-3 fatty acid levels andmarkers of accelerated brain aging. Neurology, 2012; 78:658–664
Google Scholar - 107. Titova O.E., Sjögren P., Brooks S.J., Kullberg J., AxE., Kilander L., Riserus U., Cederholm T., Larsson E.M.,Johansson L., Ahlström H., Lind L., Schiöth H.B., Benedict C.: Dietary intake of eicosapentaenoic and docosahexaenoicacids is linked to gray matter volume and cognitivefunction in elderly. Age, 2013; 35: 1495–1505
Google Scholar - 108. Treder N., Jodzio K.: Heterogeniczność funkcjonowaniapoznawczego i jego zaburzeń u osób starszych.Psychiatria i Psychoterapia, 2013; 9: 3–13
Google Scholar - 109. van de Rest O., Spiro A. 3rd, Krall-Kaye E., GeleijnseJ.M., de Groot L.C., Tucker K.L.: Intakes of (n-3)fatty acids and fatty fish are not associated with cognitiveperformance and 6-year cognitive change inmen participating in the Veterans Affairs NormativeAging Study. J. Nutr., 2009; 139: 2329–2336
Google Scholar - 110. van Gelder B.M., Tijhuis M., Kalmijn S., KromhoutD.: Fish consumption, n-3 fatty acids, and subsequent5-y cognitive decline in elderly men: The ZutphenElderly Study. Am. J. Clin. Nutr., 2007; 85: 1142–1147
Google Scholar - 111. Vedin I., Cederholm T., Freund Levi Y., Basun H.,Garlind A., Faxén Irving G., Jönhagen M.E., Vessby B.,Wahlund L.O., Palmblad J.: Effects of docosahexaenoicacid-rich n-3 fatty acid supplementation on cytokinerelease from blood mononuclear leukocytes: TheOmegAD study. Am. J. Clin. Nutr., 2008; 87: 1616–1622
Google Scholar - 112. Vela S., Sainz N., Moreno-Aliaga M.J., Solas M.,Ramirez M.J.: DHA selectively protects SAMP-8-associatedcognitive deficits through inhibition of JNK. Mol.Neurobiol., 2019; 56: 1618–1627
Google Scholar - 113. Virtanen J.K., Siscovick D.S., Lemaitre R.N., LongstrethW.T., Spiegelman D., Rimm E.B., King I.B., Mozaffarian D.: Circulatingomega-3 polyunsaturated fatty acids and subclinicalbrain abnormalities on MRI in older adults: The CardiovascularHealth Study. J. Am. Heart Assoc., 2013; 2: e000305
Google Scholar - 114. Vogels R.L., Scheltens P., Schroeder-Tanka J.M.,Weinstein H.C.: Cognitive impairment in heart failure:A systematic review of the literature. Eur. J. HeartFail., 2007; 9: 440–449
Google Scholar - 115. Wandell B.A.: Clarifying human white matter.Annu. Rev. Neurosci., 2016; 39: 103–128
Google Scholar - 116. Weiser M.J., Butt C.M., Mohajeri M.H.: Docosahexaenoicacid and cognition throughout the lifespan.Nutrients, 2016; 8: 99
Google Scholar - 117. Wróblewska I., Zborowska I., Dąbek A., Susło R.,Wróblewska Z., Drobnik J.: Health status, health behaviors,and the ability to perform everyday activities inPoles aged ≥65 years staying in their home environment.Clin. Interv. Aging, 2018; 13: 355–363
Google Scholar - 118. Wu A., Ying Z., Gomez-Pinilla F.: Docosahexaenoicacid dietary supplementation enhances theeffects of exercise on synaptic plasticity and cognition.Neuroscience, 2008; 155: 751–759
Google Scholar - 119. Wu S., Ding Y., Wu F., Li R., Hou J., Mao P.: Omega-3fatty acids intake and risks of dementia and Alzheimer’sdisease: A meta-analysis. Neurosci. Biobehav. Rev., 2015;48: 1–9
Google Scholar - 120. Yassine H.N., Rawat V., Mack W.J., Quinn J.F., Yurko-Mauro K., Bailey-Hall E., Aisen P.S., Chui H.C., SchneiderL.S.: The effect of APOE genotype on the delivery of DHAto cerebrospinal fluid in Alzheimer’s disease. AlzheimersRes. Ther., 2016; 8: 25
Google Scholar - 121. Yurko-Mauro K., Alexander D.D., Van Elswyk M.E.:Docosahexaenoic acid and adult memory: A systematicreview and meta-analysis. PLoS One, 2015; 10: e0120391
Google Scholar - 122. Zhang Y., Chen J., Qiu J., Li Y., Wang J., Jiao J.: Intakesof fish and polyunsaturated fatty acids and mild-to-severecognitive impairment risks: A dose-response meta-analysisof 21 cohort studies. Am. J. Clin. Nutr., 2016; 103: 330–340
Google Scholar