Metformina – potencjalne działanie przeciwnowotworowe i przeciwstarzeniowe

GLOSA LUB KOMENTARZ PRAWNICZY

Metformina – potencjalne działanie przeciwnowotworowe i przeciwstarzeniowe

Monika Podhorecka 1 , Blanca Ibanez 1 , Anna Dmoszyńska 2

1. Department of Hematooncology and Bone Marrow Transplantation Medical University of Lublin
2. Polish Multiple Myeloma Group, Retired Professor of Medical University of Lublin

Opublikowany: 2017-03-02
DOI: 10.5604/01.3001.0010.3801
GICID: 01.3001.0010.3801
Dostępne wersje językowe: pl en
Wydanie: Postepy Hig Med Dosw 2017; 71 : 170-175

 

Abstrakt

Przypisy

  • 1. Algire C., Moiseeva O., Deschenes-Simard X., Amrein L., Petruccelli L., Birman E., Viollet B., Ferbeyre, G. Pollak M.N.: Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev. Res., 2012; 5: 536-543
    Google Scholar
  • 2. Anisimov V.N.: Metformin for aging and cancer prevention. Aging, 2010; 2: 760-774
    Google Scholar
  • 3. Anisimov V.N.: Metformin: do we finally have an anti-aging drug? Cell Cycle, 2013: 12, 3483-3489
    Google Scholar
  • 4. Anisimov V.N., Bartke A.: The key role of growth hormone-insulin – GF-1 signaling in aging and cancer. Crit. Rev. Oncol. Hematol., 2013; 87: 201-223
    Google Scholar
  • 5. Bartke A.: Growth hormone, insulin and aging: the benefits of endocrine defects. Exp. Gerontol., 2011; 46: 108-111
    Google Scholar
  • 6. Bartke A.: Single-gene mutations and healthy ageing in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011; 366: 28-34
    Google Scholar
  • 7. Bartke A., Brown-Borg H.: Life extension in the dwarf mouse. Curr. Top. Dev. Biol., 2004; 63: 189-225
    Google Scholar
  • 8. Barzilai N., Huffman D.M., Muzumdar R.H., Bartke A.: The critical role of metabolic pathways in aging. Diabetes, 2012; 61: 1315-1322
    Google Scholar
  • 9. Ben Sahra I., Laurent K., Loubat A., Giorgetti-Peraldi S., Colosetti P., Auberger P., Tanti J.F., Le Marchand-Brustel Y., Bost F.: The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008; 27: 3576-3586
    Google Scholar
  • 10. Ben Sahra I., Regazzetti C., Robert G., Laurent K., Le Marchand- -Brustel Y., Auberger P., Tanti J.F., Giorgetti-Peraldi S., Bost F.: Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res., 2011; 71: 4366-4372
    Google Scholar
  • 11. Blagosklonny M.V.: Increasing healthy lifespan by suppressing aging in our lifetime: Preliminary proposal. Cell Cycle, 2010; 9: 4788-4794
    Google Scholar
  • 12. Blandino G., Valerio M., Cioce M., Mori F., Casadei L., Pulito C., Sacconi A., Biagioni F., Cortese G., Galanti S., Manetti C., Citro G., Muti P., Strano S.: Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat. Commun., 2012; 3: 865
    Google Scholar
  • 13. Burgess S.C., He T., Yan Z., Lindner J., Sherry A.D., Malloy C.R., Browning J.D., Magnuson M.A.: Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab., 2007; 5: 313-320
    Google Scholar
  • 14. ] Buzzai M., Jones R.G., Amaravadi R.K., Lum J.J., DeBerardinis R.J., Zhao F., Viollet B., Thompson C.B.: Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res., 2007; 67: 6745-6752
    Google Scholar
  • 15. Cabreiro F., Au, C., Leung K.Y., Vergara-Irigaray N., Cochemé H.M., Noori T., Weinkove D., Schuster E., Greene N.D., Gems D.: Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell, 2013; 153: 228-239
    Google Scholar
  • 16. Corominas-Faja B., Quirantes-Piné R., Oliveras-Ferraros C., Vazquez-Martin A., Cufi S., Martin-Castillo B., Micol V., Joven J., Segura- -Carretero A., Menendez J.A.: Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging, 2012; 4: 480-498
    Google Scholar
  • 17. Darzynkiewicz Z., Zhao H., Halicka H.D., Li J., Lee Y.S., Hsieh T.C., Wu J.M.: In search of antiaging modalities: evaluation of mTOR – and ROS/DNA damage-signaling by cytometry. Cytometry A, 2014; 85: 386-399
    Google Scholar
  • 18. Decensi A., Puntoni M., Goodwin P., Cazzaniga M., Gennari A., Bonanni B., Gandini S.: Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res., 2010; 3: 1451-1461
    Google Scholar
  • 19. Feng Y., Ke C., Tang Q., Dong H., Zheng X., Lin W., Ke J., Huang J., Yeung S.C., Zhang H.: Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis., 2014; 5: e1088
    Google Scholar
  • 20. Foretz M., Hébrard S., Leclerc J., Zarrinpashneh E., Soty M., Mithieux G., Sakamoto K., Andreelli F., Viollet B.: Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest., 2010; 120: 2355-2369
    Google Scholar
  • 21. Fullerton M.D., Galic S., Marcinko K., Sikkema S., Pulinilkunnil T., Chen Z.P., O›Neill H.M., Ford R.J., Palanivel R., O›Brien M., Hardie D.G., Macaulay S.L., Schertzer J.D., Dyck J.R., van Denderen B.J., Kemp B.E., Steinberg G.R.: Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med., 2013; 19: 1649-1654
    Google Scholar
  • 22. Gwinn D.M., Shackelford D.B., Egan D.F., Mihaylova M.M., Mery A., Vasquez D.S., Turk B.E., Shaw R.J.: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell, 2008; 30: 214-226
    Google Scholar
  • 23. Halicka H.D., Zhao H., Li J., Lee Y.S., Hsieh T.C., Wu J.M., Darzynkiewicz Z.: Potential anti-aging agents suppress the level of constitutive mTOR – and DNA damage – signaling. Aging, 2012; 4: 952-965
    Google Scholar
  • 24. Hardie D.G.: AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol., 2007; 47: 185-210
    Google Scholar
  • 25. Hinke S.A., Martens G.A., Cai Y., Finsi J., Heimberg H., Pipeleers D., Van de Casteele M.: Methyl succinate antagonises biguanide-induced AMPK-activation and death of pancreatic beta-cells through restoration of mitochondrial electron transfer. Br. J. Pharmacol., 2007; 150: 1031-1043
    Google Scholar
  • 26. Hu F., Liu F.: Mitochondrial stress: a bridge between mitochondrial dysfunction and metabolic diseases? Cell. Signal., 2011; 23: 1528-1533
    Google Scholar
  • 27. Hundal R.S., Krssak M., Dufour S., Laurent D., Lebon V., Chandramouli V., Inzucchi S.E., Schumann W.C., Petersen K.F., Landau B.R., Shulman G.I.: Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000; 49: 2063-2069
    Google Scholar
  • 28. Hur K.Y., Lee M.S.: New mechanisms of metformin action: Focusing on mitochondria and the gut. J. Diabetes Investig., 2015; 6: 600 – 609
    Google Scholar
  • 29. Jones R.G., Plas D.R., Kubek S., Buzzai M., Mu J., Xu Y., Birnbaum M.J., Thompson C.B.: AMP-activated protein kinase induces a p53- -dependent metabolic checkpoint. Mol. Cell, 2005; 18: 283-293
    Google Scholar
  • 30. Kalender A., Selvaraj A., Kim S.Y., Gulati P., Brûlé S., Viollet B., Kemp B.E., Bardeesy N., Dennis P., Schlager J.J., Marette A., Kozma S.C., Thomas G.: Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab., 2010; 11: 390-401
    Google Scholar
  • 31. Kawaguchi T., Osatomi K., Yamashita H., Kabashima T., Uyeda K.: Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase. J. Biol. Chem., 2002; 277: 3829-3835
    Google Scholar
  • 32. Marini C., Salani B., Massollo M., Amaro A., Esposito A.I., Orengo A.M., Capitanio S., Emionite L., Riondato M., Bottoni G., Massara C., Boccardo S., Fabbi M., Campi C., Ravera S., et al.: Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle, 2013; 12: 3490-3499
    Google Scholar
  • 33. Martin-Montalvo A., Mercken E.M., Mitchell S.J., Palacios H.H., Mote P.L., Scheibye-Knudsen M., Gomes A.P., Ward T.M., Minor R.K., Blouin M.J., Schwab M., Pollak M., Zhang Y., Yu Y., Becker K.G., et al.: Metformin improves healthspan and lifespan in mice. Nat. Commun., 2013; 4: 2192
    Google Scholar
  • 34. McBride H.M., Neuspiel M., Wasiak S.: Mitochondria: more than just a powerhouse. Curr. Biol., 2006; 16: R551-R560
    Google Scholar
  • 35. Miller R.A., Chu Q., Xie J., Foretz M., Viollet, B., Birnbaum, M.J.: Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature, 2013; 494: 256-260
    Google Scholar
  • 36. Minois N., Carmona-Gutierrez D., Madeo F.: Polyamines in aging and disease. Aging, 2011; 3: 716-732
    Google Scholar
  • 37. Mizushima N., Komatsu M.: Autophagy: renovation of cells and tissues. Cell, 2011; 147: 728-741
    Google Scholar
  • 38. Moiseeva O., Deschenes-Simard X., St-Germain E., Igelmann S., Huot G., Cadar A.E., Bourdeau V., Pollak M.N., Ferbeyre G.: Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell, 2013; 12: 489-498
    Google Scholar
  • 39. Morselli E., Galluzzi L., Kepp O., Criollo A., Maiuri M.C., Tavernarakis N., Madeo F., Kroemer G.: Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging, 2009; 1: 961-970
    Google Scholar
  • 40. Morselli E., Maiuri M.C., Markaki M., Megalou E., Pasparaki A., Palikaras K., Criollo A., Galluzzi L., Malik S.A., Vitale I., Michaud M., Madeo F., Tavernarakis N., Kroemer G.: Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis., 2010; 1: e10
    Google Scholar
  • 41. Onken B., Driscoll M.: Metformin induces a dietary restriction- -like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLoS One, 2010; 5: e8758
    Google Scholar
  • 42. Owen M.R., Doran E., Halestrap A.P.: Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J., 2000; 348: 607-614
    Google Scholar
  • 43. Pearce E,L., Walsh M.C., Cejas P.J., Harms G.M., Shen H., Wang L.S., Jones R.G., Choi Y.: Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature, 2009; 460: 103-107
    Google Scholar
  • 44. Pollak M.: Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer, 2008; 8: 915-928
    Google Scholar
  • 45. Pryor R., Cabreiro F.: Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem. J., 2015; 471: 307-322
    Google Scholar
  • 46. Rubinsztein D.C., Marino G., Kroemer G.: Autophagy and aging. Cell, 2011; 146: 682-695
    Google Scholar
  • 47. Salani B., Marini C., Rio A.D., Ravera S., Massollo M., Orengo A.M., Amaro A., Passalacqua M., Maffioli S., Pfeffer U., Cordera R., Maggi D., Sambuceti G.: Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Sci. Rep., 2013; 3: 2070
    Google Scholar
  • 48. Samuel V.T., Beddow S.A., Iwasaki T., Zhang X.M., Chu X., Still C.D., Gerhard G.S., Shulman G.I.: Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. Proc. Natl. Acad. Sci. USA, 2009; 106: 12121-12126
    Google Scholar
  • 49. Sauve A.A., Wolberger C., Schramm V.L., Boeke J.D.: The biochemistry of sirtuins. Annu. Rev. Biochem., 2006; 75: 435-465
    Google Scholar
  • 50. Shaw R.J., Lamia K.A., Vasquez D., Koo S.H., Bardeesy N., Depinho R.A., Montminy M., Cantley L.C.: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 2005; 310: 1642-1646
    Google Scholar
  • 51. Snima K.S., Pillai P., Cherian A.M., Nair S.V., Lakshmanan V.K.: Anti-diabetic drug metformin: challenges and perspectives for cancer therapy. Curr. Cancer Drug Targets, 2014; 14: 727-736
    Google Scholar
  • 52. Sui X., Xu Y., Wang X., Han W., Pan H., Xiao M.: Metformin: a novel but controversial drug in cancer prevention and treatment. Mol. Pharm., 2015; 12: 3783-3791
    Google Scholar
  • 53. Viollet B., Guigas B., Sanz Garcia N., Leclerc J., Foretz M., Andreelli F.: Cellular and molecular mechanisms of metformin: an overview. Clin. Sci., 2012; 122: 253-270
    Google Scholar
  • 54. Wallace D.C.: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet., 2005; 39: 359-407
    Google Scholar
  • 55. Wiederkehr A., Wollheim C.B.: Minireview: implication of mitochondria in insulin secretion and action. Endocrinology, 2006; 147: 2643-2649
    Google Scholar
  • 56. Yamaguchi O., Otsu K.: Role of autophagy in aging. J. Cardiovasc. Pharmacol., 2012; 60: 242-247
    Google Scholar
  • 57. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J., Wu M., Ventre J., Doebber T., Fujii N., Musi N., Hirshman M.F., Goodyear L.J., Moller D.E.: Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest., 2001; 108: 1167-1174
    Google Scholar

Pełna treść artykułu

Przejdź do treści